Skip to main content
Log in

Enhanced production of heterologous proteins via engineering the cell surface of Bacillus licheniformis

  • Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Cell surface engineering was proven as the efficient strategy for enhanced production of target metabolites. In this study, we want to improve the yield of target protein by engineering cell surface in Bacillus licheniformis. First, our results confirmed that deletions of d-alanyl-lipoteichoic acid synthetase gene dltD, cardiolipin synthase gene clsA and CDP-diacylglycerol-serine O-phosphatidyltransferase gene pssA were not conducive to cell growth, and the biomass of gene deletion strains were, respectively, decreased by 10.54 ± 1.43%, 14.17 ± 1.51%, and 17.55 ± 1.28%, while the concentrations of total extracellular proteins were improved, due to the increases of cell surface net negative charge and cell membrane permeability. In addition, the activities of target proteins, nattokinase, and α-amylase were also improved significantly in gene deletion strains. Furthermore, the triplicate gene (dltD, clsA, and pssA) deletion strain was constructed, which further led to the 45.71 ± 2.43% increase of cell surface net negative charge and 26.45 ± 2.31% increase of cell membrane permeability, and the activities of nattokinase and α-amylase reached 37.15 ± 0.89 FU/mL and 305.3 ± 8.4 U/mL, increased by 46.09 ± 3.51% and 96.34 ± 7.24%, respectively. Taken together, our results confirmed that cell surface engineering via deleting dltD, clsA, and pssA is an efficient strategy for enhanced production of target proteins, and this research provided a promising host strain of B. licheniformis for efficient protein expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Birrer GA, Cromwick AM, Gross RA (1994) Gamma-poly(glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. Inter J Biol Macromol 16:265–275

    Article  CAS  Google Scholar 

  2. Cai D, Chen Y, He P, Wang S, Mo F, Li X, Wang Q, Nomura CT, Wen Z, Ma X, Chen S (2018) Enhanced production of poly-gamma-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Biotechnol Bioeng 115:2541–2553

    Article  CAS  PubMed  Google Scholar 

  3. Cai D, He P, Lu X, Zhu C, Zhu J, Zhan Y, Wang Q, Wen Z, Chen S (2017) A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02. Sci Rep 7:43404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cai D, Rao Y, Zhan Y, Wang Q, Chen S (2019) Engineering Bacillus for efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol 126:1632–1642

    Article  CAS  PubMed  Google Scholar 

  5. Cai D, Wang H, He P, Zhu C, Wang Q, Wei X, Nomura CT, Chen S (2017) A novel strategy to improve protein secretion via overexpression of the SppA signal peptide peptidase in Bacillus licheniformis. Microb Cell Fact 16:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cai D, Wei X, Qiu Y, Chen Y, Chen J, Wen Z, Chen S (2016) High-level expression of nattokinase in Bacillus licheniformis by manipulating signal peptide and signal peptidase. J Appl Microbiol 121:704–712

    Article  CAS  PubMed  Google Scholar 

  7. Cai D, Zhu J, Zhu S, Lu Y, Zhang B, Lu K, Li J, Ma X, Chen S (2019) Metabolic engineering of main transcription factors in carbon, nitrogen, and phosphorus metabolisms for enhanced production of bacitracin in Bacillus licheniformis. ACS Synth Biol 8:866–875

    Article  CAS  PubMed  Google Scholar 

  8. Cao H, van Heel AJ, Ahmed H, Mols M, Kuipers OP (2017) Cell surface engineering of Bacillus subtilis improves production yields of heterologously expressed alpha-amylases. Microb Cell Fact 16:56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chen J, Fu G, Gai Y, Zheng P, Zhang D, Wen J (2015) Combinatorial Sec pathway analysis for improved heterologous protein secretion in Bacillus subtilis: identification of bottlenecks by systematic gene overexpression. Microb Cell Fact 14:92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L (2018) DCEO biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals. Chem Rev 118:4–72

    Article  CAS  PubMed  Google Scholar 

  11. Chen Y, Cai D, He P, Mo F, Zhang Q, Ma X, Chen S (2018) Enhanced production of heterologous proteins by Bacillus licheniformis with defective d-alanylation of lipoteichoic acid. World J Microbiol Biotechnol 34:135

    Article  PubMed  CAS  Google Scholar 

  12. Craynest M, Jorgensen S, Sarvas M, Kontinen VP (2003) Enhanced secretion of heterologous cyclodextrin glycosyltransferase by a mutant of Bacillus licheniformis defective in the d-alanylation of teichoic acids. Lett Appl Microbiol 37:75–80

    Article  CAS  PubMed  Google Scholar 

  13. Cui W, Han L, Suo F, Liu Z, Zhou L, Zhou Z (2018) Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol 34:145

    Article  PubMed  CAS  Google Scholar 

  14. Degering C, Eggert T, Puls M, Bongaerts J, Evers S, Maurer KH, Jaeger KE (2010) Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides. Appl Environ Microbiol 76:6370–6376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harwood CR, Cranenburgh R (2008) Bacillus protein secretion: an unfolding story. Trends Microbiol 16:73–79

    Article  CAS  PubMed  Google Scholar 

  16. He P, Wan N, Cai D, Hu S, Chen Y, Li S, Chen S (2019) (13)C-metabolic flux analysis reveals the metabolic flux redistribution for enhanced production of poly-gamma-glutamic acid in dlt over-expressed Bacillus licheniformis. Front Microbiol 10:105

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hoshida H, Kondo M, Kobayashi T, Yarimizu T, Akada R (2017) 5-UTR introns enhance protein expression in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 101:241–251

    Article  CAS  PubMed  Google Scholar 

  18. Hyyrylainen HL, Pietiainen M, Lunden T, Ekman A, Gardemeister M, Murtomaki-Repo S, Antelmann H, Hecker M, Valmu L, Sarvas M, Kontinen VP (2007) The density of negative charge in the cell wall influences two-component signal transduction in Bacillus subtilis. Microbiology 153:2126–2136

    Article  CAS  PubMed  Google Scholar 

  19. Hyyrylainen HL, Vitikainen M, Thwaite J, Wu H, Sarvas M, Harwood CR, Kontinen VP, Stephenson K (2000) d-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane/cell wall interface of Bacillus subtilis. J Biol Chem 275:26696–26703

    Article  CAS  PubMed  Google Scholar 

  20. Kang Z, Yang S, Du G, Chen J (2014) Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. J Ind Microbiol Biotechnol 41:1599–1607

    Article  CAS  PubMed  Google Scholar 

  21. Kasahara J, Kiriyama Y, Miyashita M, Kondo T, Yamada T, Yazawa K, Yoshikawa R, Yamamoto H (2016) Teichoic acid polymers affect expression and localization of dl-endopeptidase LytE required for lateral cell wall hydrolysis in Bacillus subtilis. J Bacteriol 198:1585–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K (2004) Cardiolipin domains in Bacillus subtilis marburg membranes. J Bacteriol 186:1475–1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kiriukhin MY, Neuhaus FC (2001) d-alanylation of lipoteichoic acid: role of the d-alanyl carrier protein in acylation. J Bacteriol 183:2051–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kovacs M, Halfmann A, Fedtke I, Heintz M, Peschel A, Vollmer W, Hakenbeck R, Bruckner R (2006) A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188:5797–5805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lennen RM, Pfleger BF (2013) Modulating membrane composition alters free fatty acid tolerance in Escherichia coli. PLoS One 8:e54031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma RJ, Wang YH, Liu L, Bai LL, Ban R (2018) Production enhancement of the extracellular lipase LipA in Bacillus subtilis: effects of expression system and Sec pathway components. Protein Expr Purif 142:81–87

    Article  CAS  PubMed  Google Scholar 

  27. Neef J, Bongiorni C, Goosens VJ, Schmidt B, van Dijl JM (2017) Intramembrane protease RasP boosts protein production in Bacillus. Microb Cell Fact 16:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Song Y, Fu G, Dong H, Li J, Du Y, Zhang D (2017) High-efficiency secretion of beta-mannanase in Bacillus subtilis through protein synthesis and secretion optimization. J Agric Food Chem 65:2540–2548

    Article  CAS  PubMed  Google Scholar 

  29. Su L, Jiang Q, Yu L, Wu J (2017) Enhanced extracellular production of recombinant proteins in Escherichia coli by co-expression with Bacillus cereus phospholipase C. Microb Cell Fact 16:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Su L, Woodard RW, Chen J, Wu J (2013) Extracellular location of Thermobifida fusca cutinase expressed in Escherichia coli BL21(DE3) without mediation of a signal peptide. Appl Environ Microbiol 79:4192–4198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan Z, Khakbaz P, Chen Y, Lombardo J, Yoon JM, Shanks JV, Klauda JB, Jarboe LR (2017) Engineering Escherichia coli membrane phospholipid head distribution improves tolerance and production of biorenewables. Metab Eng 44:1–12

    Article  CAS  PubMed  Google Scholar 

  32. Ueda M (2016) Establishment of cell surface engineering and its development. Biosci Biotechnol Biochem 80:1243–1253

    Article  CAS  PubMed  Google Scholar 

  33. Vitikainen M, Hyyrylainen HL, Kivimaki A, Kontinen VP, Sarvas M (2005) Secretion of heterologous proteins in Bacillus subtilis can be improved by engineering cell components affecting post-translocational protein folding and degradation. J Appl Microbiol 99:363–375

    Article  CAS  PubMed  Google Scholar 

  34. Vitikainen M, Lappalainen I, Seppala R, Antelmann H, Boer H, Taira S, Savilahti H, Hecker M, Vihinen M, Sarvas M, Kontinen VP (2004) Structure-function analysis of PrsA reveals roles for the parvulin-like and flanking N- and C-terminal domains in protein folding and secretion in Bacillus subtilis. J Biol Chem 279:19302–19314

    Article  CAS  PubMed  Google Scholar 

  35. Wang H, Wang Y, Yang R (2017) Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future. Appl Microbiol Biotechnol 101:933–949

    Article  CAS  PubMed  Google Scholar 

  36. Wecke J, Perego M, Fischer W (1996) d-alanine deprivation of Bacillus subtilis teichoic acids is without effect on cell growth and morphology but affects the autolytic activity. Microb Drug Resist 2:123–129

    Article  CAS  PubMed  Google Scholar 

  37. Wei X, Zhou Y, Chen J, Cai D, Wang D, Qi G, Chen S (2015) Efficient expression of nattokinase in Bacillus licheniformis: host strain construction and signal peptide optimization. J Ind Microbiol Biotechnol 42:287–295

    Article  CAS  PubMed  Google Scholar 

  38. Westbrook AW, Ren X, Moo-Young M, Chou CP (2018) Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Biotechnol Bioeng 115:216–231

    Article  CAS  PubMed  Google Scholar 

  39. Yang H, Lu X, Hu J, Chen Y, Shen W, Liu L (2018) Boosting secretion of extracellular protein by Escherichia coli via cell wall perturbation. Appl Environ Microbiol 84:e01382

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang S, Du G, Chen J, Kang Z (2017) Characterization and application of endogenous phase-dependent promoters in Bacillus subtilis. Appl Microbiol Biotechnol 101:4151–4161

    Article  CAS  PubMed  Google Scholar 

  41. Zhan Y, Sheng B, Wang H, Shi J, Cai D, Yi L, Yang S, Wen Z, Ma X, Chen S (2018) Rewiring glycerol metabolism for enhanced production of poly-gamma-glutamic acid in Bacillus licheniformis. Biotechnol Biofuels 11:306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou S, Ding R, Chen J, Du G, Li H, Zhou J (2017) Obtaining a panel of cascade promoter-5′-UTR complexes in Escherichia coli. ACS Synth Biol 6:1065–1075

    Article  CAS  PubMed  Google Scholar 

  43. Zhu S, Cai D, Liu Z, Zhang B, Li J, Chen S, Ma X (2019) Enhancement of bacitracin production by NADPH generation via overexpressing glucose-6-phosphate dehydrogenase Zwf in Bacillus licheniformis. Appl Biochem Biotechnol 187:1502–1514

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Key Research and Development Program of China (2018YFA0900303, 2015CB150505), the Technical Innovation Special Fund of Hubei Province (No. 2018ACA149), China Postdoctoral Science Foundation (2018M642802), and the Science and Technology Project of Hubei Tobacco Company (027Y2019-018).

Author information

Authors and Affiliations

Authors

Contributions

XM and SC designed and supervised the study. FM, DC, PH, FY, and YC performed the experiments. FM, DC, PH, XM, and SC analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xin Ma or Shouwen Chen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, F., Cai, D., He, P. et al. Enhanced production of heterologous proteins via engineering the cell surface of Bacillus licheniformis. J Ind Microbiol Biotechnol 46, 1745–1755 (2019). https://doi.org/10.1007/s10295-019-02229-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02229-8

Keywords

Navigation