Skip to main content
Log in

Dimensional reduction of gravity and relation between static states, cosmologies, and waves

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce generalized dimensional reductions of an integrable (1+1)-dimensional dilaton gravity coupled to matter down to one-dimensional static states (black holes in particular), cosmological models, and waves. An unusual feature of these reductions is that the wave solutions depend on two variables: space and time. They are obtained here both by reducing the moduli space (available because of complete integrability) and by a generalized separation of variables (also applicable to nonintegrable models and to higher-dimensional theories). Among these new wavelike solutions, we find a class of solutions for which the matter fields are finite everywhere in space-time, including infinity. These considerations clearly demonstrate that a deep connection exists between static states, cosmologies, and waves. We argue that it should also exist in realistic higher-dimensional theories. Among other things, we also briefly outline the relations existing between the low-dimensional models that we discuss here and the realistic higher-dimensional ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Padmanabhan, AIP Conf. Proc., 861, 179 (2006); arXiv:astro-ph/0603114v4 (2006).

    Article  ADS  Google Scholar 

  2. E. J. Copeland, M. Sami, and S. Tsujikawa, Internat. J. Mod. Phys.D, 15, 1753 (2006); arXiv:hep-th/0603057v3 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. S. Nojiri and S. Odintsov, Int. J. Geom. Meth. Mod. Phys., 4, 115 (2007); arXiv: hep-th/0601213v5 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Sahni and A. Starobinsky, Internat. J. Mod. Phys. D, 15, 2105 (2006); arXiv: astro-ph/0610026v3 (2006).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. J. E. Lidsey, D. Wands, and E. J. Copeland, Phys. Rep., 337, 343 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Gasperini and G. Veneziano, Phys. Rep., 373, 1 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Stefani et al., Exact Solutions of the Einstein’s Field Equations, Cambridge Univ. Press, Cambridge (2002).

    Google Scholar 

  8. V. A. Belinskii and V. E. Zakharov, Sov. Phys. JETP, 48, 985 (1978).

    Google Scholar 

  9. D. Maison, Phys. Rev. Lett., 41, 521 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Nicolai, D. Korotkin, and H. Samtleben, “Integrable classical and quantum gravity,” in: Quantum Fields and Quantum Space Time (NATO Adv. Sci. Inst. Ser. B. Phys., Vol. 364), Plenum, New York (1997), p. 203; arXiv:hep-th/9612065v1 (1996).

    Google Scholar 

  11. G. A. Alekseev, Theor. Math. Phys., 143, 720 (2005).

    Article  Google Scholar 

  12. C. Callan, S. Giddings, J. Harvey, and A. Strominger, Phys. Rev. D, 45, R1005 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  13. V. de Alfaro and A. T. Filippov, “Integrable low dimensional theories describing higher dimensional branes, black holes, and cosmologies,” arXiv:hep-th/0307269v1 (2003).

  14. V. de Alfaro and A. T. Filippov, “Integrable low dimensional models for black holes and cosmologies from high dimensional theories,” arXiv:hep-th/0504101v1 (2005).

  15. V. de Alfaro and A. T. Filippov, “Black holes and cosmological solutions in various dimensions,” (unpublished).

  16. A. T. Filippov, Theor. Math. Phys., 146, 95 (2006); arXiv:hep-th/0505060v2 (2005).

    Article  Google Scholar 

  17. A. T. Filippov, “Some unusual dimensional reductions of gravity: Geometric potentials, separation of variables, and static-cosmological duality,” arXiv:hep-th/0605276v2 (2006).

  18. V. de Alfaro and A. T. Filippov, “Dynamical dimensional reduction,” (unpublished)

  19. A. T. Filippov, Modern Phys. Lett. A, 11, 1691 (1996); Internat. J. Mod. Phys. A, 12, 13 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. J. R. Oppenheimer and H. Snyder, Phys. Rev. D, 55, 374 (1939).

    Article  MATH  ADS  Google Scholar 

  21. M. Cavaglià, V. de Alfaro, and A. T. Filippov, Internat. J. Mod. Phys. D, 4, 661 (1995); 5, 227 (1996); 6, 39 (1997).

    Article  ADS  Google Scholar 

  22. A. Lukas, B. A. Ovrut, and D. Waldram, Phys. Lett. B, 393, 65 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  23. F. Larsen and F. Wilczek, Phys. Rev. D, 55, 4591 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  24. H. Lü, S. Mukherji, and C. N. Pope, Internat. J. Mod. Phys. A, 14, 4121 (1999).

    Article  MATH  ADS  Google Scholar 

  25. Y. Kiem, C. Y. Lee, and D. Park, Phys. Rev. D, 57, 2381 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  26. G. D. Dzhordzhadze, A. K. Pogrebkov, and M. C. Polivanov, “On the solutions with singularities of the Liouville equation,” Preprint IC/78/126, ICTP, Trieste (1978).

    Google Scholar 

  27. J. L. Gervais, Internat. J. Mod. Phys. A, 6, 2805 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  28. A. N. Leznov and M. V. Saveliev, Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems [in Russian], Nauka, Moscow (1985); English transl. (Progr. Phys., Vol. 15), Birkhäuser, Basel (1992).

    Google Scholar 

  29. L. Castellani, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré, and M. Trigiante, Nucl. Phys. B, 527, 142 (1998).

    Article  MATH  ADS  Google Scholar 

  30. P. Fré and A. Sorin, Nucl. Phys. B, 733, 334 (2006).

    Article  MATH  ADS  Google Scholar 

  31. K. Stelle, “BPS branes in supergravity,” in: Quantum Field Theory: Perspective and Prospective (NATO Sci. Ser. C. Math. Phys. Sci., Vol. 530), Kluwer, Dordrecht (1999), p. 257; arXiv: hep-th/9803116v2 (1998).

    Google Scholar 

  32. T. Mohaupt, Class. Q. Grav., 17, 3429 (2000).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. V. D. Ivashchuk and V. N. Melnikov, Class. Q. Grav., 18, R87 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  34. G. P. Dzhordzhadze, A. K. Pogrebkov, and M. C. Polivanov, Theor. Math. Phys., 40, 706 (1979); G. P. Jorijadze, A. K. Pogrebkov, and M. C. Polivanov, J. Phys. A, 19, 121 (1986).

    Article  MathSciNet  Google Scholar 

  35. E. D’Hoker and R. Jackiw, Phys. Rev. D, 26, 3517 (1982); Phys. Rev. Lett., 50, 1719 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Einstein and N. Rosen, J. Franklin Inst., 223, 43 (1937); N. Rosen, Phys. Z. Zowjetunion, 12, 366 (1937).

    Article  MATH  Google Scholar 

  37. P. Szekeres, J. Math. Phys., 13, 286 (1972).

    Article  ADS  MathSciNet  Google Scholar 

  38. I. Ya. Aref’eva, K. S. Viswanathan, and I. V. Volovich, Nucl. Phys. B, 452, 346 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Feinstein, K. E. Kunze, and M. A. Vázquez-Mozo, Class. Q. Grav., 17, 3599 (2000).

    Article  MATH  ADS  Google Scholar 

  40. V. Bozza and G. Veneziano, JHEP, 0010, 035 (2000).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. de Alfaro.

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 153, No. 3, pp. 422–452, December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Alfaro, V., Filippov, A.T. Dimensional reduction of gravity and relation between static states, cosmologies, and waves. Theor Math Phys 153, 1709–1731 (2007). https://doi.org/10.1007/s11232-007-0142-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-007-0142-9

Keywords

Navigation