Skip to main content
Log in

New mineral data from the kamafugitecarbonatite association: The melilitolite from Pian di Celle, Italy

Die Bedeutung seltener und neuer Mineral-Paragenesen aus der kamafugit-karbonatit-Assoziation: Der melilitolit von San Venanzo, Italien

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

A detailed mineralogical investigation of a Pian di Celle sill rock (San Venanzo, Italy), classified asmelilitolite and associated withvenanzite and carbonatitic pyroclasts, revealed new and rare mineral parageneses, considered as characteristic of thekamafugite-carbonatite association. These are formed by several accessory minerals, including minerals of the cuspidine family, götzenite, khibinskite, minerals of the rhodesite- delhayelite- macdonaldite family, pyrrhotite, bartonite and (Fe, Ni, Co) monoarsenide, mostly optically and chemically identified also in fluid inclusions. The chemical composition of these minerals and their probable crystallisation succession, deduced from textural relationships, demonstrates extensive atomic substitutions, notably for Ca, Ti, Mg and alkali, essentially reflecting high concentrations of REE, Sr, Ba, Nb and Zr, which significantly varied during crystallisation. Molecular alkali excess over Al and high Ca content in (H2O, F, CO2)-rich, Siundersaturated liquid(s) are considered the dominant factors in controlling the stability of disilicate-type minerals. Separation of the carbonatite liquid from the silicate magma, constrained by textural and fluid inclusion data, was fundamental in moving the residuum onto a strongly peralkaline trend which stabilised the sulphides under changed redox conditions.

Zusammenfassung

Eine eingehende mineralogische Untersuchung eines Lagerganges von Pian di Celle, der als Melilitolit klassifiziert and mit Venanzit and karbonatitischen Pyroklasten assoziiert ist, ergab neue and seltene Mineral-Paragenesen, die als charakteristisch für die Kamafugit-Karbonatit-Assoziation gelten. Diese bestehen aus verschiedenen akzessorischen Mineralien, darunter Perovskit, Cuspidin, Götzenit, Khibinskit, Delhayelit, Macdonaldit, Bardonit and (Fe, Ni, Co) Monoarsenit; diese werden in Flüssigkeitseinschlüssen mit optischen and chemischen Methoden identifiziert. Die chemische Zusammensetzung dieser Minerale and ihre wahrscheinliche Kristallisationsabfolge, aus texturellen Beziehungen abgeleitet, zeigt extensive Substitutionen, vor allem für Ca, Ti, Mg and Alkelien, die im wesentlichen hohe Gehalte an SEE, Sr, Ba, Mb and Zr andeuten, die während der Kristallisation beträchtlichen Schwankungen unterlagen. Molekularer Alkali überschuß über Al in (H2O, F, CO2)-reichen Si-untersättigten Fluiden werden als wichtigste Faktoren für die Stabilität von Mineralen des DisilikatTyps gesehen. Trennung des Karbonatites vom Silikat, die durch texturelle und Flüssigkeitseinschluß-Daten genau fixiert werden konnte, war wichtig für die Verschiebung des Residuums auf einen deutlich peralkalinen Trend, welcher die Sulfide unter veränderten Redox-Bedingungen stabilisieren konnte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht A (1981) Mineralogische Untersuchung des Phonoliths vom Fohberg, Kaiserstuhl. Thesis, University of Freiburg, 137 pp (unpublished)

  • Blass G (1991) Götzenite als Neufund in einem sanidinitischen Auswürfling des Laacher See Vulkans. Mineral Welt 2: 76–78

    Google Scholar 

  • Cannillo E, Rossi G, Ungaretti L (1970) The crystal structure of delhayelite. Rend Soc Ital Mineral Petrol 26: 63–75

    Google Scholar 

  • Chao GY (1972) The crystal structure of carletonite, KNa4Ca4 Si8O18 s (CO3)4(F OH) H2O, a double-sheet silicate. Am Mineral 57: 765–778

    Google Scholar 

  • Chiragov MI, Mamedov HS (1974) The crystal structure of delhayelite. Mineral Sbor Lvov Univ 28 (l): 3–7

    Google Scholar 

  • Cundari A, Ferguson AK (1991) Petrogenetic relationships between melilitite and lamproite in the Roman Comagmatic Region: the lavas of S. Venanzo and Cupaello. Contrib Mineral Petrol 107: 343–357

    Google Scholar 

  • Cundari A, Ferguson AK (1994) Appraisal of the new occurrence of götzenitess, khibinskite and apophyllite in kalsilite-bearing lavas from San Venanzo and Cupaello (Umbria), Italy. Lithos 31: 155–161

    Google Scholar 

  • Czamanske GK, Erd RC, Leonard BF, Clark JN (1981) Bartonite, a new potassium iron sulfide mineral. Am Mineral 66: 369–375

    Google Scholar 

  • Czygan W (1973) Götzenite ein komplexes Ti-Zr-Silikat aus dem Kaiserstuhl. Ber Naturf Ges Freiburg 63: 5–12

    Google Scholar 

  • Dawson JB, Smith JV, Steele IM (1992) 1966 ash eruption of the carbonatite volcano Oldoinyo Lengai: mineralogy of lapilli and mixing of silicate and carbonate magmas. Mineral Mag 56: 1–16

    Google Scholar 

  • Dawson JB, Smith JV, Steele IM (1995) Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano, Oldoinyo Lengai, Tanzania. J Petrol 36: 797–826

    Google Scholar 

  • Dorfman MD, Belova Ye N Neronova NN (1961) Delhayelite from Khibini. Trudy Mineral Muz Akad Nauk USSR 12: 191–195

    Google Scholar 

  • Evans H T-Ju, Clark JN (1981) The crystal structure of bartonite, a potassium iron sulfide, and its relationship to pentlandite and djerfisherite. Am Mineral 66: 376–384

    Google Scholar 

  • Gallo F, Giammetti F, Venturelli G, Vernia L (1984) The kamafugitic rocks of San Venanzo and Cupaello, Central Italy. N Jahrb Mineral Monatsh 5: 198–210

    Google Scholar 

  • Hesse K.-F, Liebau F, Merlino S (1992) Crystal structure of rhodesite, HK1-xNax+2y-Ca2_y{ lB,3,22 DC[Si8O19] (6-z)H2O, from three localities and its relations to other silicates with dreier double layers}. Z Kristallogr 199: 25–48

    Google Scholar 

  • Kapustin Yu L (1980a) Götzenite and wöhlerite from alkaline massifs of Sangilen (Tuva). Zap Vses Mineral Obshch 87: 590–597

    Google Scholar 

  • Kapustin Yu L (1980b) Mineralogy of carbonatites. Amerind, New Delhi, 256 pp

    Google Scholar 

  • Kapustin Yu L (1982) Minerals of the rincolite group from nepheline-syenite massifs of Tuva. Tr Mineral Muz Akad Nauk USSR 30: 112–117

    Google Scholar 

  • Keller J, William CT, Koberski U (1995) Niocalite and wöhlerite from the alkaline and carbonatite rocks at Kaiserstuhl, Germany. Mineral Mag 59: 561–565

    Google Scholar 

  • Khomyakov AP, Voronkov AA, Lebedeva SI, Bykov VP, Yurkina KV (1974) Khibinskite, K2ZrSi2O7, a new mineral. Zap Vses Mineral Obshch 103: 110–116

    Google Scholar 

  • Konev AA, Samoilov VS (1974) Contact metamorphism and metasomatism around the Tazheran alkaline intrusion. Nauka, Novosibirsk, 246 pp

    Google Scholar 

  • Merlino S, Orlandi P, Vezzalini G (1979) Un nuovo minerale strutturalmente correlato alla macdonaldite. Rend Soc Mineral Petrol 35: 847

    Google Scholar 

  • Mitchell RH (1984) Mineralogy and origin of carbonate-rich segregation in a composite kimberlite sill. N Jahrbuch Miner Abh 150: 185–197

    Google Scholar 

  • Mitchell RH (1995) Kimberlites, orangeites, and related rocks. Plenum, New York, pp 410

    Google Scholar 

  • Mitchell RH, Bergman SC (1991) Petrology of lamproites. Plenum, New York, 447 pp

    Google Scholar 

  • Oen IS, Burke EAJ, Kieft C Westerhof AB (1972) Westerveldite, (Fe,Ni,Co)As, a new mineral from La Gallega, Spain. Am Mineral 57: 354–363

    Google Scholar 

  • Peacor DR, Dunn PJ, Simmons WB, Tilmanns E, Reinhard XF (1984) Willhendersonite, a new zeolite isostructural with chabazite. Am Mineral 69: 186–189

    Google Scholar 

  • Peccerillo A (1994) Mafic ultrapotassic magmas in central Italy: geochemical and petrological evidence against primary composition. Mineral Petrogr Acta 37: 229–245

    Google Scholar 

  • Sahama Th G (1960) Identity of calcium rinkite and götzenite. Am Mineral 45: 221–224

    Google Scholar 

  • Sahama Th G, Hytönen K (1959) Delhayelite, a new silicate from Belgian Congo. Mineral Mag 32: 6–9

    Google Scholar 

  • Sharygin VV, Stoppa F, Kolesov BA (1996a) Cuspidine from melilitolites of San Venanzo, Italy. Dokl Russian Akad Sci 348: 800–804

    Google Scholar 

  • Sharygin VV, Stoppa F, Kolesov BA (1996b) Zr-Ti-disilicates from the Pian di Celle volcano, Umbria, Italy. E J M 8: 1199–1212

    Google Scholar 

  • Stoppa F (1995) The San Venanzo maar and tuff-ring, Umbria, Italy: eruptive behaviour of a carbonatite-melilitite volcano. Bull Volcano 57: 563–567

    Google Scholar 

  • Stoppa F, Cundari A (1995) A new Italian carbonatitic occurrence at Cupaello (Rieti) and its genetic significance. Contrib Mineral Petrol 122: 275–288.

    Google Scholar 

  • Stoppa F, Woolley AR (1997) The Italian carbonatites: field occurrence, petrology and regional significance. Mineral Petrol 59: 43–67

    Google Scholar 

  • Stoppa F, Cundari A (1997) Evidence for multiple crystallization in the kamafugitecarbonatite association at S.Venanzo (Umbria, Italy). Mineral Mag (submitted)

  • Val'ter AA, Yeremenko GK, Stremovsky AM (1963) Calcium rinkite from alkaline rock of the Ukraine. Dokl Akad Sci USSR 50: 639–641

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoppa, F., Sharygin, V.V. & Cundari, A. New mineral data from the kamafugitecarbonatite association: The melilitolite from Pian di Celle, Italy. Mineralogy and Petrology 61, 27–45 (1997). https://doi.org/10.1007/BF01172476

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01172476

Keywords

Navigation