Skip to main content
Log in

Recent biotechnological advances and future prospective of Bacillus licheniformis as microbial cell factories

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Bacillus licheniformis is a characteristic Gram-positive bacterium originally found in soil. This microorganism has long been utilised as a workhorse for production of industrial enzymes or high value-added chemicals. With ever-increasing understanding on this strain and the maturation of the genetic technique, important advances have recently been made in developing B. licheniformis as an excellent chassis cell for synthetic biology. Here, we provide an overview of updated understanding on genome information, anaerobic metabolism, industrial applications of this strain. The state-of-art B. licheniformis genetics, especially its synthetic biology advances in biosensor, expression system and artificial metabolic pathways are illustrated. Finally, perspectives are offered for the limitations and challenges to be addressed to improve B. licheniformis as microbial cell factories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Xu Y, Li Y, Wu Z, Lu Y, Tao G, Zhang L, Ding Z, Shi G. Combining precursor-directed engineering with modular designing: an effective strategy for de novo biosynthesis of l-DOPA in Bacillus licheniformis. ACS Synth Biol. 2022;11(2):700–12. https://doi.org/10.1021/acssynbio.1c00411.

    Article  CAS  PubMed  Google Scholar 

  2. Wu Z, Li Y, Xu Y, Zhang Y, Tao G, Zhang L, Shi G. Transcriptome analysis of Bacillus licheniformis for improving bacitracin production. ACS Synth Biol. 2022. https://doi.org/10.1021/acssynbio.1c00593.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Voigt B, Antelmann H, Albrecht D, Ehrenreich A, Maurer KH, Evers S, Gottschalk G, van Dijl JM, Schweder T, Hecker M. Cell physiology and protein secretion of Bacillus licheniformis compared to Bacillus subtilis. J Mol Microbiol Biotechnol. 2009;16(1–2):53–68. https://doi.org/10.1159/000142894.

    Article  CAS  PubMed  Google Scholar 

  4. Lv X, Hueso-Gil A, Bi X, Wu Y, Liu Y, Liu L, Ledesma-Amaro R. New synthetic biology tools for metabolic control. Curr Opin Biotechnol. 2022;76:102724. https://doi.org/10.1016/j.copbio.2022.102724.

    Article  CAS  PubMed  Google Scholar 

  5. Muras A, Romero M, Mayer C, Otero A. Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol. 2021;41(4):609–27. https://doi.org/10.1080/07388551.2021.1873239.

    Article  CAS  PubMed  Google Scholar 

  6. Skerman VMVBD, Sneath PHA. Approved lists of bacterial names. Washington: The Ad Hoc Committee of the Judicial Commission of the ICSB; 1980.

    Book  Google Scholar 

  7. Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Leon AL, Xiang H, Gusti V, Clausen IG, Olsen PB, Rasmussen MD, Andersen JT, Jorgensen PL, Larsen TS, Sorokin A, Bolotin A, Lapidus A, Galleron N, Ehrlich SD, Berka RM. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 2004;5(10):r77. https://doi.org/10.1186/gb-2004-5-10-r77.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dindhoria K, Sanjeet K, Baliyan N, Raphel S, Halami PM, Kumar R. Bacillus licheniformis MCC 2514 genome sequencing and functional annotation for providing genetic evidence for probiotic gut adhesion properties and its applicability as a bio-preservative agent. Gene. 2022;840:146744. https://doi.org/10.1016/j.gene.2022.146744.

    Article  CAS  PubMed  Google Scholar 

  9. Rachinger M, Volland S, Meinhardt F, Daniel R, Liesegang H. First insights into the completely annotated genome sequence of Bacillus licheniformis strain 9945A. Genome Announc. 2013. https://doi.org/10.1128/genomeA.00525-13.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang F, Liu Y, Chen L, Li J, Wang L, Du G. Genome sequencing and flavor compound biosynthesis pathway analyses of Bacillus licheniformis isolated from Chinese Maotai-flavor liquor-brewing microbiome. Food Biotechnol. 2020;34(3):193–211. https://doi.org/10.1080/08905436.2020.1789474.

    Article  CAS  Google Scholar 

  11. Arora PK, Mishra R, Omar RA, Saroj RS, Srivastava A, Garg SK, Singh VP. Draft genome sequence data of a chromium reducing bacterium, Bacillus licheniformis strain KNP. Data Brief. 2021;34:106640. https://doi.org/10.1016/j.dib.2020.106640.

    Article  CAS  PubMed  Google Scholar 

  12. Borriss R. Bacillus, beneficial microbes in agro-ecology. Amsterdam: Elsevier; 2020. p. 107–32.

    Book  Google Scholar 

  13. Esmaeilishirazifard E, De Vizio D, Moschos SA, Keshavarz T. Genomic and molecular characterization of a novel quorum sensing molecule in Bacillus licheniformis. AMB Express. 2017;7(1):78. https://doi.org/10.1186/s13568-017-0381-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lee C, Kim JY, Song HS, Kim YB, Choi YE, Yoon C, Nam YD, Roh SW. Genomic analysis of Bacillus licheniformis CBA7126 isolated from a human fecal sample. Front Pharmacol. 2017;8:724. https://doi.org/10.3389/fphar.2017.00724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharma A, Satyanarayana T. Comparative genomics of Bacillus species and its relevance in industrial microbiology. Genomics Insights. 2013;6:25–36. https://doi.org/10.4137/GEI.S12732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dunlap CA, Kwon SW, Rooney AP, Kim SJ. Bacillus paralicheniformis sp. Nov., isolated from fermented soybean paste. Int J Syst Evol Microbiol. 2015;65(10):3487–92. https://doi.org/10.1099/ijsem.0.000441.

    Article  CAS  PubMed  Google Scholar 

  17. Olajide AM, Chen S, LaPointe G. Markers to rapidly distinguish Bacillus paralicheniformis from the very close relative, Bacillus licheniformis. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2020.596828.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Clements LD, Miller BS, Streips UN. Comparative growth analysis of the facultative anaerobes Bacillus subtilis, Bacillus licheniformis, and Escherichia coli. Syst Appl Microbiol. 2002;25(2):284–6. https://doi.org/10.1078/0723-2020-00108.

    Article  CAS  PubMed  Google Scholar 

  19. Maghnouj A, Abu-Bakr AA, Baumberg S, Stalon V, Vander Wauven C. Regulation of anaerobic arginine catabolism in Bacillus licheniformis by a protein of the Crp/Fnr family. FEMS Microbiol Lett. 2000;191(2):227–34. https://doi.org/10.1111/j.1574-6968.2000.tb09344.x.

    Article  CAS  PubMed  Google Scholar 

  20. Wohlkonig A, Stalon V, Vander Wauven C. Purification of ArcR, an oxidation-sensitive regulatory protein from Bacillus licheniformis. Protein Expr Purif. 2004;37(1):32–8. https://doi.org/10.1016/j.pep.2004.05.006.

    Article  CAS  PubMed  Google Scholar 

  21. Klinger A, Schirawski J, Glaser P, Unden G. The fnr gene of Bacillus licheniformis and the cysteine ligands of the C-terminal FeS cluster. J Bacteriol. 1998;180(13):3483–5. https://doi.org/10.1128/JB.180.13.3483-3485.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Veith B, Herzberg C, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Baumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol Microbiol Biotechnol. 2004;7(4):204–11. https://doi.org/10.1159/000079829.

    Article  CAS  PubMed  Google Scholar 

  23. Shariati P, Mitchell WJ, Boyd A, Priest FG. Anaerobic metabolism in Bacillus-licheniformis Ncib-6346. Microbiology-UK. 1995;141:1117–24. https://doi.org/10.1099/13500872-141-5-1117.

    Article  CAS  Google Scholar 

  24. Gudina EJ, Teixeira JA. Bacillus licheniformis: the unexplored alternative for the anaerobic production of lipopeptide biosurfactants? Biotechnol Adv. 2022;60:108013. https://doi.org/10.1016/j.biotechadv.2022.108013.

    Article  CAS  PubMed  Google Scholar 

  25. Stein T. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol. 2005;56(4):845–57. https://doi.org/10.1111/j.1365-2958.2005.04587.x.

    Article  CAS  PubMed  Google Scholar 

  26. Willenbacher MZJ, Mohr T, Schmidt F, Syldatk C, Hausmann R. Evaluation of different Bacillus strains in respect of their ability to produce surfactin in a model fermentation process with integrated foam fractionation. Appl Microbiol Biotechnol. 2014;98:9623–32. https://doi.org/10.1007/s00253-014-6010-2.

    Article  CAS  PubMed  Google Scholar 

  27. Harwood CR, Mouillon JM, Pohl S, Arnau J. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev. 2018;42(6):721–38. https://doi.org/10.1093/femsre/fuy028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang R, Wu Q, Xu Y. Lichenysin, a cyclooctapeptide occurring in Chinese liquor Jian Nan Chun reduced the headspace concentration of phenolic off-flavors via hydrogen-bond interactions. J Agric Food Chem. 2014;62(33):8302–7. https://doi.org/10.1021/jf502053g.

    Article  CAS  PubMed  Google Scholar 

  29. Coronel-Leon J, Marques AM, Bastida J, Manresa A. Optimizing the production of the biosurfactant lichenysin and its application in biofilm control. J Appl Microbiol. 2016;120(1):99–111. https://doi.org/10.1111/jam.12992.

    Article  CAS  PubMed  Google Scholar 

  30. Batrakov SG, Rodionova TA, Esipov SE, Polyakov NB, Sheichenko VI, Shekhovtsova NV, Lukin SM, Panikov NS, Nikolaev YA. A novel lipopeptide, an inhibitor of bacterial adhesion, from the thermophilic and halotolerant subsurface Bacillus licheniformis strain 603. BBA-Mol Cell Biol Lipids. 2003;1634(3):107–15. https://doi.org/10.1016/j.bbalip.2003.09.004.

    Article  CAS  Google Scholar 

  31. Joshi SYS, Desai AJ. Application of response-surface methodology to evaluate the optimum medium components for the enhanced production of lichenysin by Bacillus licheniformis R2. Biochem Eng J. 2008;41(2):122–7. https://doi.org/10.1016/j.bej.2008.04.005.

    Article  CAS  Google Scholar 

  32. Ali N, Wang F, Xu B, Safdar B, Ullah A, Naveed M, Wang C, Rashid MT. Production and application of biosurfactant produced by Bacillus Licheniformis Ali5 in enhanced oil recovery and motor oil removal from contaminated sand. Molecules. 2019;24(24):4448. https://doi.org/10.3390/molecules24244448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qiu Y, Xiao F, Wei X, Wen Z, Chen S. Improvement of lichenysin production in Bacillus licheniformis by replacement of native promoter of lichenysin biosynthesis operon and medium optimization. Appl Microbiol Biotechnol. 2014;98(21):8895–903. https://doi.org/10.1007/s00253-014-5978-y.

    Article  CAS  PubMed  Google Scholar 

  34. Lin KGLSC, Lo CC, Lin YM. Enhanced biosurfactant production by a Bacillus licheniformis mutant. Enzym Microb Technol. 1998;23:267–73. https://doi.org/10.1016/S0141-0229(98)00049-0.

    Article  CAS  Google Scholar 

  35. Zhu C, Xiao F, Qiu Y, Wang Q, He Z, Chen S. Lichenysin production is improved in codY null Bacillus licheniformis by addition of precursor amino acids. Appl Microbiol Biotechnol. 2017;101(16):6375–83. https://doi.org/10.1007/s00253-017-8352-z.

    Article  CAS  PubMed  Google Scholar 

  36. Sun F, Yu DZ, Zhou HY, Lin HK, Yan Z, Wu AB. CotA laccase from Bacillus licheniformis ZOM-1 effectively degrades zearalenone, aflatoxin B1 and alternariol. Food Control. 2022;145:109472. https://doi.org/10.1016/j.foodcont.2022.109472.

    Article  CAS  Google Scholar 

  37. Chen YH, Zhang RZ, Zhang WC, Xu Y. Alanine aminopeptidase from Bacillus licheniformis E7 expressed in Bacillus subtilis efficiently hydrolyzes soy protein to small peptides and free amino acids. LWT Food Sci Technol. 2022;165:113642. https://doi.org/10.1016/j.lwt.2022.113642.

    Article  CAS  Google Scholar 

  38. Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Can J Microbiol. 2004;50(1):1–17. https://doi.org/10.1139/W03-076.

    Article  CAS  PubMed  Google Scholar 

  39. Niu DD, Zuo ZR, Shi GY, Wang ZX. High yield recombinant thermostable alpha-amylase production using an improved Bacillus licheniformis system. Microb Cell Factories. 2009. https://doi.org/10.1186/1475-2859-8-58.

    Article  Google Scholar 

  40. Craynest M, Jorgensen S, Sarvas M, Kontinen VP. Enhanced secretion of heterologous cyclodextrin glycosyltransferase by a mutant of Bacillus licheniformis defective in the D-alanylation of teichoic acids. Lett Appl Microbiol. 2003;37(1):75–80. https://doi.org/10.1046/j.1472-765X.2003.01357.x.

    Article  CAS  PubMed  Google Scholar 

  41. Ruan YQ, Xu Y, Zhang WC, Zhang RZ. A new maltogenic amylase from Bacillus licheniformis R-53 significantly improves bread quality and extends shelf life. Food Chem. 2021;344:128599. https://doi.org/10.1016/j.foodchem.2020.128599.

    Article  CAS  PubMed  Google Scholar 

  42. Silva-Salinas A, Rodriguez-Delgado M, Gomez-Trevino J, Lopez-Chuken U, Olvera-Carranza C, Blanco-Gamez EA. Novel thermotolerant amylase from Bacillus licheniformis strain LB04: purification, characterization and agar-agarose. Microorganisms. 2021;9(9):1857. https://doi.org/10.3390/microorganisms9091857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fan Y, Wang J, Gao C, Zhang Y, Du W. A novel exopolysaccharide-producing and long-chain n-alkane degrading bacterium Bacillus licheniformis strain DM-1 with potential application for in-situ enhanced oil recovery. Sci Rep. 2020;10(1):8519. https://doi.org/10.1038/s41598-020-65432-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao Z. Purification and characterization of a novel lichenase from Bacillus licheniformis GZ-2. Biotechnol Appl Biochem. 2016;63(2):249–56. https://doi.org/10.1002/bab.1206.

    Article  CAS  PubMed  Google Scholar 

  45. Kim HW, Lee DC, Rhee HI. Production of alpha-glucosidase inhibitor in the intestines by Bacillus licheniformis. Enzyme Microb Technol. 2022;158:110032. https://doi.org/10.1016/j.enzmictec.2022.110032.

    Article  CAS  PubMed  Google Scholar 

  46. Meng W, Ma C, Xu P, Gao C. Biotechnological production of chiral acetoin. Trends Biotechnol. 2022;40(8):958–73. https://doi.org/10.1016/j.tibtech.2022.01.008.

    Article  CAS  PubMed  Google Scholar 

  47. Wu Y, Liu Y, Lv X, Li J, Du G, Liu L. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis. Biotechnol Bioeng. 2020;117(6):1817–25. https://doi.org/10.1002/bit.27322.

    Article  CAS  PubMed  Google Scholar 

  48. Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST. Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Crit Rev Biotechnol. 2017;37(8):990–1005. https://doi.org/10.1080/07388551.2017.1299680.

    Article  CAS  PubMed  Google Scholar 

  49. Liu YF, Zhang SL, Yong YC, Ji ZX, Ma X, Xu ZH, Chen SW. Efficient production of acetoin by the newly isolated Bacillus licheniformis strain MEL09. Process Biochem. 2011;46(1):390–4. https://doi.org/10.1016/j.procbio.2010.07.024.

    Article  CAS  Google Scholar 

  50. Li L, Wei XT, Yu WP, Wen ZY, Chen SW. Enhancement of acetoin production from Bacillus licheniformis by 2,3-butanediol conversion strategy: metabolic engineering and fermentation control. Process Biochem. 2017;57:35–42. https://doi.org/10.1016/j.procbio.2017.03.027.

    Article  CAS  Google Scholar 

  51. Zhang X, Zhang RZ, Bao T, Rao ZM, Yang TW, Xu MJ, Xu ZH, Li HZ, Yang ST. The rebalanced pathway significantly enhances acetoin production by disruption of acetoin reductase gene and moderate-expression of a new water-forming NADH oxidase in Bacillus subtilis. Metab Eng. 2014;23:34–41. https://doi.org/10.1016/j.ymben.2014.02.002.

    Article  CAS  PubMed  Google Scholar 

  52. Luo QL, Wu J, Wu MC. Enhanced acetoin production by Bacillus amyloliquefaciens through improved acetoin tolerance. Process Biochem. 2014;49(8):1223–30. https://doi.org/10.1016/j.procbio.2014.05.005.

    Article  CAS  Google Scholar 

  53. Yuan HL, Xu Y, Chen YZ, Zhan YY, Wei XT, Li L, Wang D, He PH, Li SQ, Chen SW. Metabolomics analysis reveals global acetoin stress response of Bacillus licheniformis. Metabolomics. 2019. https://doi.org/10.1007/s11306-019-1492-7.

    Article  PubMed  Google Scholar 

  54. Kim JW, Seo SO, Zhang GC, Jin YS, Seo JH. Expression of Lactococcus lactis NADH oxidase increases 2,3-butanediol production in Pdc-deficient Saccharomyces cerevisiae. Bioresour Technol. 2015;191:512–9. https://doi.org/10.1016/j.biortech.2015.02.077.

    Article  CAS  PubMed  Google Scholar 

  55. Kim S, Hahn JS. Synthetic scaffold based on a cohesin-dockerin interaction for improved production of 2,3-butanediol in Saccharomyces cerevisiae. J Biotechnol. 2014;192:192–6. https://doi.org/10.1016/j.jbiotec.2014.10.015.

    Article  CAS  PubMed  Google Scholar 

  56. Thanh TN, Jurgen B, Bauch M, Liebeke M, Lalk M, Ehrenreich A, Evers S, Maurer KH, Antelmann H, Ernst F, Homuth G, Hecker M, Schweder T. Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis. Appl Microbiol Biotechnol. 2010;87(6):2227–35. https://doi.org/10.1007/s00253-010-2681-5.

    Article  CAS  PubMed  Google Scholar 

  57. Kabisch J, Pratzka I, Meyer H, Albrecht D, Lalk M, Ehrenreich A, Schweder T. Metabolic engineering of Bacillus subtilis for growth on overflow metabolites. Microb Cell Fact. 2013;12:72. https://doi.org/10.1186/1475-2859-12-72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jiang M, Li Q, Hu S, He P, Chen Y, Cai D, Wu Y, Chen S. Enhanced aerobic denitrification performance with Bacillus licheniformis via secreting lipopeptide biosurfactant lichenysin. Chem Eng J. 2022;434:134686. https://doi.org/10.1016/j.cej.2022.134686.

    Article  CAS  Google Scholar 

  59. Yang Q, Yang T, Shi Y, Xin Y, Zhang L, Gu ZH, Li YR, Ding ZY, Shi GY. The nitrogen removal characterization of a cold-adapted bacterium: Bacillus simplex H-b. Bioresour Technol. 2021;323:124554. https://doi.org/10.1016/j.biortech.2020.124554.

    Article  CAS  PubMed  Google Scholar 

  60. Takenaka S, Zhou Q, Kuntiya A, Seesuriyachan P, Murakami S, Aoki K. Isolation and characterization of thermotolerant bacterium utilizing ammonium and nitrate ions under aerobic conditions. Biotechnol Lett. 2007;29(3):385–90. https://doi.org/10.1007/s10529-006-9255-8.

    Article  CAS  PubMed  Google Scholar 

  61. Liang Q, Zhang X, Lee KH, Wang Y, Yu K, Shen W, Fu L, Shu M, Li W. Nitrogen removal and water microbiota in grass carp culture following supplementation with Bacillus licheniformis BSK-4. World J Microbiol Biotechnol. 2015;31(11):1711–8. https://doi.org/10.1007/s11274-015-1921-3.

    Article  CAS  PubMed  Google Scholar 

  62. Vasconcellos SP, Cereda MP, Cagnon JR, Foglio MA, Rodrigues RA, Manfio GP, Oliveira VM. In vitro degradation of linamarin by microorganisms isolated from cassava wastewater treatment lagoons. Braz J Microbiol. 2009;40(4):879–83. https://doi.org/10.1590/S1517-838220090004000019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, Yu J, Ren X, Yi H, Cheng M, Zhang C. Biological technologies for the remediation of co-contaminated soil. Crit Rev Biotechnol. 2017;37(8):1062–76. https://doi.org/10.1080/07388551.2017.1304357.

    Article  CAS  PubMed  Google Scholar 

  64. Xu NN, Bao MT, Sun PY, Li YM. Study on bioadsorption and biodegradation of petroleum hydrocarbons by a microbial consortium. Bioresour Technol. 2013;149:22–30. https://doi.org/10.1016/j.biortech.2013.09.024.

    Article  CAS  PubMed  Google Scholar 

  65. Thion C, Cébron A, Beguiristain T, Leyval C. PAH biotransformation and sorption by Fusarium solani and Arthrobacter oxydans isolated from a polluted soil in axenic cultures and mixed co-cultures. Int Biodeterior Biodegrad. 2012;68:28–35. https://doi.org/10.1016/j.ibiod.2011.10.012.

    Article  CAS  Google Scholar 

  66. Deive FJ, Carvalho E, Pastrana L, Rua ML, Longo MA, Sanroman MA. Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresour Technol. 2009;100(14):3630–7. https://doi.org/10.1016/j.biortech.2009.02.053.

    Article  CAS  PubMed  Google Scholar 

  67. Jamil M, Zeb S, Anees M, Roohi A, Ahmed I, ur Rehman S, Rha ES. Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice. Int J Phytoremediat. 2014;16(6):554–71. https://doi.org/10.1080/15226514.2013.798621.

    Article  CAS  Google Scholar 

  68. Upadhyay KH, Vaishnav AM, Tipre DR, Patel BC, Dave SR. Kinetics and mechanisms of mercury biosorption by an exopolysaccharide producing marine isolate Bacillus licheniformis. 3 Biotech. 2017;7(5):313. https://doi.org/10.1007/s13205-017-0958-4.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Chris Felshia S, Aswin Karthick N, Thilagam R, Chandralekha A, Raghavarao K, Gnanamani A. Efficacy of free and encapsulated Bacillus lichenformis strain SL10 on degradation of phenol: a comparative study of degradation kinetics. J Environ Manag. 2017;197:373–83. https://doi.org/10.1016/j.jenvman.2017.04.005.

    Article  CAS  Google Scholar 

  70. Shi S, Xie Y, Wang G, Luo Y. Metabolite-based biosensors for natural product discovery and overproduction. Curr Opin Biotechnol. 2022;75:102699. https://doi.org/10.1016/j.copbio.2022.102699.

    Article  CAS  PubMed  Google Scholar 

  71. Teng Y, Zhang J, Jiang T, Zou Y, Gong X, Yan Y. Biosensor-enabled pathway optimization in metabolic engineering. Curr Opin Biotechnol. 2022;75:102696. https://doi.org/10.1016/j.copbio.2022.102696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Qin L, Liu X, Xu K, Li C. Mining and design of biosensors for engineering microbial cell factory. Curr Opin Biotechnol. 2022;75:102694. https://doi.org/10.1016/j.copbio.2022.102694.

    Article  CAS  PubMed  Google Scholar 

  73. Gao C, Hou J, Xu P, Guo L, Chen X, Hu G, Ye C, Edwards H, Chen J, Chen W, Liu L. Programmable biomolecular switches for rewiring flux in Escherichia coli. Nat Commun. 2019;10(1):3751. https://doi.org/10.1038/s41467-019-11793-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zou X, Cheng C, Feng J, Song X, Lin M, Yang ST. Biosynthesis of polymalic acid in fermentation: advances and prospects for industrial application. Crit Rev Biotechnol. 2019;39(3):408–21. https://doi.org/10.1080/07388551.2019.1571008.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Y, Li Y, Xiao F, Wang H, Zhang L, Ding Z, Xu S, Gu Z, Shi G. Engineering of a biosensor in response to Malate in Bacillus licheniformis. ACS Synth Biol. 2021;10(7):1775–84. https://doi.org/10.1021/acssynbio.1c00170.

    Article  CAS  PubMed  Google Scholar 

  76. Wu H, Liu S, Jiang J, Shen G, Yu R. A novel electrochemical biosensor for highly selective detection of protease biomarker from Bacillus licheniformis with D-amino acid containing peptide. Analyst. 2012;137(20):4829–33. https://doi.org/10.1039/c2an36066g.

    Article  CAS  PubMed  Google Scholar 

  77. Au HW, Tsang MW, So PK, Wong KY, Leung YC. Thermostable beta-lactamase mutant with its active site conjugated with fluorescein for efficient beta-lactam antibiotic detection. ACS Omega. 2019;4(24):20493–502. https://doi.org/10.1021/acsomega.9b02211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li Y, Jin K, Zhang L, Ding Z, Gu Z, Shi G. Development of an inducible secretory expression system in Bacillus licheniformis based on an engineered xylose operon. J Agric Food Chem. 2018;66(36):9456–64. https://doi.org/10.1021/acs.jafc.8b02857.

    Article  CAS  PubMed  Google Scholar 

  79. Yang MM, Zhang WW, Ji SY, Cao PH, Chen YL, Zhao X. Generation of an artificial double promoter for protein expression in Bacillus subtilis through a promoter trap system. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0056321.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shen P, Niu D, Permaul K, Tian K, Singh S, Wang Z. Exploitation of ammonia-inducible promoters for enzyme overexpression in Bacillus licheniformis. J Ind Microbiol Biotechnol. 2021. https://doi.org/10.1093/jimb/kuab037.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Trung NT, Hung NM, Thuan NH, Canh NX, Schweder T, Jurgen B. An auto-inducible phosphate-controlled expression system of Bacillus licheniformis. BMC Biotechnol. 2019;19(1):3. https://doi.org/10.1186/s12896-018-0490-6.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhan YY, Xu Y, Lu XC, Zhou F, Zheng PL, Wang D, Cai DB, Yang SH, Chen SW. Metabolic engineering of Bacillus licheniformis for sustainable production of isobutanol. Acs Sustain Chem Eng. 2021;9(51):17254–65. https://doi.org/10.1021/acssuschemeng.1c05511.

    Article  CAS  Google Scholar 

  83. Li YR, Ma XF, Zhang L, Ding ZY, Xu S, Gu ZH, Shi GY. Engineering of Bacillus promoters based on interacting motifs between UP elements and RNA polymerase (RNAP) alpha-subunit. Int J Mol Sci. 2022;23(21):13480. https://doi.org/10.3390/ijms232113480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xiao F, Li Y, Zhang Y, Wang H, Zhang L, Ding Z, Gu Z, Xu S, Shi G. A new CcpA binding site plays a bidirectional role in carbon catabolism in Bacillus licheniformis. Iscience. 2021;24(5):102400. https://doi.org/10.1016/j.isci.2021.102400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hertel R, Volland S, Liesegang H. Conjugative reporter system for the use in Bacillus licheniformis and closely related Bacilli. Lett Appl Microbiol. 2015;60(2):162–7. https://doi.org/10.1111/lam.12352.

    Article  CAS  PubMed  Google Scholar 

  86. Wang S, Wang H, Zhang D, Li X, Zhu J, Zhan Y, Cai D, Wang Q, Ma X, Wang D, Chen S. Multistep metabolic engineering of Bacillus licheniformis to improve pulcherriminic acid production. Appl Environ Microbiol. 2020;86:9. https://doi.org/10.1128/aem.03041-19.

    Article  CAS  Google Scholar 

  87. Zhan Y, Xu Y, Zheng P, He M, Sun S, Wang D, Cai D, Ma X, Chen S. Establishment and application of multiplexed CRISPR interference system in Bacillus licheniformis. Appl Microbiol Biotechnol. 2020;104(1):391–403. https://doi.org/10.1007/s00253-019-10230-5.

    Article  CAS  PubMed  Google Scholar 

  88. Qiu Y, Zhang J, Li L, Wen Z, Nomura CT, Wu S, Chen S. Engineering Bacillus licheniformis for the production of meso-2,3-butanediol. Biotechnol Biofuels. 2016;9:117. https://doi.org/10.1186/s13068-016-0522-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mo F, Cai D, He P, Yang F, Chen Y, Ma X, Chen S. Enhanced production of heterologous proteins via engineering the cell surface of Bacillus licheniformis. J Ind Microbiol Biotechnol. 2019;46(12):1745–55. https://doi.org/10.1007/s10295-019-02229-8.

    Article  CAS  PubMed  Google Scholar 

  90. Wang J, Zhu L, Li Y, Xu S, Jiang W, Liang C, Fang Y, Chu A, Zhang L, Ding Z, Shi G. Enhancing geranylgeraniol production by metabolic engineering and utilization of isoprenol as a substrate in Saccharomyces cerevisiae. J Agric Food Chem. 2021;69(15):4480–9. https://doi.org/10.1021/acs.jafc.1c00508.

    Article  CAS  PubMed  Google Scholar 

  91. Li Y, Wang H, Zhang L, Ding Z, Xu S, Gu Z, Shi G. Efficient genome editing in Bacillus licheniformis mediated by a conditional CRISPR/Cas9 system. Microorganisms. 2020;8(5):754. https://doi.org/10.3390/microorganisms8050754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li KF, Cai DB, Wang ZQ, He ZL, Chen SW. Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase. Appl Environ Microbiol. 2018. https://doi.org/10.1128/AEM.02608-17.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research & Development Program of China (2018YFA0900504, 2020YFA0907700, and 2018YFA0900300), the National Natural Foundation of China (31401674), the National First-Class Discipline Program of Light Industry Technology and Engineering (LITE2018-22), and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youran Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Zhang, Y., Shi, G. et al. Recent biotechnological advances and future prospective of Bacillus licheniformis as microbial cell factories. Syst Microbiol and Biomanuf 3, 521–532 (2023). https://doi.org/10.1007/s43393-023-00162-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-023-00162-7

Keywords

Navigation