Skip to main content
Log in

Recent Developments in Bioprocessing of Recombinant Antibody Fragments

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Biotechnological and biomedical applications of antibodies have been on a steady rise since the 1980s. As unique and highly specific bioreagents, monoclonal antibodies (mAbs) have been widely exploited and approved as therapeutic agents. However, the use of mAbs has limitations for therapeutic applications. Antibody fragments (AbFs) with preserved antigen-binding sites have a significant potential to overcome the disadvantages of conventional mAbs, such as heterogeneous tissue distribution after systemic administration, especially in solid tumors, and Fc-mediated bystander activation of the immune system. AbFs possess better biodistribution coefficient due to lower molecular weight. They preserve the functional features of mAbs, such as antigen specificity and binding, while at the same time, ensuring much better tissue penetration. An additional benefit of AbFs is the possibility of their production in bacterial and yeast cells due to the small size, more robust structure, and lack of posttranslational modifications. In this review, we described current approaches to the AbF production with recent examples of AbF synthesis in bacterial and yeast expression systems and methods for the production optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

AbF:

antibody fragment

mAb:

monoclonal antibody

scFv:

single-chain variable fragments

VHH:

variable domains of heavy-chain antibody

References

  1. Mitra, S., and Tomar, P. C. (2021) Hybridoma technology; advancements, clinical significance, and future aspects, J. Genet. Eng. Biotechnol., 19, 159, https://doi.org/10.1186/s43141-021-00264-6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Liu, J. K. (2014) The history of monoclonal antibody development – progress, remaining challenges and future innovations, Ann. Med. Surg. (Lond), 3, 113-116, https://doi.org/10.1016/j.amsu.2014.09.001.

    Article  PubMed  Google Scholar 

  3. De Marco, A. (2011) Biotechnological applications of recombinant single-domain antibody fragments, Microb. Cell Fact., 10, 44, https://doi.org/10.1186/1475-2859-10-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Geyer, C. R., McCafferty, J., Dubel, S., Bradbury, A. R., and Sidhu, S. S. (2012) Recombinant antibodies and in vitro selection technologies, Methods Mol. Biol., 901, 11-32, https://doi.org/10.1007/978-1-61779-931-0_2.

    Article  CAS  PubMed  Google Scholar 

  5. Ahmad, Z. A., Yeap, S. K., Ali, A. M., Ho, W. Y., Alitheen, N. B., and Hamid, M. (2012) scFv antibody: principles and clinical application, Clin. Dev. Immunol., 2012, 980250, https://doi.org/10.1155/2012/980250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pluen, A., Boucher, Y., Ramanujan, S., McKee, T. D., Gohongi, T., di Tomaso, E., Brown, E. B., Izumi, Y., Campbell, R. B., Berk, D. A., and Jain, R. K. (2001) Role of tumor-host interactions in interstitial diffusion of macromolecules: cranial vs. subcutaneous tumors, Proc. Natl. Acad. Sci. USA, 98, 4628-4633, https://doi.org/10.1073/pnas.081626898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khawli, L. A., Biela, B., Hu, P., and Epstein, A. L. (2003) Comparison of recombinant derivatives of chimeric TNT-3 antibody for the radioimaging of solid tumors, Hybrid Hybridomics, 22, 1-9, https://doi.org/10.1089/153685903321538026.

    Article  CAS  PubMed  Google Scholar 

  8. Thurber, G. M., and Wittrup, K. D. (2008) Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids, Cancer Res., 68, 3334-3341, https://doi.org/10.1158/0008-5472.Can-07-3018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pirkalkhoran, S., Grabowska, W. R., Kashkoli, H. H., Mirhassani, R., Guiliano, D., Dolphin, C., and Khalili, H. (2023) Bioengineering of antibody fragments: challenges and opportunities, Bioengineering (Basel), 10, 122, https://doi.org/10.3390/bioengineering10020122.

    Article  CAS  PubMed  Google Scholar 

  10. Li, Z., Krippendorff, B. F., Sharma, S., Walz, A. C., Lavé, T., and Shah, D. K. (2016) Influence of molecular size on tissue distribution of antibody fragments, MAbs, 8, 113-119, https://doi.org/10.1080/19420862.2015.1111497.

    Article  CAS  PubMed  Google Scholar 

  11. Balthasar, J., and Fung, H. L. (1994) Utilization of antidrug antibody fragments for the optimization of intraperitoneal drug therapy: studies using digoxin as a model drug, J. Pharmacol. Exp. Ther., 268, 734-739.

    CAS  PubMed  Google Scholar 

  12. Dugel, P. U., Koh, A., Ogura, Y., Jaffe, G. J., Schmidt-Erfurth, U., Brown, D. M., Gomes, A. V., Warburton, J., Weichselberger, A., Holz, F. G., HAWK and HARRIER Study Investigators (2020) HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration, Ophthalmology, 127, 72-84, https://doi.org/10.1016/j.ophtha.2019.04.017.

    Article  PubMed  Google Scholar 

  13. Popovic, M., Andjelkovic, U., Burazer, L., Lindner, B., Petersen, A., and Gavrovic-Jankulovic, M. (2013) Biochemical and immunological characterization of a recombinantlyproduced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa), Phytochemistry, 94, 53-59, https://doi.org/10.1016/j.phytochem.2013.06.006.

    Article  CAS  PubMed  Google Scholar 

  14. Abughren, M., Popović, M., Dimitrijević, R., Burazer, L., Grozdanović, M., Atanasković-Marković, M., and Gavrović-Jankulović, M. (2012) Optimization of the heterologous expression of banana glucanase in Escherichia coli, J. Serb. Chem. Soc., 77, 43-52, https://doi.org/10.2298/JSC110309158A.

    Article  CAS  Google Scholar 

  15. Arbabi-Ghahroudi, M., Tanha, J., and MacKenzie, R. (2005) Prokaryotic expression of antibodies, Cancer Metastasis Rev., 24, 501-519, https://doi.org/10.1007/s10555-005-6193-1.

    Article  PubMed  Google Scholar 

  16. Charlton, K. A. (2004) Expression and Isolation of Recombinant Antibody Fragments in E. coli. in Antibody Engineering: Methods and Protocols (Lo, B. K. C., ed) Humana Press, Totowa, NJ, pp. 245-254, https://doi.org/10.1385/1-59259-666-5:245.

  17. Walsh, G. (2010) Biopharmaceutical benchmarks 2010, Nat. Biotechnol., 28, 917-924, https://doi.org/10.1038/nbt0910-917.

    Article  CAS  PubMed  Google Scholar 

  18. Kang, T. H., and Seong, B. L. (2020) Solubility, stability, and avidity of recombinant antibody fragments expressed in microorganisms, Front. Microbiol., 11, 1927, https://doi.org/10.3389/fmicb.2020.01927.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Choi, J., and Lee, S. (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli, Appl. Microbiol. Biotechnol., 64, 625-635, https://doi.org/10.1007/s00253-004-1559-9.

    Article  CAS  PubMed  Google Scholar 

  20. Sandomenico, A., Sivaccumar, J. P., and Ruvo, M. (2020) Evolution of Escherichia coli expression system in producing antibody recombinant fragments, Int. J. Mol. Sci., 21, 6324, https://doi.org/10.3390/ijms21176324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Challener, C. A. (2015) Fermentation for the future, BioPharm Int., 28, 30-31.

    Google Scholar 

  22. Basu, A., Li, X., and Leong, S. S. J. (2011) Refolding of proteins from inclusion bodies: rational design and recipes, Appl. Microbiol. Biotechnol., 92, 241-251, https://doi.org/10.1007/s00253-011-3513-y.

    Article  CAS  PubMed  Google Scholar 

  23. Popovic, M., Mazzega, E., Toffoletto, B., and de Marco, A. (2018) Isolation of anti-extra-cellular vesicle single-domain antibodies by direct panning on vesicle-enriched fractions, Microb. Cell Factor., 17, 6, https://doi.org/10.1186/s12934-017-0856-9.

    Article  CAS  Google Scholar 

  24. De Marco, A. (2022) Cytoplasmic production of nanobodies and nanobody-based reagents by co-expression of sulfhydryl oxidase and DsbC isomerase, Methods Mol. Biol., 2446, 145-157, https://doi.org/10.1007/978-1-0716-2075-5_7.

    Article  PubMed  Google Scholar 

  25. Veggiani, G., and de Marco, A. (2011) Improved quantitative and qualitative production of single-domain intrabodies mediated by the co-expression of Erv1p sulfhydryl oxidase, Protein Express. Purif., 79, 111-114, https://doi.org/10.1016/j.pep.2011.03.005.

    Article  CAS  Google Scholar 

  26. Rahbarizadeh, F., Rasaee, M. J., Forouzandeh-Moghadam, M., and Allameh, A.-A. (2005) High expression and purification of the recombinant camelid anti-MUC1 single domain antibodies in Escherichia coli, Protein Express. Purif., 44, 32-38, https://doi.org/10.1016/j.pep.2005.04.008.

    Article  CAS  Google Scholar 

  27. Djender, S., Schneider, A., Beugnet, A., Crepin, R., Desrumeaux, K. E., Romani, C., Moutel, S., Perez, F., and de Marco, A. (2014) Bacterial cytoplasm as an effective cell compartment for producing functional VHH-based affinity reagents and Camelidae IgG-like recombinant antibodies, Microb. Cell Factor., 13, 140, https://doi.org/10.1186/s12934-014-0140-1.

    Article  CAS  Google Scholar 

  28. Gaciarz, A., Veijola, J., Uchida, Y., Saaranen, M. J., Wang, C., Hörkkö, S., and Ruddock, L. W. (2016) Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli, Microb. Cell Fact., 15, 22, https://doi.org/10.1186/s12934-016-0419-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Humphreys, D. P., Sehdev, M., Chapman, A. P., Ganesh, R., Smith, B. J., King, L. M., Glover, D. J., Reeks, D. G., and Stephens, P. E. (2000) High-level periplasmic expression in Escherichia coli using a eukaryotic signal peptide: importance of codon usage at the 5′ end of the coding sequence, Protein Express. Purif., 20, 252-264, https://doi.org/10.1006/prep.2000.1286.

    Article  CAS  Google Scholar 

  30. Ellis, M., Patel, P., Edon, M., Ramage, W., Dickinson, R., and Humphreys, D. P. (2017) Development of a high yielding E. coli periplasmic expression system for the production of humanized Fab' fragments, Biotechnol. Prog., 33, 212-220, https://doi.org/10.1002/btpr.2393.

    Article  CAS  PubMed  Google Scholar 

  31. Liu, M., Feng, X., Ding, Y., Zhao, G., Liu, H., and Xian, M. (2015) Metabolic engineering of Escherichia coli to improve recombinant protein production, Appl. Microbiol. Biotechnol., 99, 10367-10377, https://doi.org/10.1007/s00253-015-6955-9.

    Article  CAS  PubMed  Google Scholar 

  32. Selas Castiñeiras, T., Williams, S. G., Hitchcock, A. G., and Smith, D. C. (2018) E. coli strain engineering for the production of advanced biopharmaceutical products, FEMS Microbiol. Lett., 365, fny162, https://doi.org/10.1093/femsle/fny162.

    Article  CAS  Google Scholar 

  33. Sørensen, H. P., and Mortensen, K. K. (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli, J. Biotechnol., 115, 113-128, https://doi.org/10.1016/j.jbiotec.2004.08.004.

    Article  CAS  PubMed  Google Scholar 

  34. Hayat, S. M., Farahani, N., Golichenari, B., and Sahebkar, A. (2018) Recombinant protein expression in Escherichia coli (E. coli): what we need to know, Curr. Pharmaceut. Design, 24, 718-725, https://doi.org/10.2174/1381612824666180131121940.

    Article  CAS  Google Scholar 

  35. Pardon, E., Laeremans, T., Triest, S., Rasmussen, S. G., Wohlkönig, A., Ruf, A., Muyldermans, S., Hol, W. G., Kobilka, B. K., and Steyaert, J. (2014) A general protocol for the generation of Nanobodies for structural biology, Nat. Protocols, 9, 674-693, https://doi.org/10.1038/nprot.2014.039.

    Article  CAS  PubMed  Google Scholar 

  36. Jember, T. F. (2021) Molecular cloning, expression and purification of recombinant VHH proteins expressed in E. coli, Am. J. Mol. Biol., 11, 129-141, https://doi.org/10.4236/ajmb.2021.114011.

    Article  CAS  Google Scholar 

  37. Su, Q., Shi, W., Huang, X., Wan, Y., Li, G., Xing, B., Xu, Z. P., Liu, H., Hammock, B. D., Yang, X., Yin, S., and Lu, X. (2022) Screening, expression, and identification of nanobody against SARS-CoV-2 spike protein, Cells, 11, 3355, https://doi.org/10.3390/cells11213355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu, Y., Wang, Y., Lin, J., Wu, S., Muyldermans, S., and Wang, S. (2022) Versatile application of nanobodies for food allergen detection and allergy immunotherapy, J. Agricult. Food Chem., 70, 8901-8912, https://doi.org/10.1021/acs.jafc.2c03324.

    Article  CAS  Google Scholar 

  39. Hemamalini, N., Ezhilmathi, S., and Mercy, A. A. (2020) Recombinant protein expression optimization in Escherichia coli: a review, Ind. J. Animal Res., 54, 653-660.

    Google Scholar 

  40. Gupta, S. K., and Shukla, P. (2017) Microbial platform technology for recombinant antibody fragment production: a review, Crit. Rev. Microbiol., 43, 31-42, https://doi.org/10.3109/1040841X.2016.1150959.

    Article  CAS  PubMed  Google Scholar 

  41. Mehta, D., Chirmade, T., Tungekar, A. A., Gani, K., and Bhambure, R. (2021) Cloning and expression of antibody fragment (Fab) I: Effect of expression construct and induction strategies on light and heavy chain gene expression, Biochem. Engin. J., 176, 108189, https://doi.org/10.1016/j.bej.2021.108189.

    Article  CAS  Google Scholar 

  42. Henry, K. A., Sulea, T., van Faassen, H., Hussack, G., Purisima, E. O., MacKenzie, C. R., and Arbabi-Ghahroudi, M. (2016) A rational engineering strategy for designing protein A-binding camelid single-domain antibodies, PLoS One, 11, e0163113, https://doi.org/10.1371/journal.pone.0163113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bossi, S., Ferranti, B., Martinelli, C., Capasso, P., and de Marco, A. (2010) Antibody-mediated purification of co-expressed antigen–antibody complexes, Protein Express. Purif., 72, 55-58, https://doi.org/10.1016/j.pep.2010.01.003.

    Article  CAS  Google Scholar 

  44. Jia, B., and Jeon, C. O. (2016) High-throughput recombinant protein expression in Escherichia coli: current status and future perspectives, Open Biol., 6, 160196, https://doi.org/10.1098/rsob.160196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Farshdari, F., Ahmadzadeh, M., Nematollahi, L., and Mohit, E. (2020) The improvement of anti-HER2 scFv soluble expression in Escherichia coli, Braz. J. Pharm. Sci., 56, e17861, https://doi.org/10.1590/s2175-97902019000317861.

    Article  CAS  Google Scholar 

  46. Zarschler, K., Witecy, S., Kapplusch, F., Foerster, C., and Stephan, H. (2013) High-yield production of functional soluble single-domain antibodies in the cytoplasm of Escherichia coli, Microb. Cell Factor., 12, 97, https://doi.org/10.1186/1475-2859-12-97.

    Article  CAS  Google Scholar 

  47. Farasat, A., Rahbarizadeh, F., Ahmadvand, D., and Yazdian, F. (2017) Optimization of an anti-HER2 nanobody expression using the Taguchi method, Prepar. Biochem. Biotechnol., 47, 795-803, https://doi.org/10.1080/10826068.2017.1342259.

    Article  CAS  Google Scholar 

  48. Studier, F. W. (2005) Protein production by auto-induction in high-density shaking cultures, Protein Express. Purif., 41, 207-234, https://doi.org/10.1016/j.pep.2005.01.016.

    Article  CAS  Google Scholar 

  49. Zou, C., Duan, X., and Wu, J. (2014) Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy, Biores. Technol., 172, 174-179, https://doi.org/10.1016/j.biortech.2014.09.035.

    Article  CAS  Google Scholar 

  50. Spadiut, O., Capone, S., Krainer, F., Glieder, A., and Herwig, C. (2014) Microbials for the production of monoclonal antibodies and antibody fragments, Trends Biotechnol., 32, 54-60, https://doi.org/10.1016/j.tibtech.2013.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Demain, A. L., and Vaishnav, P. (2009) Production of recombinant proteins by microbes and higher organisms, Biotechnol. Adv., 27, 297-306, https://doi.org/10.1016/j.biotechadv.2009.01.008.

    Article  CAS  PubMed  Google Scholar 

  52. Gupta, S. K., and Shukla, P. (2017) Sophisticated cloning, fermentation, and purification technologies for an enhanced therapeutic protein production: a review, Front. Pharmacol., 8, 419, https://doi.org/10.3389/fphar.2017.00419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vieira Gomes, A. M., Souza Carmo, T., Silva Carvalho, L., Mendonça Bahia, F., and Parachin, N. S. (2018) Comparison of yeasts as hosts for recombinant protein production, Microorganisms, 6, 38, https://doi.org/10.3390/microorganisms6020038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hong, M. S., Velez-Suberbie, M. L., Maloney, A. J., Biedermann, A., Love, K. R., Love, J. C., Mukhopadhyay, T. K., and Braatz, R. D. (2021) Macroscopic modeling of bioreactors for recombinant protein producing Pichia pastoris in defined medium, Biotechnol. Bioeng., 118, 1199-1212, https://doi.org/10.1002/bit.27643.

    Article  CAS  PubMed  Google Scholar 

  55. Karbalaei, M., Rezaee, S. A., and Farsiani, H. (2020) Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins, J. Cell. Physiol., 235, 5867-5881, https://doi.org/10.1002/jcp.29583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. De Sá Magalhães, S., and Keshavarz-Moore, E. (2021) Pichia pastoris (Komagataella phaffii) as a cost-effective tool for vaccine production for low- and middle-income countries (LMICs), Bioengineering, 8, 119, https://doi.org/10.3390/bioengineering8090119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baghban, R., Farajnia, S., Rajabibazl, M., Ghasemi, Y., Mafi, A., Hoseinpoor, R., Rahbarnia, L., and Aria, M. (2019) Yeast expression systems: overview and recent advances, Mol. Biotechnol., 61, 365-384, https://doi.org/10.1007/s12033-019-00164-8.

    Article  CAS  PubMed  Google Scholar 

  58. Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J. D., Jacq, C., Johnston, M., Louis, E. J., Mewes, H. W., Murakami, Y., Philippsen, P., Tettelin, H., and Oliver, S. G. (1996) Life with 6000 genes, Science, 274, 546-567, https://doi.org/10.1126/science.274.5287.546.

    Article  CAS  PubMed  Google Scholar 

  59. Gorlani, A., de Haard, H., and Verrips, T. (2012) Expression of VHHs in Saccharomyces cerevisiae, Methods Mol. Biol., 911, 277-286, https://doi.org/10.1007/978-1-61779-968-6_17.

    Article  CAS  PubMed  Google Scholar 

  60. Chee, M. K., and Haase, S. B. (2012) New and redesigned pRS plasmid shuttle vectors for genetic manipulation of Saccharomyces cerevisiae, G3 (Bethesda, Md.), 2, 515-526, https://doi.org/10.1534/g3.111.001917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Berlec, A., and Strukelj, B. (2013) Current state and recent advances in biopharmaceutical production in Escherichia coli, yeasts and mammalian cells, J. Indust. Microbiol. Biotechnol., 40, 257-274, https://doi.org/10.1007/s10295-013-1235-0.

    Article  CAS  Google Scholar 

  62. Carlesso, A., Delgado, R., Ruiz Isant, O., Uwangue, O., Valli, D., Bill, R. M., and Hedfalk, K. (2022) Yeast as a tool for membrane protein production and structure determination, FEMS Yeast Res., 22, foac047, https://doi.org/10.1093/femsyr/foac047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Joosten, V., Lokman, C., van den Hondel, C. A., and Punt, P. J. (2003) The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi, Microb. Cell Factor., 2, 1, https://doi.org/10.1186/1475-2859-2-1.

    Article  Google Scholar 

  64. Xu, P., Raden, D., Doyle, F. J., 3rd, and Robinson, A. S. (2005) Analysis of unfolded protein response during single-chain antibody expression in Saccaromyces cerevisiae reveals different roles for BiP and PDI in folding, Metab. Engin., 7, 269-279, https://doi.org/10.1016/j.ymben.2005.04.002.

    Article  CAS  Google Scholar 

  65. Wang, Y., Li, X., Chen, X., Nielsen, J., Petranovic, D., and Siewers, V. (2021) Expression of antibody fragments in Saccharomyces cerevisiae strains evolved for enhanced protein secretion, Microb. Cell Fact, 20, 134, https://doi.org/10.1186/s12934-021-01624-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tang, H., Wang, S., Wang, J., Song, M., Xu, M., Zhang, M., Shen, Y., Hou, J., and Bao, X. (2016) N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae, Scientific reports, 6, 25654, https://doi.org/10.1038/srep25654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ahmad, M., Hirz, M., Pichler, H., and Schwab, H. (2014) Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production, Appl. Microbiol. Biotechnol., 98, 5301-5317, https://doi.org/10.1007/s00253-014-5732-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Huang, D., and Shusta, E. V. (2006) A yeast platform for the production of single-chain antibody-green fluorescent protein fusions, Appl. Environ. Microbiol., 72, 7748-7759, https://doi.org/10.1128/aem.01403-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Frenzel, A., Hust, M., and Schirrmann, T. (2013) Expression of recombinant antibodies, Front. Immunol., 4, 217, https://doi.org/10.3389/fimmu.2013.00217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chen, Q., Zhou, Y., Yu, J., Liu, W., Li, F., Xian, M., Nian, R., Song, H., and Feng, D. (2019) An efficient constitutive expression system for Anti-CEACAM5 nanobody production in the yeast Pichia pastoris, Protein Expr. Purif., 155, 43-47, https://doi.org/10.1016/j.pep.2018.11.001.

    Article  CAS  PubMed  Google Scholar 

  71. Gómez-Ramírez, I. V., Corrales-García, L. L., Possani, L. D., Riaño-Umbarila, L., and Becerril, B. (2023) Expression in Pichia pastoris of human antibody fragments that neutralize venoms of Mexican scorpions, Toxicon, 223, 107012, https://doi.org/10.1016/j.toxicon.2022.107012.

    Article  CAS  PubMed  Google Scholar 

  72. Guthrie, C., and Fink, G. R. (2002) Guide to Yeast Genetics and Molecular and Cell Biology, Part C, Gulf Professional Publishing.

  73. Gao, M.-J., Li, Z., Yu, R.-S., Wu, J.-R., Zheng, Z.-Y., Shi, Z.-P., Zhan, X.-B., and Lin, C.-C. (2012) Methanol/sorbitol co-feeding induction enhanced porcine interferon-α production by P. pastoris associated with energy metabolism shift, Bioprocess Biosystems Engin., 35, 1125-1136, https://doi.org/10.1007/s00449-012-0697-1.

    Article  CAS  Google Scholar 

  74. Gao, M. J., Zhan, X. B., Gao, P., Zhang, X., Dong, S. J., Li, Z., Shi, Z. P., and Lin, C. C. (2015) Improving performance and operational stability of porcine interferon-α production by Pichia pastoris with combinational induction strategy of low temperature and methanol/sorbitol co-feeding, Appl. Biochem. Biotechnol., 176, 493-504, https://doi.org/10.1007/s12010-015-1590-6.

    Article  CAS  PubMed  Google Scholar 

  75. Farsiani, H., Mosavat, A., Soleimanpour, S., Sadeghian, H., Akbari Eydgahi, M. R., Ghazvini, K., Sankian, M., Aryan, E., Jamehdar, S. A., and Rezaee, S. A. (2016) Fc-based delivery system enhances immunogenicity of a tuberculosis subunit vaccine candidate consisting of the ESAT-6:CFP-10 complex, Mol. bioSystems, 12, 2189-2201, https://doi.org/10.1039/c6mb00174b.

    Article  CAS  Google Scholar 

  76. Duranti, C., Carraresi, L., Sette, A., Stefanini, M., Lottini, T., Crescioli, S., Crociani, O., Iamele, L., De Jonge, H., Gherardi, E., and Arcangeli, A. (2018) Generation and characterization of novel recombinant anti-hERG1 scFv antibodies for cancer molecular imaging, Oncotarget, 9, 34972-34989, https://doi.org/10.18632/oncotarget.26200.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the Ministry of Education, Science, and Technological Development of Republic of Serbia (contracts nos. 451-03-47/2023-01/200168, 451-03-47/2023-01/200288, and 451-03-47/2023-01/200026).

Author information

Authors and Affiliations

Authors

Contributions

M.P. supervised the study; L.F., N.Z., and M.P. wrote and edited the manuscript.

Corresponding author

Correspondence to Milica Popovic.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies with the involvement of humans or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenovic, N., Filipovic, L. & Popovic, M. Recent Developments in Bioprocessing of Recombinant Antibody Fragments. Biochemistry Moscow 88, 1191–1204 (2023). https://doi.org/10.1134/S0006297923090018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923090018

Keywords

Navigation