Skip to main content
Log in

Integrable Models of (1+1)-Dimensional Dilaton Gravity Coupled to Scalar Matter

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe a class of explicitly integrable models of (1+1)-dimensional dilaton gravity coupled to scalar fields in sufficient detail. The equations of motion of these models reduce to systems of Liouville equations with energy and momentum constraints. We construct the general solution of the equations and constraints in terms of chiral moduli fields explicitly and briefly discuss some extensions of the basic integrable model. These models can be related to higher-dimensional supergravity theories, but we mostly consider them independently of such interpretations. We also briefly review other integrable models of two-dimensional dilaton gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. de Alfaro and A. T. Filippov, “Integrable low dimensional models for black holes and cosmologies from high dimensional theories,” hep-th/0504101 (2005).

  2. D. Grumiller, W. Kummer, and D. Vassilevich, Phys. Rep., 369, 327 (2002); hep-th/0204253 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Szekeres, J. Math. Phys., 13, 286 (1972).

    Article  MathSciNet  Google Scholar 

  4. A. T. Filippov and V. G. Ivanov, Phys. Atomic Nuclei, 61, 1639 (1998); hep-th/9803059 (1998).

    ADS  MathSciNet  Google Scholar 

  5. H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell's Equations, Dover, New York (1955).

    Google Scholar 

  6. N. M. J. Woodhouse, Class. Q. Grav., 6, 933 (1989).

    ADS  MATH  MathSciNet  Google Scholar 

  7. N. Rosen, Phys. Z. der Sowjetunion, 12, 366 (1937).

    MATH  Google Scholar 

  8. V. A. Belinskii and V. E. Zakharov, JETP, 48, 985 (1978); D. Maison, Phys. Rev. Lett., 41, 521 (1978).

    Google Scholar 

  9. H. Nicolai, D. Korotkin, and H. Samtleben, “Integrable classical and quantum gravity,” hep-th/9612065 (1996); G. A. Alekseev, Theor. Math. Phys., 143, 720 (2005); gr-qc/0503043 (2005).

  10. P. Breitenlohner and D. Maison, Ann. Inst. H. Poincare, 46, 215 (1987).

    MathSciNet  Google Scholar 

  11. A. T. Filippov, Modern Phys. Lett. A, 11, 1691 (1996); Internat. J. Mod. Phys. A, 12, 13 (1997); hepth/9605008 (1996).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. A. T. Filippov, Phys. Part. Nucl., 32S1, 38 (2001); Phys. Atomic Nuclei, 65, 963 (2002).

    Google Scholar 

  13. J. L. Gervais, Internat. J. Mod. Phys. A, 6, 2805 (1991).

    ADS  MathSciNet  Google Scholar 

  14. A. T. Filippov and D. Maison, Class. Q. Grav., 20, 1779 (2003); gr-qc/0210081 (2002).

    ADS  MathSciNet  Google Scholar 

  15. M. Gasperini and G. Veneziano, Phys. Rep., 373, 1 (2003); hep-th/0207130 (2002).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 146, No. 1, pp. 115–131, January, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippov, A.T. Integrable Models of (1+1)-Dimensional Dilaton Gravity Coupled to Scalar Matter. Theor Math Phys 146, 95–107 (2006). https://doi.org/10.1007/s11232-006-0010-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11232-006-0010-z

Keywords

Navigation