Skip to main content
Log in

Solving dynamical equations in general homogeneous isotropic cosmologies with a scalaron

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider gauge-dependent dynamical equations describing homogeneous isotropic cosmologies coupled to a scalar field ψ (scalaron). For flat cosmologies (k = 0), we analyze the gauge-independent equation describing the differential χ(α) ≡ ψ (a) of the map of the metric a to the scalaron field ψ, which is the main mathematical characteristic of a cosmology and locally defines its portrait in the so-called a version. In the more customary ψ version, the similar equation for the differential of the inverse map \(\bar \chi (\psi ) \equiv \chi ^{ - 1} (\alpha )\) is solved in an asymptotic approximation for arbitrary potentials v(ψ). In the flat case, \(\bar \chi (\psi )\) and χ−1(α) satisfy first-order differential equations depending only on the logarithmic derivative of the potential, v(ψ)/v(ψ). If an analytic solution for one of the χ functions is known, then we can find all characteristics of the cosmological model. In the α version, the full dynamical system is explicitly integrable for k ≠ 0 with any potential v(α) ≡ v[ψ(α)] replacing v(ψ). Until one of the maps, which themselves depend on the potentials, is calculated, no sort of analytic relation between these potentials can be found. Nevertheless, such relations can be found in asymptotic regions or by perturbation theory. If instead of a potential we specify a cosmological portrait, then we can reconstruct the corresponding potential. The main subject here is the mathematical structure of isotropic cosmologies. We also briefly present basic applications to a more rigorous treatment of inflation models in the framework of the α version of the isotropic scalaron cosmology. In particular, we construct an inflationary perturbation expansion for χ. If the conditions for inflation to arise are satisfied, i.e., if v > 0, k = 0, χ2 < 6, and χ(α) satisfies a certain boundary condition as α→-∞, then the expansion is invariant under scaling the potential, and its first terms give the standard inflationary parameters with higher-order corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, New York (2005).

    Book  MATH  Google Scholar 

  2. S. Weinberg, Cosmology, Oxford Univ. Press, Oxford (2008).

    MATH  Google Scholar 

  3. D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory, World Scientific, Singapore (2010).

    MATH  Google Scholar 

  4. A. A. Starobinsky, Phys. Lett. B, 91, 99–102 (1980).

    Article  ADS  Google Scholar 

  5. V. F. Mukhanov and G. V. Chibisov, JETP Lett., 33, 532–535 (1981).

    ADS  Google Scholar 

  6. A. H. Guth, Phys. Rev. D, 23, 347–356 (1981).

    Article  ADS  Google Scholar 

  7. A. D. Linde, Phys. Lett. B, 129, 177–181 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. A. Starobinsky, Soviet Astron. Lett., 5, 302–304 (1983).

    ADS  Google Scholar 

  9. L. A. Kofman, A. D. Linde, and A. A. Starobinsky, Phys. Lett. B, 157, 361–367 (1985).

    Article  ADS  Google Scholar 

  10. A. D. Linde, Particle Physics and Inflationary Cosmology, Harwood Academic, Chur (1990); arXiv:hep-th/0503203v1 (2005).

    Book  Google Scholar 

  11. A. Linde, Prog. Theor. Phys. Suppl., 163, 295–322 (2006); arXiv:hep-th/0503195v1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Kallosh, “Inflation in string theory,” in: Inflationary Cosmology (Lect. Notes Phys., Vol. 738, M. Lemoine, J. Martin, and P. Peter, eds.), Springer, Berlin (2008), pp. 119–156; arXiv:hep-th/0702059v2 (2007).

    Chapter  Google Scholar 

  13. V. Mukhanov, Eur. Phys. J. C, 73, 1–6 (2013); arXiv:1303.3925v1 [astro-ph.CO] (2013).

    Article  Google Scholar 

  14. J. Martin, K. Ringeval, and V. Vennin, Phys. Dark Univ., 5–6, 75–235 (2014); arXiv:1303.3787v3 [astro-ph.CO] (2013).

    Article  Google Scholar 

  15. A. Linde, “Inflationary cosmology after Planck 2013,” arXiv:1402.0526v2 [hep-th] (2014).

    MATH  Google Scholar 

  16. J. Martin, “The observational status of cosmic inflation after Planck,” arXiv:1502.05733v1 [astro-ph.CO] (2015).

    Google Scholar 

  17. Y. Motohashi, A. A. Starobinsky, and J. Yokoyama, J. Cosm. Astropart. Phys., 09, 018 (2015); arXiv: 1411.5021v2 [astro-ph.CO] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  18. M. Libanov and V. Rubakov, Phys. Rev. D, 91, 103515 (2015); arXiv:1502.05897v1 [hep-th] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  19. B. Boisseau, H. Giacomini, D. Polarski, and A. A. Starobinsky, J. Cosmol. Astropart. Phys., 7, 002 (2015); arXiv:1504.07927v2 [gr-qc] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. T. Filippov, Modern Phys. Lett. A, 11, 1691–1704 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. T. Filippov and D. Maison, Class. Q. Grav., 20, 1779–1786 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  22. A. T. Filippov, Theor. Math. Phys., 146, 95–107 (2006).

    Article  Google Scholar 

  23. A. T. Filippov, “Some unusual dimensional reductions of gravity: Geometric potentials, separation of variables, and static–cosmological duality,” arXiv:hep-th/0605276v2 (2006); “Many faces of dimensional reduction,” in: Gribov Memorial Volume: Quarks, Hadrons, and Strong Interactions (Proc. Memorial Workshop Devoted to the 75th Birthday of V. N. Gribov, Budapest, Hungary, 22–24 May 2005, Yu. L. Dokshitzer, P. Levai, and J. Nyiri, eds.), World. Scientific, Singapore (2006), pp. 510–521.

  24. V. de Alfaro and A. T. Filippov, Theor. Math. Phys., 153, 1709–1731 (2007).

    Article  Google Scholar 

  25. V. de Alfaro and A. T. Filippov, Theor. Math. Phys., 162, 34–56 (2010).

    Article  Google Scholar 

  26. A. T. Filippov, “General Properties and some solutions of generalized Einstein–Eddington affine gravity I,” arXiv:1112.3023v1 [math-ph] (2011).

    Google Scholar 

  27. A. T. Filippov, Theor. Math. Phys., 177, 1555–1577 (2013); arXiv:1302.6372v2 [hep-th] (2013).

    Article  Google Scholar 

  28. E. A. Davydov and A. T. Filippov, Gravit. Cosmol., 19, 209–218 (2013); arXiv:1302.6969v2 [hep-th] (2013).

    Article  ADS  MathSciNet  Google Scholar 

  29. A. T. Filippov, Phys. Part. Nucl. Lett., 11, 844–853 (2014).

    Article  Google Scholar 

  30. A. T. Filippov, “Many faces of scalaron coupled to gravity,” Program of the EU-Italy-Russia@Dubna Round Table, Dubna, 3–5 March 2014, transparencies available at http://theor.jinr.ru (unpublished).

  31. J. E. Lidsey, D. Wands, and E. J. Copeland, Phys. Rep., 337, 343–492 (2000); arXiv:hep-th/9909061v2 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Kawasaki, M. Yamaguchi, and T. Yanagida, Phys. Rev. Lett., 85, 3572–3575 (2000); arXiv:hep-ph/0004243v2 (2000).

    Article  ADS  Google Scholar 

  33. S. Ferrara, R. Kallosh, A. Linde, and M. Porrati, Phys. Rev. D, 88, 085038 (2013); arXiv:1307.7696v2 [hep-th] (2013).

    Article  ADS  Google Scholar 

  34. R. Kallosh, “Planck 2013 and superconformal symmetry,” arXiv:1402.0527v1 [hep-th] (2014).

    Google Scholar 

  35. R. Kallosh and A. Linde, Comptes Rendus Physique, 16, 914–927 (2015); arXiv:1503.06785v2 [hep-th] (2015).

    Article  ADS  Google Scholar 

  36. A. T. Filippov, “On Einstein–Weyl unified model of dark energy and dark matter,” arXiv:0812.2616v3 [gr-qc] (2008).

    Google Scholar 

  37. A. T. Filippov, Theor. Math. Phys., 163, 753–767 (2010).

    Article  Google Scholar 

  38. A. T. Filippov, Proc. Steklov Inst. Math., 272, 107–118 (2011).

    Article  MathSciNet  Google Scholar 

  39. A. S. Eddington, The Internal Constitution of Stars, Cambridge Univ. Press, Cambridge (1926).

    MATH  Google Scholar 

  40. R. H. Fowler, Quart. J. Math., os-2, 259–288 (1931).

    Article  ADS  Google Scholar 

  41. R. Bellman, Stability Theory of Differential Equations, McGraw-Hill, New York (1953).

    MATH  Google Scholar 

  42. L. M. Berkovich, “The generalized Emden–Fowler equation,” in: Symmetry in Nonlinear Mathematical Physics (Kiev, Ukraine, 7–13 July 1997, M. Shkil, A. Nikitin, and V. Boyko, eds.), Vol. 1, Inst. Math., Natl. Acad. Sci. Ukraine, Kiev (1997), pp. 155–163.

    MathSciNet  MATH  Google Scholar 

  43. K. S. Govinder and P. G. L. Leach, J. Nonlinear Math. Phys., 14, 443–461 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  44. G. H. Hardy, Proc. London Math. Soc. Ser. 2, s2-10, 451–468 (1912).

    Article  Google Scholar 

  45. R. H. Fowler, Proc. London Math. Soc. Ser. 2, s2-13, 341–371 (1914).

    Article  MathSciNet  Google Scholar 

  46. B. Whitt, Phys. Lett. B, 145, 176–178 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  47. J.-L. Lehners, Phys. Rev. D, 91, 083525 (2015); arXiv:1502.00629v2 [hep-th] (2015).

    Article  ADS  MathSciNet  Google Scholar 

  48. D. Battefeld and P. Peter, Phys. Rep., 571, 1–66 (2015); arXiv:1406.2790v4 [astro-ph.CO] (2014).

    Article  ADS  MathSciNet  Google Scholar 

  49. A. A. Starobinsky, JETP Lett., 68, 757–763 (1998); arXiv:astro-ph/9810431v1 (1998); Gravit. Cosmol., 4 (Suppl.), 88–99 (1998); arXiv:astro-ph/9811360v1 (1998).

    Article  ADS  Google Scholar 

  50. R. Arnowitt, S. Deser, and C.W. Misner, “The dynamics of general relativity,” in: Gravitation: An introduction to Current Research (L. Witten, ed.), Wiley, New York (1962); arXiv:gr-qc/0405109v1 (2004).

    Google Scholar 

  51. M. Cavaglià, V. de Alfaro, and A. T. Filippov, Internat. J. Mod. Phys. D, 4, 661–672 (1995); arXiv:gr-qc/9411070v2 (1994); 10, 611–633 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Filippov.

Additional information

Prepared from an English manuscript submitted by the author; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 188, No. 1, pp. 121–157, July, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A.T. Solving dynamical equations in general homogeneous isotropic cosmologies with a scalaron. Theor Math Phys 188, 1069–1098 (2016). https://doi.org/10.1134/S0040577916070072

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577916070072

Keywords

Navigation