Skip to main content
Log in

Refolding of proteins from inclusion bodies: rational design and recipes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The need to develop protein biomanufacturing platforms that can deliver proteins quickly and cost-effectively is ever more pressing. The rapid rate at which genomes can now be sequenced demands efficient protein production platforms for gene function identification. There is a continued need for the biotech industry to deliver new and more effective protein-based drugs to address new diseases. Bacterial production platforms have the advantage of high expression yields, but insoluble expression of many proteins necessitates the development of diverse and optimised refolding-based processes. Strategies employed to eliminate insoluble expression are reviewed, where it is concluded that inclusion bodies are difficult to eliminate for various reasons. Rational design of refolding systems and recipes are therefore needed to expedite production of recombinant proteins. This review article discusses efforts towards rational design of refolding systems and recipes, which can be guided by the development of refolding screening platforms that yield both qualitative and quantitative information on the progression of a given refolding process. The new opportunities presented by light scattering technologies for developing rational protein refolding buffer systems which in turn can be used to develop new process designs armed with better monitoring and controlling functionalities are discussed. The coupling of dynamic and static light scattering methodologies for incorporation into future bioprocess designs to ensure delivery of high-quality refolded proteins at faster rates is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anselment B, Baerend D, Mey E, Buchner J, Weuster-Botz D, Haslbeck M (2010) Experimental optimization of protein refolding with a genetic algorithm. Protein Sci 19(11):2085–2095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Basu A, Chen WN, Leong SSJ (2011) A rational design for hepatitis B virus X protein refolding and bioprocess development guided by second virial coefficient studies. Appl Microbiol Biot 90(1):181–191

    CAS  Google Scholar 

  • Bellott E (2010) The rising tide of biotech. Eur Biopharm Rev (Autumn):92–97

  • Benoit I, Coutard B, Oubelaid R, Asther M, Bignon C (2007) Expression in Escherichia coli, refolding and crystallization of Aspergillus niger feruloyl esterase A using a serial factorial approach. Protein Expres Purif 55(1):166–174

    CAS  Google Scholar 

  • Braun P, Hu Y, Shen B, Halleck A, Koundinya M, Harlow E, LaBaer J (2002) Proteome-scale purification of human proteins from bacteria. Proc Natl Acad Sci USA 99(5):2654–2659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bryksa BC, MacDonald LD, Patrzykat A, Douglas SE, Mattatall NR (2006) A C-terminal glycine suppresses production of pleurocidin as a fusion peptide in Escherichia coli. Protein Expres Purif 45(1):88–98

    CAS  Google Scholar 

  • Burgess-Brown NA, Sharma S, Sobott F, Loenarz C, Oppermann U, Gileadi O (2008) Codon optimization can improve expression of human genes in Escherichia coli: a multi-gene study. Protein Expres Purif 59(1):94–102

    CAS  Google Scholar 

  • Cao S, Pollastrini J, Jiang Y (2009) Separation and characterization of protein aggregates and particles by field flow fractionation. Curr Pharm Biotechnol 10(4):382–390

    CAS  PubMed  Google Scholar 

  • Chen Y, Leong SSJ (2009) Adsorptive refolding of a highly disulfide-bonded inclusion body protein using anion-exchange chromatography. J Chromatogr A 1216(24):4877–4886

    CAS  PubMed  Google Scholar 

  • Chen Y, Leong SSJ (2010) High productivity refolding of an inclusion body protein using pulsed-fed size exclusion chromatography. Process Biochem 45(9):1570–1576

    CAS  Google Scholar 

  • Chuan YP, Fan YY, Lua L, Middelberg APJ (2008a) Quantitative analysis of virus-like particle size and distribution by field-flow fractionation. Biotechnol Bioeng 99(6):1425–1433

    CAS  PubMed  Google Scholar 

  • Chuan YP, Lua LHL, Middelberg APJ (2008b) High-level expression of soluble viral structural protein in Escherichia coli. J Biotechnol 134(1–2):64–71

    CAS  PubMed  Google Scholar 

  • Cowan RH, Davies RA, Pinheiro TTJ (2008) A screening system for the identification of refolding conditions for a model protein kinase, p38α. Anal Biochem 376(1):25–38

    CAS  PubMed  Google Scholar 

  • Crisman RL, Randolph TW (2009) Refolding of proteins from inclusion bodies is favored by a diminished hydrophobic effect at elevated pressures. Biotechnol Bioeng 102(2):483–492

    CAS  PubMed  Google Scholar 

  • Curtis RA, Lue L (2006) A molecular approach to bioseparations: protein–protein and protein–salt interactions. Chem Eng Sci 61(3):907–923

    CAS  Google Scholar 

  • Curtis RA, Ulrich J, Montaser A, Prausnitz JM, Blanch HW (2002) Protein–protein interactions in concentrated electrolyte solutions. Biotechnol Bioeng 79(4):367–380. doi:https://doi.org/10.1002/bit.10342

    CAS  PubMed  Google Scholar 

  • Dechavanne V, Barrillat N, Borlat F, Hermant A, Magnenat L, Paquet M, Antonsson B, Chevalet L (2011) A high-throughput protein refolding screen in 96-well format combined with design of experiments to optimize the refolding conditions. Protein Expres Purif 75(2):192–203

    CAS  Google Scholar 

  • de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B (2007) Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol 7:32

    PubMed  PubMed Central  Google Scholar 

  • Demain AL, Vaishnav P (2009) Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv 27(3):297–306

    CAS  PubMed  Google Scholar 

  • Deshpande K, Ahamed T, Van Der Wielen LAM, Ter Horst JH, Jansens PJ, Ottens M (2009) Protein self-interaction chromatography on a microchip. Lab Chip—Miniaturisation for Chemistry and Biology 9(4):600–605

    CAS  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–890

    CAS  PubMed  Google Scholar 

  • Eisenberg D, Marcotte EM, Xenarios I, Yeates TO (2000) Protein function the post-genomic era. Nature 405(6788):823–826

    CAS  PubMed  Google Scholar 

  • Ejima D, Ono K, Tsumoto K, Arakawa T, Eto Y (2006) A novel “reverse screening” to identify refolding additives for activin-A. Protein Expres Purif 47(1):45–51

    CAS  Google Scholar 

  • Fahnert B, Lilie H, Neubauer P (2004) Inclusion bodies: formation and utilisation. Adv Biochem Eng/Biotechnol 89:93–142

    CAS  Google Scholar 

  • Fang L, Xia B, Inouye M (1999) Transcription of cpsA, the gene for the major cold-shock protein of Escherichia coli, is negatively regulated at 37°C by the 5′-untranslated region of its mRNA. FEMS Microbiol Lett 176(1):39–43

    CAS  PubMed  Google Scholar 

  • Gast K, Nöppert A, Müller-Frohne M, Zirwer D, Damaschun G (1997) Stopped-flow dynamic light scattering as a method to monitor compaction during protein folding. Eur Biophys J 25(3):211–219. doi:https://doi.org/10.1007/s002490050033

    CAS  Google Scholar 

  • George A, Wilson WW (1994) Predicting protein crystallization from a dilute solution property. Acta Crystallogr D 50:361–365

    CAS  PubMed  Google Scholar 

  • Georgiou G, Valax P (1996) Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotech 7(2):190–197

    CAS  PubMed  Google Scholar 

  • Greenshields AL, Knickle LC, Syvitski R, Douglas SE (2008) Strategies for recombinant expression of small, highly disulphide-bonded, cationic antimicrobial peptides. Protein Peptide Lett 15(9):985–994

    CAS  Google Scholar 

  • Grigsby JJ, Blanch HW, Prausnitz JM (2000) Diffusivities of lysozyme in aqueous MgCl2 solutions from dynamic light-scattering data: effect of protein and salt concentrations. J Phys Chem B 104(15):3645–3650

    CAS  Google Scholar 

  • Guo B, Kao S, McDonald H, Asanov A, Combs LL, Wilson WW (1999) Correlation of second virial coefficients and solubilities useful in protein crystal growth. J Cryst Growth 196(2–4):424–433

    CAS  Google Scholar 

  • Ho JGS, Middelberg APJ (2004) Estimating the potential refolding yield of recombinant proteins expressed as inclusion bodies. Biotechnol Bioeng 87(5):584–592

    CAS  PubMed  Google Scholar 

  • Ho JGS, Middelberg APJ, Ramage P, Kocher HP (2003) The likelihood of aggregation during protein renaturation can be assessed using the second virial coefficient. Protein Sci 12(4):708–716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann F, Rinas U (2004) Stress induced by recombinant protein production in Escherichia coli. Adv Biochem Eng/Biotechnol 89:73–92

    CAS  Google Scholar 

  • Huang L, Ching CB, Jiang R, Leong SSJ (2008) Production of bioactive human beta-defensin 5 and 6 in Escherichia coli by soluble fusion expression. Protein Expres Purif 61(2):168–174

    CAS  Google Scholar 

  • Huang L, Leong SSJ, Jiang R (2009) Soluble fusion expression and characterization of bioactive human beta-defensin 26 and 27. Appl Microbiol Biot 84(2):301–308

    CAS  Google Scholar 

  • Jungbauer A, Kaar W (2007) Current status of technical protein refolding. J Biotechnol 128(3):587–596

    CAS  PubMed  Google Scholar 

  • Jungbauer A, Kaar W, Schlegl R (2004) Folding and refolding of proteins in chromatographic beds. Curr Opin Biotech 15(5):487–494

    CAS  PubMed  Google Scholar 

  • Kaar W, Hartmann BM, Fan Y, Zeng B, Lua LHL, Dexter AF, Falconer RJ, Middelberg APJ (2009) Microbial bio-production of a recombinant stimuli-responsive biosurfactant. Biotechnol Bioeng 102(1):176–187

    CAS  PubMed  Google Scholar 

  • Kirschner A, Altenbuchner J, Bornscheuer UT (2007) Cloning, expression, and characterization of a Baeyer–Villiger monooxygenase from Pseudomonas fluorescens DSM 50106 in E. coli. Appl Microbiol Biot 73(5):1065–1072

    CAS  Google Scholar 

  • Kleber-Janke T, Becker WM (2000) Use of modified BL21(DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage. Protein Expres Purif 19(3):419–424

    CAS  Google Scholar 

  • Komar AA (2009) A pause for thought along the co-translational folding pathway. Trends Biochem Sci 34(1):16–24

    CAS  PubMed  Google Scholar 

  • Krasheninnikov IA, Komar AA, Adzhubeǐ IA (1988) Rol’ klasterov redkikh kodonov v opredenelenii granits uchastkov polipeptidnoǐ tsepi s odnotipnoǐ vtoprichnoǐ strukturoǐ v protsesse ko-transliatsionnogo svorachivaniia belka [Role of the rare codon clusters in defining the boundaries of polypeptide chain regions with identical secondary structures in the process of co-translational folding of proteins]. Dokl Akad Nauk SSSR 303(4):995–999

    CAS  PubMed  Google Scholar 

  • Kuehner DE, Heyer C, Rämsch C, Fornefeld UM, Blanch HW, Prausnitz JM (1997) Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements. Biophys J 73(6):3211–3224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulkarni A, Zukoski C (2001) Depletion interactions and protein crystallization. J Cryst Growth 232(1–4):156–164

    CAS  Google Scholar 

  • Kulkarni AM, Chatterjee AP, Schweizer KS, Zukoski CF (2000) Effects of polyethylene glycol on protein interactions. J Chem Phys 113(21):9863–9873

    CAS  Google Scholar 

  • Langenhof M, Leong SSJ, Pattenden LK, Middelberg APJ (2005) Controlled oxidative protein refolding using an ion-exchange column. J Chromatogr A 1069(2):195–201

    CAS  PubMed  Google Scholar 

  • Leong SSJ, Chen WN (2008) Preparing recombinant single chain antibodies. Chem Eng Sci 63(6):1401–1414

    CAS  Google Scholar 

  • Leong SSJ, Middelberg APJ (2006) Dilution versus dialysis: a quantitative study of the oxidative refolding of recombinant human alpha-fetoprotein. Food Bioprod Process 84(1 C):9–17

    CAS  Google Scholar 

  • Leong SSJ, Middelberg APJ (2007) A simplified bioprocess for human alpha-fetoprotein production from inclusion bodies. Biotechnol Bioeng 97(1):99–117

    CAS  PubMed  Google Scholar 

  • Li X, Leong SSJ (2011) A chromatography-focused bioprocess that eliminates soluble aggregation for bioactive production of a new antimicrobial peptide candidate. J Chromatogr A 1218(23):3654–3659

    CAS  PubMed  Google Scholar 

  • Li M, Su ZG, Janson JC (2004) In vitro protein refolding by chromatographic procedures. Protein Expres Purif 33(1):1–10

    Google Scholar 

  • Lin L, Seehra J, Stahl ML (2006) High-throughput identification of refolding conditions for LXRβ without a functional assay. Protein Expres Purif 47(2):355–366

    CAS  Google Scholar 

  • Liu W, Bratko D, Prausnitz JM, Blanch HW (2004) Effect of alcohols on aqueous lysozyme–lysozyme interactions from static light-scattering measurements. Biophys Chem 107(3):289–298

    CAS  PubMed  Google Scholar 

  • Liu W, Cellmer T, Keerl D, Prausnitz JM, Blanch HW (2005) Interactions of lysozyme in guanidinium chloride solutions from static and dynamic light-scattering measurements. Biotechnol Bioeng 90(4):482–490

    CAS  PubMed  Google Scholar 

  • Liu X, Du Y, Guo Z, Gunasekaran S, Ching CB, Chen Y, Leong SSJ, Yang Y (2009) Monodispersed MCM-41 large particles by modified pseudomorphic transformation: direct diamine functionalization and application in protein bioseparation. Micropor Mesopor Mat 122(1–3):114–120

    CAS  Google Scholar 

  • Luo J, Leeman M, Ballagi A, Elfwing A, Su Z, Janson JC, Wahlund KG (2006) Size characterization of green fluorescent protein inclusion bodies in E. coli using asymmetrical flow field-flow fractionation-multi-angle light scattering. J Chromatogr A 1120(1–2):158–164

    CAS  PubMed  Google Scholar 

  • Malavasi NV, Foguel D, Bonafe CFS, Braga CACA, Chura-Chambi RM, Vieira JM, Morganti L (2011) Protein refolding at high pressure: optimization using eGFP as a model. Process Biochem 46(2):512–518

    CAS  Google Scholar 

  • Mansell TJ, Fisher AC, DeLisa MP (2008) Engineering the protein folding landscape in gram-negative bacteria. Curr Protein Pept Sci 9(2):138–149

    CAS  PubMed  Google Scholar 

  • Marin M (2008) Folding at the rhythm of the rare codon beat. Biotechnol J 3(8):1047–1057

    CAS  PubMed  Google Scholar 

  • Mark JK, Smith S, Hefford MA (2007) Over-expression and refolding of MAP kinase phosphatase 3. Protein Expres Purif 54(2):253–260

    CAS  Google Scholar 

  • Martin C, Lenhoff AM (2011) Self-interaction chromatography of proteins on a microfluidic monolith. Biochem Eng J 53(2):216–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Alonso M, García-Fruitós E, Ferrer-Miralles N, Rinas U, Villaverde A (2010) Side effects of chaperone gene co-expression in recombinant protein production. Microb Cell Fact 9:64

    PubMed  PubMed Central  Google Scholar 

  • Masip L, Pan JL, Haldar S, Penner-Hahn JE, DeLisa MP, Georgiou G, Bardwell JCA, Collet JF (2004) An engineered pathway for the formation of protein disulfide bonds. Science 303(5661):1185–1189

    CAS  PubMed  Google Scholar 

  • Meechai N, Jamieson AM, Blackwell J (1999) Translational diffusion coefficients of bovine serum albumin in aqueous solution at high ionic strength. J Colloid Interf Sci 218(1):167–175

    CAS  Google Scholar 

  • Middelberg APJ (2002) Preparative protein refolding. Trends Biotechnol 20(10):437–443

    CAS  PubMed  Google Scholar 

  • Mirarefi AY, Zukoski CF (2004) Gradient diffusion and protein solubility: use of dynamic light scattering to localize crystallization conditions. J Cryst Growth 265(1–2):274–283

    CAS  Google Scholar 

  • Muschol M, Rosenberger F (1995) Interactions in undersaturated and supersaturated lysozyme solutions: static and dynamic light scattering results. J Chem Phys 103(24):10424–10432

    CAS  Google Scholar 

  • Neal BL, Asthagiri D, Lenhoff AM (1998) Molecular origins of osmotic second virial coefficients of proteins. Biophys J 75(5):2469–2477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishihara K, Kanemori M, Kitagawa M, Yanagi H, Yura T (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl Environ Microb 64(5):1694–1699

    CAS  Google Scholar 

  • Pan X, Glatz CE (2003) Solvent effects on the second virial coefficient of subtilisin and solubility. Crystal Growth and Design 3(2):203–207

    CAS  Google Scholar 

  • Pazgier M, Lubkowski J (2006) Expression and purification of recombinant human α-defensins in Escherichia coli. Protein Expres Purif 49(1):1–8

    CAS  Google Scholar 

  • Phadtare S, Severinov K (2005) Extended-10 motif is critical for activity of the cspA promoter but does not contribute to low-temperature transcription. J Bacteriol 187(18):6584–6589

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pizarro SA, Dinges R, Adams R, Sanchez A, Winter C (2009) Biomanufacturing process analytical technology (PAT) application for downstream processing: using dissolved oxygen as an indicator of product quality for a protein refolding reaction. Biotechnol Bioeng 104(2):340–351

    CAS  PubMed  Google Scholar 

  • Prinsen P, Odijk T (2007) Collective diffusion coefficient of proteins with hydrodynamic, electrostatic, and adhesive interactions. J Chem Phys 127(11)

    PubMed  Google Scholar 

  • Purvis IJ, Bettany AJE, Santiago TC, Coggins JR, Duncan K, Eason R, Brown AJP (1987) The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. J Mol Biol 193(2):413–417

    CAS  PubMed  Google Scholar 

  • Qoronfleh MW, Hesterberg LK, Seefeldt MB (2007) Confronting high-throughput protein refolding using high pressure and solution screens. Protein Expres Purif 55(2):209–224

    CAS  Google Scholar 

  • Radford SE (2000) Protein folding: progress made and promises ahead. Trends Biochem Sci 25(12):611–618

    CAS  PubMed  Google Scholar 

  • Read EK, Park JT, Shah RB, Riley BS, Brorson KA, Rathore AS (2010) Process analytical technology (PAT) for biopharmaceutical products: part I. Concepts and applications. Biotechnol Bioeng 105(2):276–284

    CAS  PubMed  Google Scholar 

  • Roda B, Zattoni A, Reschiglian P, Moon MH, Mirasoli M, Michelini E, Roda A (2009) Field-flow fractionation in bioanalysis: a review of recent trends. Anal Chim Acta 635(2):132–143

    CAS  PubMed  Google Scholar 

  • Rosenbaum DF, Zukoski CF (1996) Protein interactions and crystallization. J Cryst Growth 169(4):752–758

    CAS  Google Scholar 

  • Rubin J, Miguel AS, Bommarius AS, Behrens SH (2010) Correlating aggregation kinetics and stationary diffusion in protein-sodium salt systems observed with dynamic light scattering. J Phys Chem B 114(12):4383–4387

    CAS  PubMed  Google Scholar 

  • Ruppert S, Sandler SI, Lenhoff AM (2001) Correlation between the osmotic second virial coefficient and the solubility of proteins. Biotechnol Prog 17(1):182–187

    CAS  PubMed  Google Scholar 

  • Scheich C, Niesen FH, Seckler R, Büssow K (2004) An automated in vitro protein folding screen applied to a human dynactin subunit. Protein Sci 13(2):370–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmoeger E, Wellhoefer M, Dürauer A, Jungbauer A, Hahn R (2010) Matrix-assisted refolding of autoprotease fusion proteins on an ion exchange column: a kinetic investigation. J Chromatogr A 1217(38):5950–5956. doi:https://doi.org/10.1016/j.chroma.2010.07.053

    CAS  PubMed  Google Scholar 

  • Seefeldt MB, Rosendahl MS, Cleland JL, Hesterberg LK (2009) Application of high hydrostatic pressure to dissociate aggregates and refold proteins. Curr Pharm Biotechnol 10(4):447–455

    CAS  PubMed  Google Scholar 

  • Shuler ML, Kargı F (2002) Bioprocess engineering: basic concepts. Prentice-Hall international series in the physical and Chem Eng Scis, 2nd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Stockmayer WH (1950) Light scattering in multi-component systems. J Chem Phys 18(1):58–61

    CAS  Google Scholar 

  • Tessier PM, Lenhoff AM (2003) Measurements of protein self-association as a guide to crystallization. Curr Opin Biotech 14(5):512–516

    CAS  PubMed  Google Scholar 

  • Trésaugues L, Collinet B, Minard P, Henckes G, Aufrère R, Blondeau K, Liger D, Zhou CZ, Janin J, Van Tilbeurgh H, Quevillon-Cheruel S (2004) Refolding strategies from inclusion bodies in a structural genomics project. J Struct Funct Genomics 5(3):195–204

    PubMed  Google Scholar 

  • Tsumoto K, Ejima D, Kumagai I, Arakawa T (2003) Practical considerations in refolding proteins from inclusion bodies. Protein Expres Purif 28(1):1–8

    CAS  Google Scholar 

  • Tsumoto K, Arakawa T, Chen L (2010) Step-wise refolding of recombinant proteins. Curr Pharm Biotechnol 11(3):285–288

    CAS  PubMed  Google Scholar 

  • Valente JJ, Payne RW, Manning MC, Wilson WW, Henry CS (2005) Colloidal behavior of proteins: effects of the second virial coefficient on solubility, crystallization and aggregation of proteins in aqueous solution. Curr Pharm Biotechnol 6(6):427–436

    CAS  PubMed  Google Scholar 

  • Vasina JA, Baneyx F (1997) Expression of aggregation-prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expres Purif 9(2):211–218

    CAS  Google Scholar 

  • Velev OD, Kaler EW, Lenhoff AM (1998) Protein interactions in solution characterized by light and neutron scattering: comparison of lysozyme and chymotrypsinogen. Biophys J75(6):2682–2697

    Google Scholar 

  • Vincentelli R, Canaan S, Campanacci V, Valencia C, Maurin D, Frassinetti F, Scappucini-Calvo L, Bourne Y, Cambillau C, Bignon C (2004) High-throughput automated refolding screening of inclusion bodies. Protein Sci 13(10):2782–2792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vonrhein C, Schmidt U, Ziegler GA, Schweiger S, Hanukoglu I, Schulz GE (1999) Chaperone-assisted expression of authentic bovine adrenodoxin reductase in Escherichia coli. FEBS Lett 443(2):167–169

    CAS  PubMed  Google Scholar 

  • Willis MS, Hogan JK, Prabhakar P, Liu X, Tsai K, Wei Y, Fox T (2005) Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions. Protein Sci 14 (7):1818–1826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Jin F, Yu X, Ji S, Wang J, Cheng H, Wang C, Zhang W (2007) Expression and purification of a recombinant antibacterial peptide, cecropin, from Escherichia coli. Protein Expres Purif 53(2):293–301

    CAS  Google Scholar 

  • Yadav S, Scherer TM, Shire SJ, Kalonia DS (2011) Use of dynamic light scattering to determine second virial coefficient in a semidilute concentration regime. Anal Biochem 411(2):292–296

    CAS  PubMed  Google Scholar 

  • Zhang SM, Fan R, Yang TY, Sun Y, Li JY, Xu QZ, Zhou PK (2009) An improved strategy for efficient expression and purification of soluble HIV-1 tat protein in E. coli. Virol Sin 24(6):518–528

    CAS  Google Scholar 

  • Zhou C, Qi X, Li P, Chen WN, Mouad L, Chang MW, Leong SSJ, Chan-Park MB (2010) High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-aminoacid-N-carboxyanhydrides. Biomacromolecules 11(1):60–67

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Anton P. Middelberg (University of Queensland) for evaluating the content of the paper and also providing valuable suggestions for its betterment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Su Jan Leong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, A., Li, X. & Leong, S.S.J. Refolding of proteins from inclusion bodies: rational design and recipes. Appl Microbiol Biotechnol 92, 241–251 (2011). https://doi.org/10.1007/s00253-011-3513-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3513-y

Keywords

Navigation