Skip to main content

Advertisement

Log in

Methanol/sorbitol co-feeding induction enhanced porcine interferon-α production by P. pastoris associated with energy metabolism shift

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The production of porcine interferon-α (pIFN-α) by Pichia pastoris was largely enhanced when adopting sorbitol/methanol co-feeding induction strategy at 30 °C in a 10-L fermentor. Analysis of energy regeneration pattern and carbon metabolism revealed that major energy metabolism energizing pIFN-α synthesis shifted from formaldehyde dissimilatory energy metabolism pathway to TCA cycle under the methanol/sorbitol co-feeding induction strategy. The sorbitol/methanol co-feeding induction strategy weakened formaldehyde dissimilatory pathway and repressed the accumulation of toxic metabolite-formaldehyde, reduced theoretical oxygen consumption rate and oxygen supply requirement, and increased energy/methanol utilization efficiency so that more methanol could be effectively used for pIFN-α synthesis. As a result, pIFN-α antiviral activity reached a highest level of 1.8 × 107 IU/mL which was about 10- to 200-folds of those obtained under pure methanol induction at 20 and 30 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AOX:

Alcohol oxidase

CER:

CO2 evolution rate

DCW:

Dry cell weight

FDH:

Formate dehydrogenase

FLD:

Formaldehyde dehydrogenase

HCHO:

Formaldehyde

HCOOH:

Formate

OUR:

Oxygen uptake rate

PDH:

Pyruvate dehydrogenase

pIFN-α:

Porcine interferon-α

IDH:

Isocitrate dehydrogenase

α-KGDHC:

α-Ketoglutarate dehydrogenase complex

η:

Energy efficiency

References

  1. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  CAS  Google Scholar 

  2. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  CAS  Google Scholar 

  3. Chang HW, Jeng CR, Liu JJ, Lin TL, Chang CC, Chia MY, Tsai YC, Pang VF (2005) Reduction of porcine reproductive and respiratory syndrome virus (PRRSV) infection in swine alveolar macrophages by porcine circovirus 2 (PCV2)-induced interferon-alpha. Vet Microbiol 108:167–177

    Article  CAS  Google Scholar 

  4. Chinsangaram J, Moraes MP, Koster M, Grubman MJ (2003) Novel viral disease control strategy: adenovirus expressing alpha interferon rapidly protects swine from foot-and-mouth disease. J Virol 77:1621–1625

    Article  CAS  Google Scholar 

  5. Ge L, Li Z, Yu RS, Liu HL, Zhang DF, Zhou ZA, Yin XH (2005) Secretive expression of porcine IFN-α in yeast Pichia pastoris. Chin J Vet Sci 25:289–292

    CAS  Google Scholar 

  6. Chen X, Xue Q, Zhu R, Fu X, Yang L, Sun L, Liu W (2009) Comparison of antiviral activities of porcine interferon type I and type II. Chin J Biotech 25:806–812

    Google Scholar 

  7. Cao RB, Xu XQ, Zhou B, Chen DS, Chen PY (2004) Gene modification and high prokaryotic expression of porcine interferon alpha-1. Chin J Biotech 20:291–294

    CAS  Google Scholar 

  8. Wang Y, Wang ZH, Xu QL, Du GC, Hua ZZ, Liu LM, Li JH, Chen J (2009) Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastori. Process Biochem 44:949–954

    Article  CAS  Google Scholar 

  9. Jahic M, Wallberg F, Bollok M, Garcia P, Enfors S-O (2003) Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microb Cell Fact 2:6

    Article  Google Scholar 

  10. Gao MJ, Dong SJ, Yu RS, Wu JR, Zheng ZY, Shi ZP, Zhan XB (2011) Improvement of ATP regeneration efficiency and operation stability in porcine interferon-α production by Pichia pastoris under lower induction temperature. Korean J Chem Eng 28:1412–1419

    Article  CAS  Google Scholar 

  11. Jin H, Liu GQ, Ye XF, Duan ZY, Li Z, Shi ZP (2010) Enhanced porcine interferon-α production by recombinant Pichia pastoris with a combinational control strategy of low induction temperature and high dissolved oxygen concentration. Biochem Eng J 52:91–98

    Article  CAS  Google Scholar 

  12. Zhang W, Hywood Potter KJ, Plantz BA, Schlegel VL, Smith LA, Meagher MM (2003) Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement. J Ind Microbiol Biotechnol 30:210–215

    CAS  Google Scholar 

  13. Jungo C, Marison IW, von Stockar U (2007) Mixed feeds of glycerol and methanol can improve the performance of Pichia pastoris cultures: a quantitative study based on concentration gradients in transient continuous cultures. J Biotechnol 128:824–837

    Article  CAS  Google Scholar 

  14. Xie JL, Zhou QW, Du P, Gan RB, Ye Q (2005) Use of different carbon sources in cultivation of recombinant Pichia pastoris for angiostatin production. Enzyme Microb Technol 36:210–216

    Article  CAS  Google Scholar 

  15. Çelik E, Çalık P, Oliver SG (2009) Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast 26:473–484

    Article  Google Scholar 

  16. Wang ZH, Wang Y, Zhang DX, Li JH, Hua ZZ, Du GC, Chen J (2010) Enhancement of cell viability and alkaline polygalacturonate lyase production by sorbitol co-feeding with methanol in Pichia pastoris fermentations. Biosource Technol 101:1318–1323

    Article  CAS  Google Scholar 

  17. Ramón R, Ferrer P, Valero F (2007) Sorbitol co-feeding reduces metabolic burden caused by the overexpression of a Rhizopus oryzae lipase in Pichia pastoris. J Biotechnol 130:39–46

    Article  Google Scholar 

  18. Jungo C, Schenk J, Pasquier MM, Marison IW, von Stockar U (2007) A quantitative analysis of the benefits of mixed feeds of sorbitol andmethanol for production of recombinant avidin with Pichia pastoris. J Biotechnol 131:57–66

    Article  CAS  Google Scholar 

  19. Jungo C, Marison I, von Stockar U (2007) Regulation of alcohol oxidase of a recombinant Pichia pastoris Mut+ strain in transient continuous cultures. J Biotechnol 130:236–246

    Article  CAS  Google Scholar 

  20. Cregg JM (2007) Pichia protocols. Humana Press, New Jersey

    Google Scholar 

  21. Yu RS, Dong SJ, Zhu YM, Jin H, Gao MJ, Duan ZY, Zheng ZY, Shi ZP, Li Z (2010) Effective and stable porcine interferon-α production by Pichia pastoris fed-batch cultivation with multi-variables clustering and analysis. Bioprocess Biosyst Eng 33:473–483

    Article  CAS  Google Scholar 

  22. Suye S, Ogawa A, Yokoyama S, Obayashi A (1990) Screening and identification of Candida methanosorbosa as alcohol oxidase-producing methanol using yeast. Agric Biol Chem 54:1297–1298

    Article  CAS  Google Scholar 

  23. Schütte H, Flossdorf J, Sahm H, Kula MR (1976) Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii. Eur J Biochem 62:151–160

    Article  Google Scholar 

  24. McCarthy JL, Gauthier J (1984) NADP-isocitric dehydrogenase of gerbil adrenal mitochondria: support of steroid hydroxylation. Cell Mol Life Sci 41:484–485

    Article  Google Scholar 

  25. Hong SY, Bak CI, Ryu JH, Song BJ, Huh JW (1996) Interaction of α-ketoglutarate dehydrogenase complex with allosteric regulators detected by a fluorescence probe, 1,1′-bi (4-aniline) naphthalene-5,5′-disulfonic acid, an inhibitor of catalytic activity. J Biochem Mol Biol 29:230–235

    CAS  Google Scholar 

  26. Shiio I, Toride Y, Sugimoto S (1984) Production of lysine by pyruvate dehydrogenase mutants of Brevibacterium flavum. Agric Biol Chem 48:3091–3098

    Article  CAS  Google Scholar 

  27. Duan SB, Shi ZP, Feng HJ, Duan ZY, Mao ZG (2006) An on-line adaptive control based on DO/pH measurements and ANN pattern recognition model for fed-batch cultivation. Biochem Eng J 30:88–96

    Article  CAS  Google Scholar 

  28. Jin H, Zheng ZY, Gao MJ, Duan ZY, Shi ZP, Wang ZX, Jin J (2007) Effective induction of phytase in Pichia pastoris fed-batch culture using an ANN pattern recognition model based on-line adaptive control strategy. Biochem Eng J 37:26–33

    Article  CAS  Google Scholar 

  29. Schroer K, Peter Luef K, Stefan Hartner F, Glieder A, Pscheidt B (2010) Engineering the Pichia pastoris methanol oxidation pathway for improved NADH regeneration during whole-cell biotransformation. Metab Eng 12:8–17

    Article  CAS  Google Scholar 

  30. Jahic M, Rotticci-Mulder JC, Martinelle M, Hult K, Enfors S-O (2002) Modeling of growth and energy metabolism of Pichia pastoris producing a fusion protein. Bioprocess Biosyst Eng 24:385–393

    Article  CAS  Google Scholar 

  31. van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M (2006) The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochim Biophys Acta 1763:1453–1462

    Article  Google Scholar 

  32. Lüers GH, Advani R, Wenzel T, Subramani S (1998) The Pichia pastoris dihydroxyacetone kinase is a PTS1-containing, but cytosolic, protein that is essential for growth on methanol. Yeast 14:759–771

    Article  Google Scholar 

  33. Cereghino GP, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329–332

    Article  Google Scholar 

  34. Lee B, Yurimoto H, Sakai Y, Kato N (2002) Physiological role of the glutathione-dependent formaldehyde dehydrogenase in themethylotrophic yeast Candida boidinii. Microbiology 148:2697–2704

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial supports from the key agricultural technology program of Shanghai Science & Technology Committee (#073919108) and Major State Basic Research Development Program (#2007CB714303), of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Ping Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, MJ., Li, Z., Yu, RS. et al. Methanol/sorbitol co-feeding induction enhanced porcine interferon-α production by P. pastoris associated with energy metabolism shift. Bioprocess Biosyst Eng 35, 1125–1136 (2012). https://doi.org/10.1007/s00449-012-0697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0697-1

Keywords

Navigation