Skip to main content
Log in

Multiexponential models of (1+1)-dimensional dilaton gravity and Toda-Liouville integrable models

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study general properties of a class of two-dimensional dilaton gravity (DG) theories with potentials containing several exponential terms. We isolate and thoroughly study a subclass of such theories in which the equations of motion reduce to Toda and Liouville equations. We show that the equation parameters must satisfy a certain constraint, which we find and solve for the most general multiexponential model. It follows from the constraint that integrable Toda equations in DG theories generally cannot appear without accompanying Liouville equations. The most difficult problem in the two-dimensional Toda-Liouville (TL) DG is to solve the energy and momentum constraints. We discuss this problem using the simplest examples and identify the main obstacles to solving it analytically. We then consider a subclass of integrable two-dimensional theories where scalar matter fields satisfy the Toda equations and the two-dimensional metric is trivial. We consider the simplest case in some detail. In this example, we show how to obtain the general solution. We also show how to simply derive wavelike solutions of general TL systems. In the DG theory, these solutions describe nonlinear waves coupled to gravity and also static states and cosmologies. For static states and cosmologies, we propose and study a more general one-dimensional TL model typically emerging in one-dimensional reductions of higher-dimensional gravity and supergravity theories. We especially attend to making the analytic structure of the solutions of the Toda equations as simple and transparent as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Belinskii and V. E. Zakharov, Sov. Phys. JETP, 48, 985–994 (1978).

    ADS  Google Scholar 

  2. D. Maison, Phys. Rev. Lett., 41, 521–522 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  3. P. Thomi, B. Isaak, and P. Hájiček, Phys. Rev. D, 30, 1168–1177 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Breitenlohner and D. Maison, Ann. Inst. H. Poincaré, 46, 215–246 (1987).

    MATH  MathSciNet  Google Scholar 

  5. P. Breitenlohner, D. Maison, and G. Gibbons, Comm. Math. Phys., 120, 295–333 (1988).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. M. O. Katanaev, J. Math. Phys., 31, 882–891 (1990).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. T. Banks and M. O’Loughlin, Nucl. Phys. B, 362, 649–664 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  8. C. G. Callan Jr., S. B. Giddings, J. A. Harvey, and A. Strominger, Phys. Rev. D, 45, R1005–R1009 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  9. J. Gegenberg, G. Kunstatter, and D. Louis-Martinez, Phys. Rev. D, 51, 1781–1786 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Cavaglià, V. de Alfaro, and A. T. Filippov, Internat. J. Mod. Phys. D, 4, 661–672 (1995); 5, 227–250 (1996); 6, 39–47 (1996).

    Article  ADS  Google Scholar 

  11. H. Nicolai, D. Korotkin, and H. Samtleben, “Integrable classical and quantum gravity,” in: Quantum Fields and Quantum Space Time (NATO Adv. Sci. Inst. Ser. B, Vol. 364, G.’ t Hooft, A. Jaffe, G. Mack, P. K. Mitter, and R. Stora, eds.), Plenum, New York (1997), pp. 203–243; arXiv:hep-th/9612065v1 (1996).

    Google Scholar 

  12. A. T. Filippov, Modern Phys. Lett. A, 11, 1691–1704 (1996); Internat. J. Mod. Phys. A, 12, 13–22 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. A. Lukas, B. A. Ovrut, and D. Waldram, Phys. Lett. B, 393, 65–71 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  14. F. Larsen, and F. Wilczek, Phys. Rev. D, 55, 4591–4595 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  15. H. Lü, S. Mukherji, and C. N. Pope, Internat. J. Mod. Phys. A, 14, 4121–4142 (1999).

    Article  MATH  ADS  Google Scholar 

  16. A. T. Filippov, Phys. Part. Nucl., 32S1, 38–40 (2001); A. T. Filippov, Phys. Atomic Nuclei, 65, 963-967 (2002).

    Google Scholar 

  17. V. de Alfaro and A. T. Filippov, “Integrable low dimensional theories describing higher dimensional branes, black holes, and cosmologies,” arXiv:hep-th/0307269v1 (2003).

  18. V. de Alfaro and A. T. Filippov, Atti Accad. Sci. Torino, 140, 139–145 (2007); “Integrable low dimensional models for black holes and cosmologies from high dimensional theories,” arXiv:hep-th/0504101v1 (2005).

    Google Scholar 

  19. G. A. Alekseev, Theor. Math. Phys., 143, 720–740 (2005); arXiv:gr-qc/0503043v2 (2005).

    Article  MATH  Google Scholar 

  20. A. T. Filippov, Theor. Math. Phys., 146, 95–107 (2006); arXiv:hep-th/0505060v2 (2005).

    Article  MATH  Google Scholar 

  21. A. T. Filippov, “Many faces of dimensional reduction,” in: Proc. Workshop “Gribov-75” (May 22–24, 2005, Budapest, Hungary, Yu. L. Dokshitzer, P. Lévai, and J. Nyiri, eds.), World Scientific, Singapore (2006), p. 510.

    Google Scholar 

  22. A. T. Filippov, “Some unusual dimensional reductions of gravity: Geometric potentials, separation of variables, and static-cosmological duality,” arXiv:hep-th/0605276v2 (2006).

  23. V. de Alfaro and A. T. Filippov, Theor. Math. Phys., 153, 1709–1731 (2006); arXiv:hep-th/0612258v2 (2006).

    Article  Google Scholar 

  24. A. T. Filippov, “A new integrable model of (1+1)-dimensional dilaton gravity coupled to Toda matter,” arXiv:0801.1312v2 [hep-th] (2008).

  25. J. E. Lidsey, D. Wands, and E. J. Copeland, Phys. Rep., 337, 343–492 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  26. T. Strobl, “Gravity in two spacetime dimensions,” arXiv:hep-th/0011240v1 (2000).

  27. D. Grumiller, W. Kummer, and D. Vassilevich, Phys. Rep., 369, 327–430 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. M. Gasperini and G. Veneziano, Phys. Rep., 373, 1–212 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Einstein and N. Rosen, J. Franklin Inst., 223, 43–54 (1937); N. Rosen, Phys. Z. Zowjetunion, 12, 366–372 (1937).

    Article  Google Scholar 

  30. K. Kuhar, Phys. Rev. D, 4, 986 (1971).

    ADS  Google Scholar 

  31. S. Chandrasekhar, Proc. Roy. Soc. London Ser A, 408, 209–232 (1986).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. F. J. Ernst, Phys. Rev., 167, 1175–1178 (1968).

    Article  ADS  Google Scholar 

  33. A. N. Leznov, Theor. Math. Phys., 42, 225–229 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  34. A. N. Leznov and M. V. Saveliev, Comm. Math. Phys., 74, 111–118 (1980).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. A. N. Leznov, V. G. Smirnov, and A. B. Shabat, Theor. Math. Phys., 51, 322–330 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  36. A. N. Leznov and M. V. Savel’ev, Group Methods of Integrating Nonlinear Dynamical Systems [in Russian], Nauka, Moscow (1985); English transl.: Group-Theoretical Methods for Integration of Nonlinear Dynamical Systems, Birkhäuser, Basel (1992).

    Google Scholar 

  37. A. V. Razumov and M. V. Saveliev, Lie Algebras, Geometry, and Toda-type Systems (Cambridge Lecture Notes in Phys., Vol. 8), Cambridge Univ. Press, Cambridge (1997).

    MATH  Google Scholar 

  38. G. D. Dzhordzhadze, A. K. Pogrebkov, and M. K. Polivanov, “On the solutions with singularities of the Liouville equation,” Preprint No. IC/78/126, ICTP, Trieste (1978).

  39. J.-L. Gervais, Internat. J. Mod. Phys. A, 6, 2805–2827 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  40. L. Castellani, A. Ceresole, R. D’Auria, S. Ferrara, P. Fré, and M. Trigiante, Nucl. Phys. B, 527, 142–170 (1998).

    Article  MATH  ADS  Google Scholar 

  41. K.S. Stelle, “BPS branes in supergravity,” in: Quantum Field Theory: Perspective and Prospective (NATO Sci. Ser. C, Vol. 530, C. De Witt-Morette and J.-B. Zuber, eds.), Kluwer, Dordrecht (1999), pp. 257–350; arXiv:hep-th/9803116v3 (1998).

    Google Scholar 

  42. V. D. Ivashchuk and V. N. Melnikov, Class. Q. Grav., 18, R87–R152 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  43. P. Fré and A. S. Sorin, Nucl. Phys. B, 733, 334–355 (2006).

    Article  MATH  ADS  Google Scholar 

  44. V. de Alfaro and A. T. Filippov, “Two-dimensional dilaton gravity and Toda-Liouville integrable models,” arXiv:0811.4501v1 [hep-th] (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. de Alfaro or A. T. Filippov.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, Vol. 161, No. 3, pp. 41–68, January, 2010. Original article submitted February 25, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Alfaro, V., Filippov, A.T. Multiexponential models of (1+1)-dimensional dilaton gravity and Toda-Liouville integrable models. Theor Math Phys 162, 34–56 (2010). https://doi.org/10.1007/s11232-010-0002-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0002-x

Navigation