Skip to main content

Advertisement

Log in

Prokaryotic expression of antibodies

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Summary

Maximizing the expression yields of recombinant whole antibodies and antibody fragments such as Fabs, single-chain Fvs and single-domain antibodies is highly desirable since it leads to lower production costs. Various eukaryotic and prokaryotic expression systems have been exploited to accommodate antibody expression but Escherichia coli systems have enjoyed popularity, in particular with respect to antibody fragments, because of their low cost and convenience. In many instances, product yields have been less than adequate and intrinsic and extrinsic variables have been investigated in an effort to improve yields. This review deals with various aspects of antibody expression in E. coli with a particular focus on single-domain antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cortez-Retamozo V, Lauwereys M, Hassanzadeh GG, Gobert M, Conrath K, Muyldermans S, De Baetselier P, Revets H: Efficient tumor targeting by single-domain antibody fragments ofcamels. Int J Cancer 98: 456–462, 2002

    Article  CAS  PubMed  Google Scholar 

  2. Groner B, Hartmann C, Wels W: Therapeutic antibodies. Curr Mol Med 4: 539–547, 2004

    Article  CAS  PubMed  Google Scholar 

  3. Holt LJ, Herring C, Jespers LS, Woolven BP, Tomlinson IM: Domain antibodies: proteins fortherapy. Trends Biotechnol 21: 484–490, 2003

    Article  CAS  PubMed  Google Scholar 

  4. Hudson PJ, Souriau C: Recombinant antibodies for cancer diagnosis and therapy. Expert Opin Biol Ther 1: 845–855, 2001

    CAS  PubMed  Google Scholar 

  5. Kipriyanov SM, Moldenhauer G, Little M: High level production of soluble single chainantibodies in small-scale Escherichia coli cultures. J Immunol Methods 200: 69–77, 1997

    Article  CAS  PubMed  Google Scholar 

  6. Maynard J, Georgiou G: Antibody engineering. Annu Rev Biomed Eng 2: 339–376, 2000

    Article  CAS  PubMed  Google Scholar 

  7. Revets H, De Baetselier P, Muyldermans S: Nanobodies as novel agents for cancer therapy.Expert Opin Biol Ther 5: 111–124, 2005

    Article  CAS  PubMed  Google Scholar 

  8. Souriau C, Hudson PJ: Recombinant antibodies for cancer diagnosis and therapy. Expert Opin Biol Ther 3: 305–318, 2003

    Article  CAS  PubMed  Google Scholar 

  9. Stockwin LH, Holmes S: Antibodies as therapeutic agents: vive la renaissance! Expert Opin Biol Ther 3: 1133–1152, 2003

    Article  CAS  PubMed  Google Scholar 

  10. Adair JR: Engineering antibodies for therapy. Immunol Rev 130: 5–40, 1992

    CAS  PubMed  Google Scholar 

  11. Hoogenboom HR, Marks JD, Griffiths AD, Winter G: Building antibodies from their genes.Immunol Rev 130: 41–68, 1992

    CAS  PubMed  Google Scholar 

  12. Kipriyanov SM, Le Gall F: Generation and production of engineered antibodies. Mol Biotechnol 26: 39–60, 2004

    Article  CAS  PubMed  Google Scholar 

  13. Plückthun A: Escherichia coli producing recombinant antibodies. Bioprocess Technol 19:233–252, 1994

    PubMed  Google Scholar 

  14. Winter G: Synthetic human antibodies and a strategy for protein engineering. FEBS Lett430: 92–94, 1998

    CAS  PubMed  Google Scholar 

  15. Humphreys DP, Sehdev M, Chapman AP, Ganesh R, Smith BJ, King LM, Glover DJ, Reeks DG, Stephens PE: High-level periplasmic expression in Escherichia coli using a eukaryoticsignal peptide: importance of codon usage at the 5' end of the coding sequence. Protein Expr Purif 20: 252–264, 2000

    CAS  PubMed  Google Scholar 

  16. Jurado P, Ritz D, Beckwith J, de Lorenzo V, Fernandez LA: Production of functionalsingle-chain Fv antibodies in the cytoplasm of Escherichia coli. J Mol Biol 320: 1–10, 2002

    Article  CAS  PubMed  Google Scholar 

  17. Kipriyanov SM, Dubel S, Breitling F, Kontermann RE, Little M: Recombinant single-chain Fvfragments carrying C-terminal cysteine residues: production of bivalent and biotinylatedminiantibodies. Mol Immunol 31: 1047–1058, 1994

    Article  CAS  PubMed  Google Scholar 

  18. Kipriyanov SM, Moldenhauer G, Braunagel M, Reusch U, Cochlovius B, Le Gall F, Kouprianova OA, der Lieth CW, Little M: Effect of domain order on the activity of bacterially producedbispecific single-chain Fv antibodies. J Mol Biol 330: 99–111, 2003

    Article  CAS  PubMed  Google Scholar 

  19. Knappik A, Krebber C, Plückthun A: The effect of folding catalysts on the in vivo foldingprocess of different antibody fragments expressed in Escherichia coli. Biotechnology N Y11: 77–83, 1993

    CAS  PubMed  Google Scholar 

  20. Luo D, Mah N, Krantz M, Wilde K, Wishart D, Zhang Y, Jacobs F, Martin L: Vl-linker-Vhorientation-dependent expression of single chain Fv-containing an engineereddisulfide-stabilized bond in the framework regions. J Biochem (Tokyo) 118: 825–831, 1995

    CAS  Google Scholar 

  21. Arndt KM, Muller KM, Plückthun A: Factors influencing the dimer to monomer transition ofan antibody single-chain Fv fragment. Biochemistry 37: 12918–12926, 1998

    Article  CAS  PubMed  Google Scholar 

  22. Atwell JL, Breheney KA, Lawrence LJ, McCoy AJ, Kortt AA, Hudson PJ: scFv multimers of theanti-neuraminidase antibody NC10: length of the linker between VH and VL domains dictatesprecisely the transition between diabodies and triabodies. Protein Eng 12: 597–604, 1999

    CAS  PubMed  Google Scholar 

  23. Desplancq D, King DJ, Lawson AD, Mountain A: Multimerization behaviour of single chain Fvvariants for the tumour-binding antibody B72.3. Protein Eng 7: 1027–1033, 1994

    Article  CAS  PubMed  Google Scholar 

  24. Duenas M, Ayala M, Vazquez J, Ohlin M, Soderlind E, Borrebaeck CA, Gavilondo JV: A pointmutation in a murine immunoglobulin V-region strongly influences the antibody yield in Escherichia coli. Gene 158: 61–66, 1995

    CAS  PubMed  Google Scholar 

  25. Forsberg G, Forsgren M, Jaki M, Norin M, Sterky C, Enhorning A, Larsson K, Ericsson M, Bjork P: Identification of framework residues in a secreted recombinant antibody fragmentthat control production level and localization in Escherichia coli. J Biol Chem 272:12430–12436, 1997

    Article  CAS  PubMed  Google Scholar 

  26. Jung S, Honegger A, Plückthun A: Selection for improved protein stability by phagedisplay. J Mol Biol 294: 163–180, 1999

    Article  CAS  PubMed  Google Scholar 

  27. Nieba L, Honegger A, Krebber C, Plückthun A: Disrupting the hydrophobic patches at theantibody variable/constant domain interface: Improved in vivo folding and physicalcharacterization of an engineered scFv fragment. Protein Eng 10: 435–444, 1997

    CAS  PubMed  Google Scholar 

  28. Woo JH, Liu YY, Mathias A, Stavrou S, Wang Z, Thompson J, Neville DM, Jr.: Geneoptimization is necessary to express a bivalent anti-human anti-T cell immunotoxin in Pichia pastoris. Protein Expr Purif 25: 270–282, 2002

    CAS  PubMed  Google Scholar 

  29. Better M, Chang CP, Robinson RR, Horwitz AH: Escherichia coli secretion of an activechimeric antibody fragment. Science 240: 1041–1043, 1988

    CAS  PubMed  Google Scholar 

  30. Skerra A, Plückthun A: Assembly of a functional immunoglobulin Fv fragment in Escherichiacoli. Science 240: 1038–1041, 1988

    CAS  PubMed  Google Scholar 

  31. Pollock DP, Kutzko JP, Birck-Wilson E, Williams JL, Echelard Y, Meade HM: Transgenic milkas a method for the production of recombinant antibodies. J Immunol Methods 231: 147–157, 1999

    Article  CAS  PubMed  Google Scholar 

  32. Young MW, Meade H, Curling JM, Ziomek CA, Harvey M: Production of recombinant antibodiesin the milk of transgenic animals. Res Immunol 149: 609–610, 1998

    CAS  PubMed  Google Scholar 

  33. Biocca S, Ruberti F, Tafani M, Pierandrei-Amaldi P, Cattaneo A: Redox state of singlechain Fv fragments targeted to the endoplasmic reticulum, cytosol and mitochondria.Biotechnology (NY) 13: 1110–1115, 1995

    Article  CAS  Google Scholar 

  34. Schouten A, Roosien J, van Engelen FA, de Jong GA, Borst-Vrenssen AW, Zilverentant JF, Bosch D, Stiekema WJ, Gommers FJ, Schots A, Bakker J: The C-terminal KDEL sequenceincreases the expression level of a single-chain antibody designed to be targeted to boththe cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol 30: 781–793, 1996

    Article  CAS  PubMed  Google Scholar 

  35. Tewari D, Goldstein SL, Notkins AL, Zhou P: cDNA encoding a single-chain antibody to HIVp17 with cytoplasmic or nuclear retention signals inhibits HIV-1 replication. J Immunol161: 2642–2647, 1998

    CAS  PubMed  Google Scholar 

  36. Boder ET, Midelfort KS, Wittrup KD: Directed evolution of antibody fragments withmonovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci USA 97: 10701–10705, 2000

    Article  CAS  PubMed  Google Scholar 

  37. Carter P, Kelley RF, Rodrigues ML, Snedecor B, Covarrubias M, Velligan MD, Wong WL, Rowland AM, Kotts CE, Carver ME: High level Escherichia coli expression and productionof a bivalent humanized antibody fragment. Biotechnology (NY) 10: 163–167, 1992

    CAS  Google Scholar 

  38. Griffiths AD, Williams SC, Hartley O, Tomlinson IM, Waterhouse P, Crosby WL, Kontermann RE, Jones PT, Low NM, Allison TJ, et al: Isolation of high affinity human antibodiesdirectly from large synthetic repertoires. EMBO J 13: 3245–3260, 1994

    CAS  PubMed  Google Scholar 

  39. Humphreys DP, Glover DJ: Therapeutic antibody production technologies: Molecules, applications, expression and purification. Curr Opin Drug Discov Devel 4: 172–185, 2001

    CAS  PubMed  Google Scholar 

  40. Joosten V, Lokman C, van den Hondel CA, Punt PJ: The production of antibody fragments andantibody fusion proteins by yeasts and filamentous fungi. Microb Cell Fact 2: 1, 2003

    Article  PubMed  Google Scholar 

  41. Miller KD, Weaver-Feldhaus J, Gray SA, Siegel RW, Feldhaus MJ: Production, purification, and characterization of human scFv antibodies expressed in Saccharomyces cerevisiae, Pichia pastoris, and Escherichia coli. Protein Expr Purif 2005

  42. Worn A, Plückthun A: Different equilibrium stability behavior of ScFv fragments:Identification, classification, and improvement by protein engineering. Biochemistry 38:8739–8750, 1999

    Article  CAS  PubMed  Google Scholar 

  43. Worn A, Plückthun A: Stability engineering of antibody single-chain Fv fragments. J Mol Biol 305: 989–1010, 2001

    Article  CAS  PubMed  Google Scholar 

  44. Oelschlaeger P, Lange S, Schmitt J, Siemann M, Reuss M, Schmid RD: Identification offactors impeding the production of a single-chain antibody fragment in Escherichia coli bycomparing in vivo and in vitro expression. Appl Microbiol Biotechnol 61: 123–132, 2003

    CAS  PubMed  Google Scholar 

  45. Wulfing C, Plückthun A: Protein folding in the periplasm of Escherichia coli. Mol Microbiol 12: 685–692, 1994

    CAS  PubMed  Google Scholar 

  46. Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LG, Muyldermans S, Wyns L, Matagne A: Single-domain antibody fragments with high conformational stability.Protein Sci 11: 500–515, 2002

    Article  CAS  PubMed  Google Scholar 

  47. Stanfield RL, Dooley H, Flajnik MF, Wilson IA: Crystal structure of a shark single-domainantibody V region in complex with lysozyme. Science 305: 1770–1773, 2004

    Article  CAS  PubMed  Google Scholar 

  48. Greenberg AS, Avila D, Hughes M, Hughes A, McKinney EC, Flajnik MF: A new antigen receptorgene family that undergoes rearrangement and extensive somatic diversification in sharks.Nature 374: 168–173, 1995

    CAS  PubMed  Google Scholar 

  49. Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N, Hamers R: Naturally occurring antibodies devoid of light chains. Nature 363: 446–448, 1993

    Article  CAS  PubMed  Google Scholar 

  50. Muyldermans S, Atarhouch T, Saldanha J, Barbosa JA, Hamers R: Sequence and structure of VHdomain from naturally occurring camel heavy chain immunoglobulins lacking light chains.Protein Eng 7: 1129–1135, 1994

    CAS  PubMed  Google Scholar 

  51. Vu KB, Arbabi-Ghahroudi M, Wyns L, Muyldermans S: Comparison of llama VH sequences fromconventional and heavy chain antibodies. Mol Immunol 34: 1121–1131, 1997

    Article  CAS  PubMed  Google Scholar 

  52. Arbabi-Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S: Selection andidentification of single domain antibody fragments from camel heavy-chain antibodies. FEBSLett 414: 521–526, 1997

    CAS  Google Scholar 

  53. Desmyter A, Transue TR, Arbabi-Ghahroudi M, Thi MH, Poortmans F, Hamers R, Muyldermans S, Wyns L: Crystal structure of a camel single-domain VH antibody fragment in complex withlysozyme. Nat Struct Biol 3: 803–811, 1996

    Article  CAS  PubMed  Google Scholar 

  54. Roux KH, Greenberg AS, Greene L, Strelets L, Avila D, McKinney EC, Flajnik MF: Structuralanalysis of the nurse shark (new) antigen receptor (NAR): molecular convergence of NAR andunusual mammalian immunoglobulins. Proc Natl Acad Sci USA 95: 11804–11809, 1998

    Article  CAS  PubMed  Google Scholar 

  55. Bond CJ, Marsters JC, Sidhu SS: Contributions of CDR3 to VHH domain stability and thedesign of monobody scaffolds for naive antibody libraries. J Mol Biol 332: 643–655, 2003

    Article  CAS  PubMed  Google Scholar 

  56. Dolk E, van der Vaart M, Lutje HD, Vriend G, de Haard H, Spinelli S, Cambillau C, Frenken L, Verrips T: Isolation of llama antibody fragments for prevention of dandruff by phagedisplay in shampoo. Appl Environ Microbiol 71: 442–450, 2005

    Article  CAS  PubMed  Google Scholar 

  57. Ewert S, Cambillau C, Conrath K, Plückthun A: Biophysical properties of camelid VHHdomains compared to those of human VH3 domains. Biochemistry 41: 3628–3636, 2002

    Article  CAS  PubMed  Google Scholar 

  58. Jespers L, Schon O, James LC, Veprintsev D, Winter G: Crystal Structure of HEL4, a Soluble, Refoldable Human VH Single Domain with a Germ-line Scaffold. J Mol Biol 337:893–903, 2004

    Article  CAS  PubMed  Google Scholar 

  59. Jespers L, Schon O, Famm K, Winter G: Aggregation-resistant domain antibodies selected onphage by heat denaturation. Nat Biotechnol 22: 1161–1165, 2004

    Article  CAS  PubMed  Google Scholar 

  60. Jobling SA, Jarman C, Teh MM, Holmberg N, Blake C, Verhoeyen ME: Immunomodulation ofenzyme function in plants by single-domain antibody fragments. Nat Biotechnol 21: 77–80, 2003

    Article  CAS  PubMed  Google Scholar 

  61. Muruganandam A, Tanha J, Narang S, Stanimirovic D: Selection of phage-displayed llamasingle-domain antibodies that transmigrate across human blood-brain barrier endothelium.FASEB J 16: 240–242, 2002

    CAS  PubMed  Google Scholar 

  62. Kujau MJ, Hoischen C, Riesenberg D, Gumpert J: Expression and secretion of functionalminiantibodies McPC603scFv Dhlx in cell-wall-less L-form strains of Proteus mirabilis and Escherichia coli: A comparison of the synthesis capacities of L-form strains with an E.coli producer strain. Appl Microbiol Biotechnol 49: 51–58, 1998

    Article  CAS  PubMed  Google Scholar 

  63. Pschorr J, Bieseler B, Fritz HJ: Production of the immunoglobulin variable domain REIv viaa fusion protein synthesized and secreted by Staphylococcus carnosus. Biol Chem Hoppe Seyler 375: 271–280, 1994

    CAS  PubMed  Google Scholar 

  64. Rippmann JF, Klein M, Hoischen C, Brocks B, Rettig WJ, Gumpert J, Pfizenmaier K, Mattes R, Moosmayer D: Procaryotic expression of single-chain variable-fragment (scFv) antibodies:Secretion in L-form cells of Proteus mirabilis leads to active product and overcomes thelimitations of periplasmic expression in Escherichia coli. Appl Environ Microbiol 64:4862–4869, 1998

    CAS  PubMed  Google Scholar 

  65. Ueda Y, Tsumoto K, Watanabe K, Kumagai I: Synthesis and expression of a DNA encoding the Fv domain of an anti-lysozyme monoclonal antibody, Hy HEL10, in Streptomyces lividans. Gene129: 129–134, 1993

    CAS  PubMed  Google Scholar 

  66. Wu SC, Yeung JC, Duan Y, Ye R, Szarka SJ, Habibi HR, Wong SL: Functional production andcharacterization of a fibrin-specific single-chain antibody fragment from Bacillussubtilis: Effects of molecular chaperones and a wall-bound protease on antibody fragmentproduction. Appl Environ Microbiol 68: 3261–3269, 2002

    CAS  PubMed  Google Scholar 

  67. Wu XC, Ng SC, Near RI, Wong SL: Efficient production of a functional single-chainantidigoxin antibody via an engineered Bacillus subtilis expression-secretion system.Biotechnology (N Y) 11: 71–76, 1993

    CAS  Google Scholar 

  68. Fischer R, Drossard J, Emans N, Commandeur U, Hellwig S: Towards molecular farming in thefuture: pichia pastoris-based production of single-chain antibody fragments. Biotechnol Appl Biochem 30 (Pt 2): 117–120, 1999

    CAS  PubMed  Google Scholar 

  69. Franklin SE, Mayfield SP: Recent developments in the production of human therapeuticproteins in eukaryotic algae. Expert Opin Biol Ther 5: 225–235, 2005

    Article  CAS  PubMed  Google Scholar 

  70. Reavy B, Ziegler A, Diplexcito J, Macintosh SM, Torrance L, Mayo M: Expression offunctional recombinant antibody molecules in insect cell expression systems. Protein Expr Purif 18: 221–228, 2000

    CAS  PubMed  Google Scholar 

  71. Nolke G, Fischer R, Schillberg S: Production of therapeutic antibodies in plants. Expert Opin Biol Ther 3: 1153–1162, 2003

    Article  PubMed  Google Scholar 

  72. Andersen DC, Krummen L: Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13: 117–123, 2002

    Article  CAS  PubMed  Google Scholar 

  73. Meissner P, Pick H, Kulangara A, Chatellard P, Friedrich K, Wurm FM: Transient geneexpression: recombinant protein production with suspension-adapted HEK293-EBNA cells.Biotechnol Bioeng 75: 197–203, 2001

    Article  CAS  PubMed  Google Scholar 

  74. Trill JJ, Shatzman AR, Ganguly S: Production of monoclonal antibodies in COS and CHOcells. Curr Opin Biotechnol 6: 553–560, 1995

    Article  CAS  PubMed  Google Scholar 

  75. Simmons LC, Reilly D, Klimowski L, Raju TS, Meng G, Sims P, Hong K, Shields RL, Damico LA, Rancatore P, Yansura DG: Expression of full-length immunoglobulins in Escherichia coli:rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263:133–147, 2002

    Article  CAS  PubMed  Google Scholar 

  76. Boss MA, Kenten JH, Wood CR, Emtage JS: Assembly of functional antibodies fromimmunoglobulin heavy and light chains synthesised in E. coli. Nucleic Acids Res 12:3791–3806, 1984

    CAS  PubMed  Google Scholar 

  77. Guo JQ, You SY, Li L, Zhang YZ, Huang JN, Zhang CY: Construction and high-level expressionof a single-chain Fv antibody fragment specific for acidic isoferritin in Escherichiacoli. J Biotechnol 102: 177–189, 2003

    Article  CAS  PubMed  Google Scholar 

  78. Lee MH, Park TI, Park YB, Kwak JW: Bacterial expression and in vitro refolding of asingle-chain fv antibody specific for human plasma apolipoprotein B-100. Protein Expr Purif 25: 166–173, 2002

    CAS  PubMed  Google Scholar 

  79. Martineau P, Jones P, Winter G: Expression of an antibody fragment at high levels in thebacterial cytoplasm. J Mol Biol 280: 117–127, 1998

    Article  CAS  PubMed  Google Scholar 

  80. Riesenberg D: High-cell-density cultivation of Escherichia coli. Curr Opin Biotechnol 2:380–384, 1991

    CAS  PubMed  Google Scholar 

  81. Proba K, Honegger A, Plückthun A: A natural antibody missing a cysteine in VH:consequences for thermodynamic stability and folding. J Mol Biol 265: 161–172, 1997

    Article  CAS  PubMed  Google Scholar 

  82. Proba K, Worn A, Honegger A, Plückthun A: Antibody scFv fragments without disulfide bondsmade by molecular evolution. J Mol Biol 275: 245–253, 1998

    Article  CAS  PubMed  Google Scholar 

  83. Ewert S, Honegger A, Plückthun A: Stability improvement of antibodies for extracellularand intracellular applications: CDR grafting to stable frameworks and structure-basedframework engineering. Methods 34: 184–199, 2004

    Article  CAS  PubMed  Google Scholar 

  84. Worn A, Plückthun A: An intrinsically stable antibody scFv fragment can tolerate the lossof both disulfide bonds and fold correctly. FEBS Lett 427: 357–361, 1998

    CAS  PubMed  Google Scholar 

  85. Buchner J, Brinkmann U, Pastan I: Renaturation of a single-chain immunotoxin facilitatedby chaperones and protein disulfide isomerase. Biotechnology (N Y) 10: 682–685, 1992

    CAS  Google Scholar 

  86. Fernandez LA: Prokaryotic expression of antibodies and affibodies. Curr Opin Biotechnol15: 364–373, 2004

    Article  CAS  PubMed  Google Scholar 

  87. Huston JS, Mudgett-Hunter M, Tai M-S, McCartney J, Warren F, Haber E, Oppermann H: Proteinengineering of single-chain Fv analogs and fusion proteins. Methods Enzymol 203: 46–88, 1991

    CAS  PubMed  Google Scholar 

  88. Pugsley AP: The complete general secretory pathway in gram-negative bacteria. Microbiol Rev 57: 50–108, 1993

    CAS  PubMed  Google Scholar 

  89. Bothmann H, Plückthun A: Selection for a periplasmic factor improving phage display andfunctional periplasmic expression. Nat Biotechnol 16: 376–380, 1998

    Article  CAS  PubMed  Google Scholar 

  90. Bothmann H, Plückthun A: The periplasmic Escherichia coli peptidylprolylcis, trans-isomerase Fkp A. I. Increased functional expression of antibody fragments withand without cis-prolines. J Biol Chem 275: 17100–17105, 2000

    Article  CAS  PubMed  Google Scholar 

  91. Chen C, Snedecor B, Nishihara JC, Joly JC, McFarland N, Andersen DC, Battersby JE, Champion KM: High-level accumulation of a recombinant antibody fragment in the periplasmof Escherichia coli requires a triple-mutant (deg P prc spr) host strain. Biotechnol Bioeng85: 463–474, 2004

    Article  CAS  PubMed  Google Scholar 

  92. Tanha J, Dubuc G, Hirama T, Narang SA, MacKenzie CR: Selection by phage display of llamaconventional VH fragments with heavy chain antibody VHH properties. J Immunol Methods263: 97–109, 2002

    Article  CAS  PubMed  Google Scholar 

  93. Fernandez LA, Sola I, Enjuanes L, de Lorenzo V: Specific secretion of active single-chain Fv antibodies into the supernatants of Escherichia coli cultures by use of the hemolysinsystem. Appl Environ Microbiol 66: 5024–5029, 2000

    CAS  PubMed  Google Scholar 

  94. Fraile S, Munoz A, de Lorenzo V, Fernandez LA: Secretion of proteins with dimerizationcapacity by the haemolysin type I transport system of Escherichia coli. Mol Microbiol 53:1109–1121, 2004

    Article  CAS  PubMed  Google Scholar 

  95. Gentschev I, Dietrich G, Goebel W: The E. coli alpha-hemolysin secretion system and itsuse in vaccine development. Trends Microbiol 10: 39–45, 2002

    Article  CAS  PubMed  Google Scholar 

  96. Daugherty PS, Olsen MJ, Iverson BL, Georgiou G: Development of an optimized expressionsystem for the screening of antibody libraries displayed on the Escherichia coli surface.Protein Eng 12: 613–621, 1999

    CAS  PubMed  Google Scholar 

  97. Skerra A: Use of the tetracycline promoter for the tightly regulated production of amurine antibody fragment in Escherichia coli. Gene 151: 131–135, 1994

    Article  CAS  PubMed  Google Scholar 

  98. Humphreys DP, Carrington B, Bowering LC, Ganesh R, Sehdev M, Smith BJ, King LM, Reeks DG, Lawson A, Popplewell AG: A plasmid system for optimization of Fab' production in Escherichia coli: Importance of balance of heavy chain and light chain synthesis. Protein Expr Purif 26: 309–320, 2002

    CAS  PubMed  Google Scholar 

  99. Le Gall F, Reusch U, Moldenhauer G, Little M, Kipriyanov SM: Immunosuppressive propertiesof anti-CD3 single-chain Fv and diabody. J Immunol Methods 285: 111–127, 2004

    PubMed  Google Scholar 

  100. Trinh R, Gurbaxani B, Morrison SL, Seyfzadeh M: Optimization of codon pair use within the(GGGGS)3 linker sequence results in enhanced protein expression. Mol Immunol 40: 717–722, 2004

    Article  CAS  PubMed  Google Scholar 

  101. Skerra A, Plückthun A: Secretion and in vivo folding of the Fab fragment of the antibody McPC603 in Escherichia coli: Influence of disulphides and cis-prolines. Protein Eng 4:971–979, 1991

    CAS  PubMed  Google Scholar 

  102. Chames P, Fieschi J, Baty D: Production of a soluble and active MBP-scFv fusion: Favorableeffect of the leaky tol R strain. FEBS Lett 405: 224–228, 1997

    Article  CAS  PubMed  Google Scholar 

  103. Corisdeo S, Wang B: Functional expression and display of an antibody Fab fragment in Escherichia coli: Study of vector designs and culture conditions. Protein Expr Purif 34:270–279, 2004

    CAS  PubMed  Google Scholar 

  104. Duenas M, Vazquez J, Ayala M, Soderlind E, Ohlin M, Perez L, Borrebaeck CA, Gavilondo JV:Intra- and extracellular expression of an scFv antibody fragment in E. coli: Effect ofbacterial strains and pathway engineering using Gro ES/L chaperonins. Bio Techniques 16:476–3, 1994

    CAS  Google Scholar 

  105. Freyre FM, Vazquez JE, Ayala M, Canaan-Haden L, Bell H, Rodriguez I, Gonzalez A, Cintado A, Gavilondo JV: Very high expression of an anti-carcinoembryonic antigen single chain Fvantibody fragment in the yeast Pichia pastoris. J Biotechnol 76: 157–163, 2000

    Article  CAS  PubMed  Google Scholar 

  106. Zhu Z, Zapata G, Shalaby R, Snedecor B, Chen H, Carter P: High level secretion of ahumanized bispecific diabody from Escherichia coli. Biotechnology (N Y) 14: 192–196, 1996

    CAS  Google Scholar 

  107. Gutierrez G, Marquez L, Marin A: Preference for guanosine at first codon position inhighly expressed Escherichia coli genes. A relationship with translational efficiency.Nucleic Acids Res 24: 2525–2527, 1996

    Article  CAS  PubMed  Google Scholar 

  108. Nakamura Y, Wada K, Wada Y, Doi H, Kanaya S, Gojobori T, Ikemura T: Codon usage tabulatedfrom the international DNA sequence databases. Nucleic Acids Res 24: 214–215, 1996

    Article  CAS  PubMed  Google Scholar 

  109. Robinson M, Lilley R, Little S, Emtage JS, Yarranton G, Stephens P, Millican A, Eaton M, Humphreys G: Codon usage can affect efficiency of translation of genes in Escherichiacoli. Nucleic Acids Res 12: 6663–6671, 1984

    CAS  PubMed  Google Scholar 

  110. Wada K, Wada Y, Ishibashi F, Gojobori T, Ikemura T: Codon usage tabulated from the Gen Bankgenetic sequence data. Nucleic Acids Res 20 Suppl: 2111–2118, 1992

    Google Scholar 

  111. Gutman GA, Hatfield GW: Nonrandom utilization of codon pairs in Escherichia coli. ProcNatl Acad Sci USA 86: 3699–3703, 1989

    CAS  Google Scholar 

  112. Irwin B, Heck JD, Hatfield GW: Codon pair utilization biases influence translationalelongation step times. J Biol Chem 270: 22801–22806, 1995

    CAS  PubMed  Google Scholar 

  113. Kotula L, Curtis PJ: Evaluation of foreign gene codon optimization in yeast: Expression ofa mouse IG kappa chain. Biotechnology (NY) 9: 1386–1389, 1991

    Article  CAS  Google Scholar 

  114. Baca AM, Hol WG: Overcoming codon bias: a method for high-level overexpression of Plasmodium and other AT-rich parasite genes in Escherichia coli. Int J Parasitol 30:113–118, 2000

    CAS  PubMed  Google Scholar 

  115. Zahn K: Overexpression of an m RNA dependent on rare codons inhibits protein synthesis andcell growth. J Bacteriol 178: 2926–2933, 1996

    CAS  PubMed  Google Scholar 

  116. Zhou Z, Schnake P, Xiao L, Lal AA: Enhanced expression of a recombinant malaria candidatevaccine in Escherichia coli by codon optimization. Protein Expr Purif 34: 87–94, 2004

    CAS  PubMed  Google Scholar 

  117. Stemmer WP, Morris SK, Kautzer CR, Wilson BS: Increased antibody expression from Escherichia coli through wobble-base library mutagenesis by enzymatic inverse PCR. Gene123: 1–7, 1993

    Article  CAS  PubMed  Google Scholar 

  118. Forrer P, Jung S, Plückthun A: Beyond binding: using phage display to select forstructure, folding and enzymatic activity in proteins. Curr Opin Struct Biol 9: 514–520, 1999

    Article  CAS  PubMed  Google Scholar 

  119. Deng SJ, MacKenzie CR, Sadowska J, Michniewicz J, Young NM, Bundle DR, Narang SA:Selection of antibody single-chain variable fragments with improved carbohydrate bindingby phage display. J Biol Chem 269: 9533–9538, 1994

    CAS  PubMed  Google Scholar 

  120. Jackson JR, Sathe G, Rosenberg M, Sweet R: In vitro antibody maturation. Improvement of ahigh affinity, neutralizing antibody against IL-1 beta. J Immunol 154: 3310–3319, 1995

    CAS  PubMed  Google Scholar 

  121. Jermutus L, Honegger A, Schwesinger F, Hanes J, Plückthun A: Tailoring in vitro evolutionfor protein affinity or stability. Proc Natl Acad Sci U S A 98: 75–80, 2001

    Article  CAS  PubMed  Google Scholar 

  122. Shusta EV, Holler PD, Kieke MC, Kranz DM, Wittrup KD: Directed evolution of a stablescaffold for T-cell receptor engineering. Nat Biotechnol 18: 754–759, 2000

    CAS  PubMed  Google Scholar 

  123. Graff CP, Chester K, Begent R, Wittrup KD: Directed evolution of an anti-carcinoembryonicantigen scFv with a 4-day monovalent dissociation half-time at 37 degrees C. Protein Eng Des Sel 17: 293–304, 2004

    Article  CAS  PubMed  Google Scholar 

  124. Jung S, Plückthun A: Improving in vivo folding and stability of a single-chain Fv antibodyfragment by loop grafting. Protein Eng 10: 959–966, 1997

    CAS  PubMed  Google Scholar 

  125. Kipriyanov SM, Moldenhauer G, Martin AC, Kupriyanova OA, Little M: Two amino acidmutations in an anti-human CD3 single chain Fv antibody fragment that affect the yield onbacterial secretion but not the affinity. Protein Eng 10: 445–453, 1997

    CAS  PubMed  Google Scholar 

  126. Davies J, Riechmann L: ‘Camelising’ human antibody fragments: NMR studies on VH domains.FEBS Lett 339: 285–290, 1994

    Article  CAS  PubMed  Google Scholar 

  127. Davies J, Riechmann L: Antibody VH domains as small recognition units. Biotechnology NY13: 475–479, 1995

    CAS  Google Scholar 

  128. Tanha J, Xu P, Chen ZG, Ni F, Kaplan H, Narang SA, MacKenzie CR: Optimal design featuresof camelized human single-domain antibody libraries. J Biol Chem 276: 24774–24780, 2001

    Article  CAS  PubMed  Google Scholar 

  129. Ohage E, Steipe B: Intrabody construction and expression. I. The critical role of VLdomain stability. J Mol Biol 291: 1119–1128, 1999

    CAS  PubMed  Google Scholar 

  130. Bardwell JC: Building bridges: Disulphide bond formation in the cell. Mol Microbiol 14:199–205, 1994

    CAS  PubMed  Google Scholar 

  131. Knarr G, Gething MJ, Modrow S, Buchner J: Bi P binding sequences in antibodies. J Biol Chem270: 27589–27594, 1995

    CAS  PubMed  Google Scholar 

  132. Rietsch A, Beckwith J: The genetics of disulfide bond metabolism. Annu Rev Genet 32:163–184, 1998

    Article  CAS  PubMed  Google Scholar 

  133. Hanes J, Jermutus L, Plückthun A: Selecting and evolving functional proteins in vitro byribosome display. Methods Enzymol 328: 404–430, 2000

    CAS  PubMed  Google Scholar 

  134. Lilie H, Lang K, Rudolph R, Buchner J: Prolyl isomerases catalyze antibody folding invitro. Protein Sci 2: 1490–1496, 1993

    CAS  PubMed  Google Scholar 

  135. Ryabova LA, Desplancq D, Spirin AS, Plückthun A: Functional antibody production usingcell-free translation: Effects of protein disulfide isomerase and chaperones. Nat Biotechnol 15: 79–84, 1997

    Article  CAS  PubMed  Google Scholar 

  136. Ying BW, Taguchi H, Ueda H, Ueda T: Chaperone-assisted folding of a single-chain antibodyin a reconstituted translation system. Biochem Biophys Res Commun 320: 1359–1364, 2004

    Article  CAS  PubMed  Google Scholar 

  137. Allen SP, Polazzi JO, Gierse JK, Easton AM: Two novel heat shock genes encoding proteinsproduced in response to heterologous protein expression in Escherichia coli. J Bacteriol174: 6938–6947, 1992

    CAS  PubMed  Google Scholar 

  138. Schwarz E, Lilie H, Rudolph R: The effect of molecular chaperones on in vivo and in vitrofolding processes. Biol Chem 377: 411–416, 1996

    CAS  PubMed  Google Scholar 

  139. Amrein KE, Takacs B, Stieger M, Molnos J, Flint NA, Burn P: Purification andcharacterization of recombinant human p50csk protein-tyrosine kinase from an Escherichiacoli expression system overproducing the bacterial chaperones Gro ES and Gro EL. Proc Natl Acad Sci USA 92: 1048–1052, 1995

    CAS  PubMed  Google Scholar 

  140. Goloubinoff P, Gatenby AA, Lorimer GH: Gro E heat-shock proteins promote assembly offoreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli.Nature 337: 44–47, 1989

    Article  CAS  PubMed  Google Scholar 

  141. Gragerov A, Nudler E, Komissarova N, Gaitanaris GA, Gottesman ME, Nikiforov V: Cooperationof Gro EL/Gro ES and Dna K/Dna J heat shock proteins in preventing protein misfolding in Escherichia coli. Proc Natl Acad Sci USA 89: 10341–10344, 1992

    CAS  PubMed  Google Scholar 

  142. Lee SC, Olins PO: Effect of overproduction of heat shock chaperones Gro ESL and Dna K onhuman procollagenase production in Escherichia coli. J Biol Chem 267: 2849–2852, 1992

    CAS  PubMed  Google Scholar 

  143. Ideno A, Furutani M, Iba Y, Kurosawa Y, Maruyama T: FK506 binding protein from thehyperthermophilic archaeon Pyrococcus horikoshii suppresses the aggregation of proteins in Escherichia coli. Appl Environ Microbiol 68: 464–469, 2002

    Article  CAS  PubMed  Google Scholar 

  144. Ramm K, Plückthun A: The periplasmic Escherichia coli peptidylprolyl cis, trans-isomerase Fkp A. II. Isomerase-independent chaperone activity in vitro. J Biol Chem 275:17106–17113, 2000

    Article  CAS  PubMed  Google Scholar 

  145. Hayhurst A, Harris WJ: Escherichia coli skp chaperone coexpression improves solubility andphage display of single-chain antibody fragments. Protein Expr Purif 15: 336–343, 1999

    CAS  PubMed  Google Scholar 

  146. Levy R, Weiss R, Chen G, Iverson BL, Georgiou G: Production of correctly folded Fabantibody fragment in the cytoplasm of Escherichia coli trx B gor mutants via thecoexpression of molecular chaperones. Protein Expr Purif 23: 338–347, 2001

    CAS  PubMed  Google Scholar 

  147. Nishihara K, Kanemori M, Yanagi H, Yura T: Overexpression of trigger factor preventsaggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol 66:884–889, 2000

    Article  CAS  PubMed  Google Scholar 

  148. Langer T, Lu C, Echols H, Flanagan J, Hayer MK, Hartl FU: Successive action of Dna K, Dna Jand Gro EL along the pathway of chaperone-mediated protein folding. Nature 356: 683–689, 1992

    Article  CAS  PubMed  Google Scholar 

  149. Blum P, Ory J, Bauernfeind J, Krska J: Physiological consequences of Dna K and Dna Joverproduction in Escherichia coli. J Bacteriol 174: 7436–7444, 1992

    CAS  PubMed  Google Scholar 

  150. O Kandror, M Sherman, Goldberg A: Rapid degradation of an abnormal protein in Escherichiacoli proceeds through repeated cycles of association with Gro EL. J Biol Chem 274:37743–37749, 1999

    CAS  PubMed  Google Scholar 

  151. Georgiou G, Valax P: Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 7: 190–197, 1996

    Article  CAS  PubMed  Google Scholar 

  152. Mertens N, Devos F, Leoen J, Van Deynse E, Willems A, Schoonooghe S, Burvenich I, De Koker S, Vlieghe D, Grooten J, Kelly A, Van de Wiele C: New strategies in polypeptide andantibody synthesis: an overview. Cancer Biother Radiopharm 19: 99–109, 2004

    Article  CAS  PubMed  Google Scholar 

  153. Lavallie ER, McCoy JM: Gene fusion expression systems in Escherichia coli. Curr Opin Biotechnol 6: 501–506, 1995

    Article  CAS  PubMed  Google Scholar 

  154. Bach H, Mazor Y, Shaky S, Shoham-Lev A, Berdichevsky Y, Gutnick DL, Benhar I: Escherichiacoli maltose-binding protein as a molecular chaperone for recombinant intracellularcytoplasmic single-chain antibodies. J Mol Biol 312: 79–93, 2001

    Article  CAS  PubMed  Google Scholar 

  155. Bregegere F, Schwartz J, Bedouelle H: Bifunctional hybrids between the variable domains ofan immunoglobulin and the maltose-binding protein of Escherichia coli: production, purification and antigen binding. Protein Eng 7: 271–280, 1994

    CAS  PubMed  Google Scholar 

  156. di Guan C, Li P, Riggs PD, Inouye H: Vectors that facilitate the expression andpurification of foreign peptides in Escherichia coli by fusion to maltose-binding protein.Gene 67: 21–30, 1988

    PubMed  Google Scholar 

  157. Zheng L, Baumann U, Reymond JL: Production of a functional catalytic antibody ScFv-Nus Afusion protein in bacterial cytoplasm. J Biochem (Tokyo) 133: 577–581, 2003

    CAS  Google Scholar 

  158. Wilkinson DL, Harrison RG: Predicting the solubility of recombinant proteins in Escherichia coli. Biotechnology (N Y) 9: 443–448, 1991

    CAS  Google Scholar 

  159. Hayhurst A: Improved expression characteristics of single-chain Fv fragments when fuseddownstream of the Escherichia coli maltose-binding protein or upstream of a singleimmunoglobulin-constant domain. Protein Expr Purif 18: 1–10, 2000

    CAS  PubMed  Google Scholar 

  160. Cohen PA, Mani JC, Lane DP: Characterization of a new intrabody directed against the N-terminal region of human p53. Oncogene 17: 2445–2456, 1998

    CAS  PubMed  Google Scholar 

  161. Ideno A, Furutani M, Iwabuchi T, Iida T, Iba Y, Kurosawa Y, Sakuraba H, Ohshima T, Kawarabayashi Y, Maruyama T: Expression of foreign proteins in Escherichia coli by fusingwith an archaeal FK506 binding protein. Appl Microbiol Biotechnol 64: 99–105, 2004

    Article  CAS  PubMed  Google Scholar 

  162. Kapust RB, Waugh DS: Escherichia coli maltose-binding protein is uncommonly effective atpromoting the solubility of polypeptides to which it is fused. Protein Sci 8: 1668–1674, 1999

    Article  CAS  PubMed  Google Scholar 

  163. Ward ES, Gussow D, Griffiths AD, Jones PT, Winter G: Binding activities of a repertoire ofsingle immunoglobulin variable domains secreted from Escherichia coli. Nature 341:544–546, 1989

    Article  CAS  PubMed  Google Scholar 

  164. Reiter Y, Schuck P, Boyd LF, Plaksin D: An antibody single-domain phage display library ofa native heavy chain variable region: isolation of functional single-domain VH moleculeswith a unique interface. J Mol Biol 290: 685–698, 1999

    Article  CAS  PubMed  Google Scholar 

  165. Davies J, Riechmann L: Single antibody domains as small recognition units: Design and invitro antigen selection of camelized, human VH domains with improved protein stability.Protein Eng 9: 531–537, 1996

    Article  CAS  PubMed  Google Scholar 

  166. van den Beucken T, van Neer N, Sablon E, Desmet J, Celis L, Hoogenboom HR, Hufton SE:Building novel binding ligands to B7.1 and B7.2 based on human antibody single variablelight chain domains. J Mol Biol 310: 591–601, 2001

    PubMed  Google Scholar 

  167. Muyldermans S, Cambillau C, Wyns L: Recognition of antigens by single-domain antibodyfragments: The superfluous luxury of paired domains. Trends Biochem Sci 26: 230–235, 2001

    Article  CAS  PubMed  Google Scholar 

  168. Padlan EA: Anatomy of the antibody molecule. Mol Immunol 31: 169–217, 1994

    Article  CAS  PubMed  Google Scholar 

  169. Nguyen VK, Hamers R, Wyns L, Muyldermans S: Loss of splice consensus signal is responsiblefor the removal of the entire C(H)1 domain of the functional camel IGG2A heavy-chainantibodies. Mol Immunol 36: 515–524, 1999

    CAS  PubMed  Google Scholar 

  170. Woolven BP, Frenken LG, van der Logt P, Nicholls PJ: The structure of the llama heavychain constant genes reveals a mechanism for heavy-chain antibody formation.Immunogenetics 50: 98–101, 1999

    Article  CAS  PubMed  Google Scholar 

  171. Decanniere K, Desmyter A, Lauwereys M, Arbabi-Ghahroudi M, Muyldermans S, Wyns L: Asingle-domain antibody fragment in complex with RNase A: non-canonical loop structures andnanomolar affinity using two CDR loops. Structure 7: 361–370, 1999

    Article  CAS  PubMed  Google Scholar 

  172. Renisio JG, Perez J, Czisch M, Guenneugues M, Bornet O, Frenken L, Cambillau C, Darbon H:Solution structure and backbone dynamics of an antigen-free heavy chain variable domain(VHH) from Llama. Proteins 47: 546–555, 2002

    Article  CAS  PubMed  Google Scholar 

  173. Spinelli S, Frenken L, Bourgeois D, de Ron L, Bos W, Verrips T, Anguille C, Cambillau C, Tegoni M: The crystal structure of a llama heavy chain variable domain. Nat Struct Biol 3:752–757, 1996

    Article  CAS  PubMed  Google Scholar 

  174. Decanniere K, Muyldermans S, Wyns L: Canonical antigen-binding loop structures inimmunoglobulins: More structures, more canonical classes? J Mol Biol 300: 83–91, 2000

    Article  CAS  PubMed  Google Scholar 

  175. Nguyen VK, Hamers R, Wyns L, Muyldermans S: Camel heavy-chain antibodies: diverse germline VHH and specific mechanisms enlarge the antigen-binding repertoire. EMBO J 19: 921–930, 2000

    Article  CAS  PubMed  Google Scholar 

  176. Harmsen MM, Ruuls RC, Nijman IJ, Niewold TA, Frenken LGJ, de Geus B: Llama heavy-chain Vregions consist of at least four distinct subfamilies revealing novel sequence features.Mol Immunol 37: 579–590, 2000

    Article  CAS  PubMed  Google Scholar 

  177. Desmyter A, Spinelli S, Payan F, Lauwereys M, Wyns L, Muyldermans S, Cambillau C: Threecamelid VHH domains in complex with porcine pancreatic alpha-amylase. Inhibition andversatility of binding topology. J Biol Chem 277: 23645–23650, 2002

    Article  CAS  PubMed  Google Scholar 

  178. Riechmann L, Muyldermans S: Single domain antibodies: Comparison of camel VH and camelisedhuman VH domains. J Immunol Methods 231: 25-38, 1999

    Article  CAS  PubMed  Google Scholar 

  179. Conrath K, Vincke C, Stijlemans B, Schymkowitz J, Decanniere K, Wyns L, Muyldermans S, Loris R: Antigen Binding and Solubility Effects upon the Veneering of a Camel VHH in Framework-2 to Mimic a VH. J Mol Biol 350: 112–125, 2005

    Article  CAS  PubMed  Google Scholar 

  180. Streltsov VA, Varghese JN, Carmichael JA, Irving RA, Hudson PJ, Nuttall SD: Structuralevidence for evolution of shark Ig new antigen receptor variable domain antibodies from acell-surface receptor. Proc Natl Acad Sci USA 101: 12444–12449, 2004

    Article  CAS  PubMed  Google Scholar 

  181. Thomassen YE, Meijer W, Sierkstra L, Verrips T: Large-scale production of VHHantibody fragments by Saccharomyces cerevisiae. Enzyme and Microbial Technology 30:273–278, 2002

    Article  CAS  Google Scholar 

  182. Thomassen YE, Verkleij AJ, Boonstra J, Verrips CT: Specific production rate of VHHantibody fragments by Saccharomyces cerevisiae is correlated with growth rate, independentof nutrient limitation. J Biotechnol 2005

  183. Hudson PJ, Kortt AA: High avidity scFv multimers; diabodies and triabodies. J Immunol Methods 231: 177–189, 1999

    Article  CAS  PubMed  Google Scholar 

  184. Turner DJ, Ritter MA, George AJ: Importance of the linker in expression of single-chain Fvantibody fragments: optimisation of peptide sequence using phage display technology. JImmunol Methods 205: 43–54, 1997

    CAS  Google Scholar 

  185. Perez JMJ, Renisio JG, Prompers JJ, van Platerink CJ, Cambillau C, Darbon H, Frenken LGJ:Thermal unfolding of a llama antibody fragment: A two-state reversible process.Biochemistry 40: 74–83, 2001

    CAS  PubMed  Google Scholar 

  186. 186.van der Linden RHJ, Frenken LGJ, de Geus B, Harmsen MM, Ruuls RC, Stok W, de Ron L, Wilson S, Davis P, Verrips CT: Comparison of physical chemical properties of llama V-HH antibodyfragments and mouse monoclonal antibodies. Biochim Biophys Acta 1431: 37–46, 1999

    PubMed  Google Scholar 

  187. Zhang J, Tanha J, Hirama T, Khieu NH, To R, Tong-Sevinc H, Stone E, Brisson JR, MacKenzie CR: Pentamerization of Single-domain Antibodies from Phage Libraries: A Novel Strategy forthe Rapid Generation of High-avidity Antibody Reagents. J Mol Biol 335: 49–56, 2004

    CAS  PubMed  Google Scholar 

  188. Lauwereys M, Arbabi-Ghahroudi M, Desmyter A, Kinne J, Holzer W, De Genst E, Wyns L, Muyldermans S: Potent enzyme inhibitors derived from dromedary heavy-chain antibodies.EMBO J 17: 3512–3520, 1998

    Article  CAS  PubMed  Google Scholar 

  189. Stijlemans B, Conrath K, Cortez-Retamozo V, Van Xong H, Wyns L, Senter P, Revets H, De Baetselier P, Muyldermans S, Magez S: Efficient targeting of conserved cryptic epitopes ofinfectious agents by single domain antibodies. African trypanosomes as paradigm. J Biol Chem 279: 1256–1261, 2004

    CAS  PubMed  Google Scholar 

  190. Chapman AP: PEGylated antibodies and antibody fragments for improved therapy: A review.Adv Drug Deliv Rev 54: 531–545, 2002

    Article  CAS  PubMed  Google Scholar 

  191. Dennis MS, Zhang M, Meng YG, Kadkhodayan M, Kirchhofer D, Combs D, Damico LA: Albuminbinding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem277: 35035–35043, 2002

    Article  CAS  PubMed  Google Scholar 

  192. Conrath KE, Lauwereys M, Galleni M, Matagne A, Frere JM, Kinne J, Wyns L, Muyldermans S:Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in thecamelidae. Antimicrob Agents Chemother 45: 2807–2812, 2001

    Article  CAS  PubMed  Google Scholar 

  193. Zhang J, Li Q, Nguyen TD, Tremblay TL, Stone E, To R, Kelly J, MacKenzie CR: A pentavalentsingle-domain antibody approach to tumor antigen discovery and the development of novelproteomics reagents. J Mol Biol 341: 161–169, 2004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger MacKenzie.

Additional information

Both authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbabi-Ghahroudi, M., Tanha, J. & MacKenzie, R. Prokaryotic expression of antibodies. Cancer Metastasis Rev 24, 501–519 (2005). https://doi.org/10.1007/s10555-005-6193-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-005-6193-1

Keywords

Navigation