Skip to main content
Log in

Weyl-Eddington-Einstein affine gravity in the context of modern cosmology

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose new models of the “affine” theory of gravity in multidimensional space-times with symmetric connections. We use and develop ideas of Weyl, Eddington, and Einstein, in particular, Einstein’s proposed method for obtaining the geometry using the Hamilton principle. More specifically, the connection coefficients are determined using a “geometric” Lagrangian that is an arbitrary function of the generalized (nonsymmetric) Ricci curvature tensor (and, possibly, other fundamental tensors) expressed in terms of the connection coefficients regarded as independent variables. Such a theory supplements the standard Einstein theory with dark energy (the cosmological constant, in the first approximation), a neutral massive (or tachyonic) meson, and massive (or tachyonic) scalar fields. These fields couple only to gravity and can generate dark matter and/or inflation. The new field masses (real or imaginary) have a geometric origin and must appear in any concrete model. The concrete choice of the Lagrangian determines further details of the theory, for example, the nature of the fields that can describe massive particles, tachyons, or even “phantoms.” In “natural” geometric theories, dark energy must also arise. The basic parameters of the theory (cosmological constant, mass, possible dimensionless constants) are theoretically indeterminate, but in the framework of modern “multiverse” ideas, this is more a virtue than a defect. We consider further extensions of the affine models and in more detail discuss approximate effective (“physical”) Lagrangians that can be applied to the cosmology of the early Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Weyl, Raum-Zeit-Materie, Springer, Berlin (1923).

    Google Scholar 

  2. A. S. Eddington, Proc. Roy. Soc. London A, 99, 104–122 (1921).

    Article  ADS  Google Scholar 

  3. A. S. Eddington, The Mathematical Theory of Relativity, Cambridge Univ. Press, New York (1923).

    MATH  Google Scholar 

  4. A. Einstein, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math., 32–38, 76–77, 137–140 (1923).

  5. A. Einstein, Nature, 112, 448–449 (1923); “Eddingtons Theorie und Hamiltonsches Prinzip,” Appendix to the book: A. Eddington, Relativitäts Theorie in Mathematischer Behandlung, Cambridge Univ. Press, Cambridge, 161–166 (1925).

    Article  ADS  Google Scholar 

  6. E. Schrödinger, Space-time Structure, Cambridge Univ. Press, Cambridge (1950).

    MATH  Google Scholar 

  7. W. Pauli Jr., “Relativitätstheorie,” in: Enzykl. d. Math. Wiss., Vol. 5, Teubner, Leipzig (1921), pp. 539–775; W. Pauli, General Principles of Wave Mechanics [in Russian], GITTL, Moscow (1947); Theory of Relativity, Pergamon Press, New York (1958).

    Google Scholar 

  8. A. T. Filippov, “On Einstein-Weyl unified model of dark energy and dark matter,” arXiv:0812.2616v2 [gr-qc] (2008).

  9. M. Born, Proc. Roy. Soc. London A, 143, 410–437 (1934); M. Born and L. Infeld, Proc. Roy. Soc. London A, 144, 425–451 (1934); 147, 522–546 (1934); 150, 141–166 (1935).

    Article  MATH  ADS  Google Scholar 

  10. S. Deser and G. W. Gibbons, Class. Q. Grav., 15, L35–L39 (1998); arXiv:hep-th/9803049v1 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. M. Bañados, Phys. Rev. D, 77, 123534 (2008); arXiv:0801.4103v4 [hep-th] (2008).

    Article  ADS  Google Scholar 

  12. D. Langlois, S. Renaux-Petel, and D. A. Steer, J. Cosmol. Astropart. Phys., 0904, 021 (2009); arXiv:0902.2941v1 [hep-th] (2009).

    Article  ADS  Google Scholar 

  13. G. Mie, Ann. der Phys., 37, No. 3, 511–534 (1912); 39, No. 11, 1–40 (1912); 40, No. 1, 1–66 (1913).

    Article  ADS  Google Scholar 

  14. A. Proca, J. Phys. Radium (7), 7, 347–353 (1936).

    Article  MATH  Google Scholar 

  15. V. Sahni and A. Starobinsky, Internat. J. Mod. Phys. D, 15, 2105–2132 (2006); arXiv:astro-ph/0610026v3 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. A. D. Linde, “Particle physics and inflationary cosmology,” in: Proc. 4th Seminar on Quantum Gravity (Moscow, 1987, M. A. Markov, V. A. Berezin, and V. P. Frolov, eds.), World Scientific, Teaneck, N.J. (1988), pp. 736–746; Particle Physics and Inflationary Cosmology, Harwood, Chur, Switzerland (1990); arXiv:hep-th/0503203v1 (2005).

  17. V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, New York (2005).

    MATH  Google Scholar 

  18. S. Weinberg, Cosmology, Oxford Univ. Press, Oxford (2008).

    MATH  Google Scholar 

  19. V. Rubakov and D. Gorbunov, Introduction to the Theory of the Early Universe [in Russian], Vols. 1 and 2, URSS, Moscow (2008–2009).

    Google Scholar 

  20. J. Luo, L.-C. Tu, Z.-K. Hu, and E.-J. Luan, Phys. Rev. Lett., 90, 081801 (2003).

    Article  ADS  Google Scholar 

  21. B. Carr, ed., Universe or Multiverse? Cambridge Univ. Press, Cambridge (2007).

    Google Scholar 

  22. L. H. Ford, Phys. Rev. D, 40, 967–972 (1989).

    Article  ADS  Google Scholar 

  23. M. C. Bento, O. Bertolami, P. V. Moniz, J. M. Mourão, and P. M. Sá, Class. Q. Grav., 10, 285–298 (1993); arXiv:gr-qc/9302034v2 (1993).

    Article  MATH  ADS  Google Scholar 

  24. C. Armendáriz-Picón, J. Cosmol. Astropart. Phys., 0407, 007 (2004).

    Article  ADS  Google Scholar 

  25. A. Golovnev, V. Mukhanov, and V. Vanchurin, J. Cosmol. Astropart. Phys., 0806, 009 (2008); arXiv: 0802.2068v3 [astro-ph] (2008).

    Article  ADS  Google Scholar 

  26. T. S. Koivisto and D. F. Mota, J. Cosmol. Astropart. Phys., 0808, 021 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Golovnev and V. Vanchurin, Phys. Rev. D, 79, 103524 (2009); arXiv:0903.2977v2 [astro-ph.CO] (2009).

    Article  ADS  Google Scholar 

  28. C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys., 0903, 028 (2009); arXiv:0902.3667v2 [astro-ph.CO] (2009).

    Article  ADS  Google Scholar 

  29. M. Cavaglià, V. de Alfaro, and A. T. Filippov, Internat. J. Mod. Phys. D, 4, 661–672 (1995); 5, 227–250 (1996); 6, 39–47 (1997).

    Article  ADS  Google Scholar 

  30. A. T. Filippov, Modern Phys. Lett. A, 11, 1691–1704 (1996); Internat. J. Mod. Phys. A, 12, 13–22 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. D. Grumiller, W. Kummer, and D. Vassilevich, Phys. Rep., 369, 327–430 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. V. de Alfaro and A. T. Filippov, “Integrable low dimensional models for black holes and cosmologies from high dimensional theories,” arXiv:hep-th/0504101v1 (2005).

  33. G. A. Alekseev, Theor. Math. Phys., 143, 720–740 (2005).

    Article  MATH  Google Scholar 

  34. A. T. Filippov, Theor. Math. Phys., 146, 95–107 (2006); arXiv:hep-th/0505060v2 (2005).

    Article  MATH  Google Scholar 

  35. V. de Alfaro and A. T. Filippov, Theor. Math. Phys., 153, 1709–1731 (2007); arXiv:hep-th/0612258v2 (2006).

    Article  MATH  Google Scholar 

  36. A. T. Filippov, “Some unusual dimensional reductions of gravity: Geometric potentials, separation of variables, and static-cosmological duality,” arXiv:hep-th/0605276v2 (2006).

  37. V. de Alfaro and A. T. Filippov, Theor. Math. Phys., 162, 34–56 (2010); arXiv:0902.4445v1 [hep-th] (2009).

    Article  Google Scholar 

  38. L. P. Eisenhart, Nonriemanniam Geometry, Amer. Math. Soc., New York (1927).

    Google Scholar 

  39. T. Damour, S. Deser, and J. McCarthy, “Nonsymmetric gravity has unacceptal global asymptotics,” arXiv:grqc/9312030v1 (1993).

  40. T. Janssen and T. Prokopec, J. Phys. A, 40, 7067–7074 (2007); arXiv:gr-qc/0611005v1 (2006).

    Article  ADS  Google Scholar 

  41. V. P. Nair, S. Randjbar-Daemi, and V. A. Rubakov, “Massive spin-2 fields of geometric origin in curved space-times,” arXiv:0811.3781v2 [hep-th] (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Filippov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, A.T. Weyl-Eddington-Einstein affine gravity in the context of modern cosmology. Theor Math Phys 163, 753–767 (2010). https://doi.org/10.1007/s11232-010-0059-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-010-0059-6

Keywords

Navigation