Skip to main content
Log in

Fabrication Techniques and Sensing Mechanisms of Textile-Based Strain Sensors: From Spatial 1D and 2D Perspectives

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The intelligent textile sensors based on fiber (1D) and fabric (2D) are the ideal candidates for wearable devices. Their flexible weaving and unique structure endow them with flexibility, lightweight, good air permeability, and feasible integration with garments. In view of the spring-up of novel textile-based strain sensors, the novel materials and fabrication approaches were elaborated from spatial perspectives, i.e., 1D fibers/yarn and 2D fabric. The intrinsic sensing mechanism is the primary factor affecting sensor sensitivity, and the variation trend of the sensing signal is closely related to it. Although existing studies have involved various sensing mechanisms, there is still lacking systematic classification and discussion. Hence, the sensing mechanisms of textile-based sensors were elaborated from spatial perspectives. Considering that strain sensors were mostly based on resistance variation, the sensing mechanisms of resistive textile-based strain sensors were mainly focused, mainly including fiber deformation, tunneling effect, crack propagation, fabric deformation, electrical contact and bridge connection. Meanwhile, the corresponding resistance prediction models, usually used as important data fitting methodology, were also comprehensively discussed, which can reproduce the resistance trend and provide guidance for the sensor performance. Finally, the multifunctionality of textile-based strain sensors was summarized, namely multi-mode signal detection, visual interaction, energy collection, thermal management and medical treatment were discussed. It was expected to provide research insights into the multifunctional integration of textile sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

reproduced with permission from Ref. [62], Copyright 2020, American Chemical Society

Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

Data availability is not applicable to this review because no new data were created or analyzed in this work.

References

  1. Nguyen T, Dinh T, Phan HP, Pham TA, Dau VT, Nguyen NT, Dao DV. Advances in ultrasensitive piezoresistive sensors: from conventional to flexible and stretchable applications. Mater Horiz. 2021;8:2123.

    Article  CAS  PubMed  Google Scholar 

  2. Gao JY, Shang KZ, Ding YC, Wen ZH. Material and configuration design strategies towards flexible and wearable power supply devices: a review. J Mater Chem A. 2021;9:8950.

    Article  CAS  Google Scholar 

  3. Yang Y, Wang HM, Zhang S, Wei Y, He XM, Wang JL, Zhang YY, Ji Y. Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli. Matter. 2021;4:3354.

    Article  CAS  Google Scholar 

  4. Sun HX, Tian W, Cao FR, Xiong J, Li L. Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector. Adv Mater. 2018;30:7.

    Article  Google Scholar 

  5. Lu YY, Xu KC, Zhang LS, Deguchi M, Shishido H, Arie T, Pan RH, Hayashi A, Shen L, Akita S, Takei K. Multimodal plant healthcare flexible sensor system. ACS Nano. 2020;14:10966.

    Article  CAS  PubMed  Google Scholar 

  6. Harada S, Kanao K, Yamamoto Y, Arie T, Akita S, Takei K. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS Nano. 2014;8:12851.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu D, Zhang ZY, Chen M, Li P, Xiang YZ, Ouyang JY, Huang ZH, Liu XJ, Wang FH, Yang MP, Zeng HT, Hong P, Wei L, Hou C, Tao GM. A perspective on rhythmic gymnastics performance analysis powered by intelligent fabric. Adv Fiber Mater. 2023;5:1.

    Article  Google Scholar 

  8. Chen M, Li P, Wang R, Xiang YZ, Huang ZH, Yu Q, He MY, Liu J, Wang JX, Su MY, Zhang MN, Jian AJ, Ouyang JY, Zhang CX, Li J, Dong MX, Zeng SN, Wu JW, Hong P, Hou C, Zhou N, Zhang DY, Zhou HM, Tao GM. Multifunctional fiber-enabled intelligent health agents. Adv Mater. 2022;34:2200985.

    Article  CAS  Google Scholar 

  9. Chen M, Liu J, Li P, Gharavi H, Hao YX, Ouyang JY, Hu JY, Hu L, Hou C, Humar I, Wei L, Yang GZ, Tao GM. Fabric computing: concepts, opportunities, and challenges. The Innovation. 2022;3:100340.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen M, Jiang YY, Guizani N, Zhou J, Tao GM, Yin J, Hwang K. Living with I-fabric: smart living powered by intelligent fabric and deep analytics. IEEE Network. 2020;34:156.

    Article  Google Scholar 

  11. Liang XP, Fan AR, Li Z, Wei N, Fan W, Liang HR, Wang HM, Bi P, Li S, Wu XE, Lu HJ, Hao Q, Zhang X, Zhang YY. Highly regulatable heat conductance of graphene–sericin hybrid for responsive textiles. Adv Funct Mater. 2022;32:2111121.

    Article  CAS  Google Scholar 

  12. Wang HM, Zhang Y, Liang XP, Zhang YY. Smart fibers and textiles for personal health management. ACS Nano. 2021;15:12497.

    Article  CAS  PubMed  Google Scholar 

  13. Fan ZY, Ho JC, Jacobson ZA, Yerushalmi R, Alley RL, Razavi H, Javey A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 2008;8:20.

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Kim DH, Kim YS, Amsden J, Panilaitis B, Kaplan DL, Omenetto FG, Zakin MR, Rogers JA. Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl Phys Lett. 2009;95:269902.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  15. Chatterjee K, Tabor J, Ghosh TK. Electrically conductive coatings for fiber-based e-textiles. Fibers. 2019;7:51.

    Article  CAS  Google Scholar 

  16. Zhu C, Wu JW, Yan JH, Liu XQ. Advanced fiber materials for wearable electronics. Adv Fiber Mater. 2023;5:12.

    Article  Google Scholar 

  17. Chen CR, Feng JY, Li JX, Guo Y, Shi X, Peng HS. Functional fiber materials to smart fiber devices. Chem Rev. 2023;123:613.

    Article  CAS  PubMed  Google Scholar 

  18. He XY, Zhang XD, Zhang HH, Li CZ, Luo QL, Li XX, Wang LM, Qin XH. Facile fabrication of stretchable and multifunctional thermoelectric composite fabrics with strain-enhanced self-powered sensing performance. Compos Commun. 2022;35:101275.

    Article  Google Scholar 

  19. Chen M, Ouyang JY, Jian AJ, Liu J, Li P, Hao YX, Gong YC, Hu J, Zhou J, Wang R, Wang JX, Hu L, Wang YW, Ouyang J, Zhang J, Hou C, Wei L, Zhou HM, Zhang DY, Tao GM. Imperceptible, designable, and scalable braided electronic cord. Nat Commun. 2022;13:7097.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Li P, Sun ZH, Wang R, Gong YC, Zhou YT, Wang YW, Liu XJ, Zhou XJ, Ouyang J, Chen MZ, Hou C, Chen M, Tao GM. Flexible thermochromic fabrics enabling dynamic colored display. Front Optoelectron. 2022;15:40.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lian YL, Yu H, Wang MY, Yang XN, Li Z, Yang F, Wang Y, Tai HL, Liao YL, Wu JY, Wang XR, Jiang YD, Tao GM. A multifunctional wearable e-textile via integrated nanowire-coated fabrics. J Mater Chem C. 2020;8:8399.

    Article  CAS  Google Scholar 

  22. Lu WD, Yu P, Jian MQ, Wang HM, Wang HM, Liang XP, Zhang YY. Molybdenum disulfide nanosheets aligned vertically on carbonized silk fabric as smart textile for wearable pressure-sensing and energy devices. ACS Appl Mater Interfaces. 2020;12:11825.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Q, Jian MQ, Wang CY, Zhang YY. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater. 2017;27:1605657.

    Article  Google Scholar 

  24. Wang JF, Huang S, Lu X, Xu ZG, Zhao Y, Li JL, Wang XG. Wet-spinning of highly conductive nanocellulose-silver fibers. J Mater Chem C. 2017;5:9673.

    Article  CAS  ADS  Google Scholar 

  25. Niu HT, Zhou H, Wang HX, Lin T. Polypyrrole-coated PDMS fibrous membrane: flexible strain sensor with distinctive resistance responses at different strain ranges. Macromol Mater Eng. 2016;301:707.

    Article  CAS  Google Scholar 

  26. Gao Y, Guo FY, Cao P, Liu JC, Li DM, Wu J, Wang N, Su YW, Zhao Y. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor. ACS Nano. 2020;14:3442.

    Article  CAS  PubMed  Google Scholar 

  27. Shi X, Zuo Y, Zhai P, Shen JH, Yang YW, Gao Z, Liao M, Wu JX, Wang JW, Xu XJ, Tong Q, Zhang B, Wang BJ, Sun XM, Zhang LH, Pei QB, Jin DY, Chen PN, Peng HS. Large-area display textiles integrated with functional systems. Nature. 2021;591:240.

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Zhou XF, Xu XJ, Zuo Y, Liao M, Shi X, Chen CR, Xie SL, Zhou P, Sun XM, Peng HS. A fiber-shaped light-emitting pressure sensor for visualized dynamic monitoring. J Mater Chem C. 2020;8:935.

    Article  CAS  Google Scholar 

  29. Lee T, Lee W, Kim SW, Kim JJ, Kim BS. Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv Funct Mater. 2016;26:6206.

    Article  CAS  Google Scholar 

  30. Chen XY, Cao HH, He Y, Zhou QL, Li ZC, Wang W, He Y, Tao GM, Hou C. Advanced functional nanofibers: strategies to improve performance and expand functions. Front Optoelectron. 2022;15:50.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yan W, Dong CQ, Xiang YZ, Jiang S, Leber A, Loke G, Xu WX, Hou C, Zhou SF, Chen M, Hu R, Shum PP, Wei L, Jia XT, Sorin F, Tao XM, Tao GM. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today. 2020;35:168.

    Article  CAS  Google Scholar 

  32. Wang CY, Li X, Gao EL, Jian MQ, Xia KL, Wang Q, Xu ZP, Ren TL, Zhang YY. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater. 2016;28:6640.

    Article  CAS  PubMed  Google Scholar 

  33. Liu ZF, Fang S, Moura FA, Ding JN, Jiang N, Di J, Zhang M, Lepro X, Galvao DS, Haines CS, Yuan NY, Yin SG, Lee DW, Wang R, Wang HY, Lv W, Dong C, Zhang RC, Chen MJ, Yin Q, Chong YT, Zhang R, Wang X, Lima MD, Ovalle-Robles R, Qian D, Lu H, Baughman RH. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science. 2015;349:400.

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Liu XH, Miao JL, Fan Q, Zhang WX, Zuo XW, Tian MW, Zhu SF, Zhang XJ, Qu LJ. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications. Adv Fiber Mater. 2022;4:361.

    Article  CAS  Google Scholar 

  35. Zhang Y, Zhang YF, Zhou JH, Zhang DS, Lin H, Chen YY, Li Y, Xiong JQ. Stretchable composite conductive fibers for wearables. Adv Mater Technol. 2022. https://doi.org/10.1002/admt.202201442.

    Article  PubMed  Google Scholar 

  36. Zhang YJ, Li XY, Kim J, Tong YX, Thompson EG, Jiang S, Feng ZA, Yu L, Wang JH, Ha DS, Sontheimer H, Johnson BN, Jia XT. Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation sensing. Adv Opt Mater. 2021;9:2001815.

    Article  CAS  Google Scholar 

  37. Wu XD, Han YY, Zhang XX, Lu CH. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive layer@polyurethane yarn for tiny motion monitoring. ACS Appl Mater Interfaces. 2016;8:9936.

    Article  CAS  PubMed  Google Scholar 

  38. Sun T, Jiang YD, Duan ZH, Yuan Z, Wang Y, Tai HL. Wearable and washable textile-based strain sensors via a single-step, environment-friendly method. Sci China Technol Sci. 2021;64:441.

    Article  ADS  Google Scholar 

  39. Wang HM, Wang HM, Zhang SC, Zhang Y, Xia KL, Yin Z, Zhang MC, Liang XP, Lu HJ, Li S, Zhang J, Zhang YY. Carbothermal shock enabled facile and fast growth of carbon nanotubes in a second. Nano Res. 2022;15:2576.

    Article  CAS  ADS  Google Scholar 

  40. Tian B, Fang YH, Liang J, Zheng K, Guo PW, Zhang XY, Wu YF, Liu Q, Huang ZD, Cao CY, Wu W. Fully printed stretchable and multifunctional e-textiles for aesthetic wearable electronic systems. Small. 2022;18:2107298.

    Article  CAS  Google Scholar 

  41. He M, Du WN, Feng YM, Li SJ, Wang W, Zhang X, Yu AF, Wan LY, Zhai JY. Flexible and stretchable triboelectric nanogenerator fabric for biomechanical energy harvesting and self-powered dual-mode human motion monitoring. Nano Energy. 2021;86:106058.

    Article  CAS  Google Scholar 

  42. Bashmal S, Siddiqui M, Arif AFM. Experimental and numerical investigations on the mechanical characteristics of carbon fiber sensors. Sensors. 2017;17:2026.

    Google Scholar 

  43. Yue XY, Jia YY, Wang XZ, Zhou KK, Zhai W, Zheng GQ, Dai K, Mi LW, Liu CT, Shen C. Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring. Compos Sci Technol. 2020;189:108038.

    Article  CAS  Google Scholar 

  44. Qu XY, Wu YC, Ji P, Wang BX, Liang QQ, Han ZL, Li J, Wu ZT, Chen SY, Zhang GL, Wang HP. Crack-based core-sheath fiber strain sensors with an ultralow detection limit and an ultrawide working range. ACS Appl Mater Interfaces. 2022;14:29167.

    Article  CAS  PubMed  Google Scholar 

  45. Liang XP, Zhu MJ, Li HF, Dou JX, Jian MQ, Xia KL, Li S, Zhang YY. Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables. Adv Funct Mater. 2022;32:2200162.

    Article  CAS  Google Scholar 

  46. Li JY, Li S, Su YW. Stretchable strain sensors based on deterministic-contact-resistance braided structures with high performance and capability of continuous production. Adv Funct Mater. 2022;32:2208216.

    Article  CAS  Google Scholar 

  47. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol. 2011;6:296.

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Yang WF, Gong W, Gu W, Liu ZX, Hou CY, Li YG, Zhang QH, Wang HZ. Self-powered interactive fiber electronics with visual-digital synergies. Adv Mater. 2021;33:2104681.

    Article  CAS  Google Scholar 

  49. Ning C, Cheng RW, Jiang Y, Sheng FF, Yi J, Shen S, Zhang YH, Peng X, Dong K, Wang ZL. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano. 2022;16:2811.

    Article  CAS  PubMed  Google Scholar 

  50. Song C, Zhang XY, Wang LY, Wen F, Xu KG, Xiong WR, Li CK, Li BY, Wang Q, Xing MMQ, Qiu XZ. An injectable conductive three-dimensional elastic network by tangled surgical-suture spring for heart repair. ACS Nano. 2019;13:14122.

    Article  CAS  PubMed  Google Scholar 

  51. Kim K, Jung M, Jeon S, Bae J. Robust and scalable three-dimensional spacer textile pressure sensor for human motion detection. Smart Mater Struct. 2019;28:065019.

    Article  CAS  ADS  Google Scholar 

  52. Biermaier C, Bechtold T, Pham T. Towards the functional ageing of electrically conductive and sensing textiles: a review. Sensors. 2021;21:5944.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Zhang Y, Wang HM, Lu HJ, Li S, Zhang YY. Electronic fibers and textiles: recent progress and perspective. iScience. 2021;24:102716.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  54. Li XH, Chen S, Peng Y, Zheng Z, Li J, Zhong F. Materials, preparation strategies, and wearable sensor applications of conductive fibers: a review. Sensors. 2022;22:3028.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Cai QW, Wang JF, Chen WL. Structures and electrical properties of weft-knitted flexible sensors. J Text Res. 2016;37:48.

    Google Scholar 

  56. Zhang L, Jiang FL, Wang LL, Feng YK, Yu DY, Yang T, Wu MH, Petru M. High performance flexible strain sensors based on silver nanowires/thermoplastic polyurethane composites for wearable devices. Appl Compos Mater. 2022;29:1621.

    Article  CAS  ADS  Google Scholar 

  57. Pei ZG, Zhang Y, Chen G. A core-spun yarn containing a metal wire manufactured by a modified vortex spinning system. Text Res J. 2019;89:113.

    Article  CAS  Google Scholar 

  58. Fobelets K. Knitted coils as breathing sensors. Sens Actuators A. 2020;306:111945.

    Article  CAS  Google Scholar 

  59. Zheng LJ, Zhu MM, Wu BH, Li ZL, Sun ST, Wu PY. Conductance-stable liquid metal sheath-core microfibers for stretchy smart fabrics and self-powered sensing. Sci Adv. 2021;7:eabg4041.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Yang TT, Li XM, Jiang X, Lin SY, Lao JC, Shi JD, Zhen Z, Li ZH, Zhu HW. Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing. Mater Horiz. 2016;3:248.

    Article  CAS  Google Scholar 

  61. Wang XL, Liu J. Recent advancements in liquid metal flexible printed electronics: properties, technologies, and applications. Micromachines. 2016;7:206.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen GZ, Wang HM, Guo R, Duan MH, Zhang YY, Liu J. Superelastic EGaIn composite fibers sustaining 500% tensile strain with superior electrical conductivity for wearable electronics. ACS Appl Mater Interfaces. 2020;12:6112.

    Article  CAS  PubMed  Google Scholar 

  63. Dong CQ, Leber A, Das Gupta T, Chandran R, Volpi M, Qu YP, Nguyen-Dang T, Bartolomei N, Yan W, Sorin F. High-efficiency super-elastic liquid metal based triboelectric fibers and textiles. Nat Commun. 2020;11:3537.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  64. Tan SR, Wang JS, Jin WH, Zhang Q, Zhao Z, Li DQ, Cheng DS, Bi SG, Ran JH, Cai GM, Wang X. Multifunctional flexible conductive filament for human motion detection and electrothermal. Compos Commun. 2023;37:101446.

    Article  Google Scholar 

  65. Li T, Wang X, Jiang S, Ding X, Li Q. Study on electromechanical property of polypyrrole-coated strain sensors based on polyurethane and its hybrid covered yarns. Sens Actuators A. 2020;306:111958.

    Article  Google Scholar 

  66. Yuan DM, Li B, Cheng JL, Guan Q, Wang ZP, Ni W, Li C, Liu H, Wang B. Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT:PSS fibers from aqueous coagulation. J Mater Chem A. 2016;4:11616.

    Article  CAS  Google Scholar 

  67. Gustafsson G, Lundström I, Liedberg B, Wu CR, Inganäs O, Wennerström O. The interaction between ammonia and poly(pyrrole). Synth Met. 1989;31:163.

    Article  CAS  Google Scholar 

  68. She CK, Li GS, Zhang WQ, Xie GX, Zhang Y, Li L, Yue FY, Liu SH, Jing CB, Cheng Y, Chu JH. A flexible polypyrrole/silk-fiber ammonia sensor assisted by silica nanosphere template. Sens Actuators A. 2021;317:112436.

    Article  CAS  Google Scholar 

  69. Fu CY, Xia ZG, Hurren C, Nilghaz A, Wang XG. Textiles in soft robots: current progress and future trends. Biosens Bioelectron. 2022;196:113690.

    Article  CAS  PubMed  Google Scholar 

  70. Wu YT, Yan T, Pan ZJ. Wearable carbon-based resistive sensors for strain detection: a review. IEEE Sens J. 2021;21:4030.

    Article  CAS  ADS  Google Scholar 

  71. Ren QB, Wang JP, Yang L, Li X, Wang XC. Research progress of conductive polymer composites for resistive flexible strain sensors. Mater Rev. 2020;34:1080.

    Google Scholar 

  72. Ryu S, Lee P, Chou JB, Xu RZ, Zhao R, Hart AJ, Kim SG. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano. 2015;9:5929.

    Article  CAS  PubMed  Google Scholar 

  73. Lu DX, Liao SQ, Chu Y, Cai YB, Wei QF, Chen KL, Wang QQ. Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions. Adv Fiber Mater. 2023;5:223.

    Article  CAS  Google Scholar 

  74. Bae SH, Lee Y, Sharma BK, Lee HJ, Kim JH, Ahn JH. Graphene-based transparent strain sensor. Carbon. 2013;51:236.

    Article  CAS  Google Scholar 

  75. Zhu SE, Ghatkesar MK, Zhang C, Janssen G. Graphene based piezoresistive pressure sensor. Appl Phys Lett. 2013;102:161904.

    Article  ADS  Google Scholar 

  76. Liang JJ, Zhao ZB, Tang YC, Liang ZH, Sun LL, Pan X, Wang XZ, Qiu JS. A wearable strain sensor based on carbon derived from linen fabrics. New Carbon Mater. 2020;35:522.

    Article  CAS  Google Scholar 

  77. Zhang MC, Wang CY, Wang HM, Jian MQ, Hao XY, Zhang YY. Carbonized cotton fabric for high-performance wearable strain sensors. Adv Funct Mater. 2017;27:1604795.

    Article  Google Scholar 

  78. Dsouza R, Antunes P, Kakkonen M, Tanhuanpaa O, Laurikainen P, Javanshour F, Kallio P, Kanerva M. Microscale sensor solution for data collection from fibre-matrix interfaces. Sci Rep. 2021;11:8346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cho SY, Yun YS, Lee S, Jang D, Park KY, Kim JK, Kim BH, Kang K, Kaplan DL, Jin HJ. Carbonization of a stable beta-sheet-rich silk protein into a pseudographitic pyroprotein. Nat Commun. 2015;6:7145.

    Article  PubMed  ADS  Google Scholar 

  80. Wang CY, Xia KL, Jian MQ, Wang HM, Zhang MC, Zhang YY. Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. J Mater Chem C. 2017;5:7604.

    Article  CAS  Google Scholar 

  81. Eom J, Jaisutti R, Lee H, Lee W, Heo JS, Lee JY, Park SK, Kim YH. Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl Mater Interfaces. 2017;9:10190.

    Article  CAS  PubMed  Google Scholar 

  82. Ma YL, Ouyang JY, Raza T, Li P, Jian AJ, Li ZQ, Liu H, Chen M, Zhang XJ, Qu LJ, Tian MW, Tao GM. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo. Nano Energy. 2021;85:105941.

    Article  CAS  Google Scholar 

  83. Zhang MC, Zhao MY, Jian MQ, Wang CY, Yu AF, Yin Z, Liang XP, Wang HM, Xia KL, Liang X, Zhai JY, Zhang YY. Printable smart pattern for multifunctional energy-management e-textile. Matter. 2019;1:168.

    Article  Google Scholar 

  84. Wu SH, Liu PH, Zhang Y, Zhang HN, Qin XH. Flexible and conductive nanofiber-structured single yarn sensor for smart wearable devices. Sens Actuators B. 2017;252:697.

    Article  CAS  Google Scholar 

  85. Liu X, Liu D, Lee JH, Zheng QB, Du XH, Zhang XY, Xu HR, Wang ZY, Wu Y, Shen X, Cui J, Ma YW, Kim JK. Spider-web-inspired stretchable graphene woven fabric for highly sensitive, transparent, wearable strain sensors. ACS Appl Mater Interfaces. 2019;11:2282.

    Article  CAS  PubMed  Google Scholar 

  86. Seyedin S, Zhang P, Naebe M, Qin S, Chen J, Wang XA, Razal JM. Textile strain sensors: a review of the fabrication technologies, performance evaluation and applications. Mater Horiz. 2019;6:219.

    Article  CAS  Google Scholar 

  87. Ma SY, Wang Z, Zhu YG, Tang YS, Fan GF, Ma BH, Ye T, Wei L. Micro/nanofiber fabrication technologies for wearable sensors: a review. J Micromech Microeng. 2022;32:064002.

    Article  Google Scholar 

  88. Xie XX, Huang H, Zhu J, Yu JR, Wang Y, Hu ZM. A spirally layered carbon nanotube-graphene/polyurethane composite yarn for highly sensitive and stretchable strain sensor. Composites A. 2020;135:105932.

    Article  CAS  Google Scholar 

  89. Zhang MC, Wang CY, Wang Q, Jian MQ, Zhang YY. Sheath–core graphite/silk fiber made by dry-meyer-rod-coating for wearable strain sensors. ACS Appl Mater Interfaces. 2016;8:20894.

    Article  CAS  PubMed  Google Scholar 

  90. Clevenger M, Kim H, Song HW, No K, Lee S. Binder-free printed PEDOT wearable sensors on everyday fabrics using oxidative chemical vapor deposition. Sci Adv. 2021;7:eabj8958.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. He CL, Sun ST, Wu PY. Intrinsically stretchable sheath-core ionic sensory fibers with well-regulated conformal and reprogrammable buckling. Mater Horiz. 2021;8:2088.

    Article  CAS  PubMed  Google Scholar 

  92. Gong JY, Tang WY, Xia LJ, Fu Z, Zhou SJ, Zhang JJ, Zhang CH, Li L, Ji H, Xu WL. Flexible and weavable 3D porous graphene/PPy/lignocellulose-based versatile fibrous wearables for thermal management and strain sensing. Chem Eng J. 2023;452:139338.

    Article  CAS  Google Scholar 

  93. Alagirusamy R, Das A. Textiles and fashion: materials, design and technology. New Delhi: Indian Institute of Technology Delhi; 2015.

    Google Scholar 

  94. Lee S, Shin S, Lee S, Seo J, Lee J, Son S, Cho HJ, Algadi H, Al-Sayari S, Kim DE, Lee T. Ag nanowire reinforced highly stretchable conductive fibers for wearable electronics. Adv Funct Mater. 2015;25:3114.

    Article  CAS  Google Scholar 

  95. Shuai LYZ, Guo ZH, Zhang PP, Wan JM, Pu X, Wang ZL. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy. 2020;78:105389.

    Article  CAS  Google Scholar 

  96. Yan W, Page A, Nguyen-Dang T, Qu YP, Sordo F, Wei L, Sorin F. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv Mater. 2019;31:1802348.

    Article  Google Scholar 

  97. Souri H, Banerjee H, Jusufi A, Radacsi N, Stokes AA, Park I, Sitti M, Amjadi M. Wearable and stretchable strain sensors: materials, sensing mechanisms, and applications. Adv Intell Syst. 2020;2:2000039.

    Article  Google Scholar 

  98. Leber A, Cholst B, Sandt J, Vogel N, Kolle M. Stretchable thermoplastic elastomer optical fibers for sensing of extreme deformations. Adv Funct Mater. 2019;29:1802629.

    Article  Google Scholar 

  99. Yu A, Pu X, Wen R, Liu M, Zhou T, Zhang K, Zhang Y, Zhai J, Hu W, Wang ZL. Core–shell-yarn-based triboelectric nanogenerator textiles as power cloths. ACS Nano. 2017;11:12764.

    Article  CAS  PubMed  Google Scholar 

  100. Dong SS, Xu F, Sheng YL, Guo ZH, Pu X, Liu YP. Seamlessly knitted stretchable comfortable textile triboelectric nanogenerators for e-textile power sources. Nano Energy. 2020;78:105327.

    Article  CAS  Google Scholar 

  101. Chang Q, Darabi MA, Liu YQ, He YF, Zhong W, Mequanin K, Li BY, Lu F, Xing MMQ. Hydrogels from natural egg white with extraordinary stretchability, direct-writing 3D printability and self-healing for fabrication of electronic sensors and actuators. J Mater Chem A. 2019;7:24626.

    Article  CAS  Google Scholar 

  102. Choi H, Sun J, Ren B, Cha S, Lee J, Lee BM, Park JJ, Choi JH, Park JJ. 3D textile structure-induced local strain for a highly amplified piezoresistive performance of carbonized cellulose fabric based pressure sensor for human healthcare monitoring. Chem Eng J. 2022;450:138193.

    Article  CAS  Google Scholar 

  103. Ye XR, Shi BH, Li M, Fan Q, Qi XJ, Liu XH, Zhao SK, Jiang L, Zhang XJ, Fu K, Qu LJ, Tian MW. All-textile sensors for boxing punch force and velocity detection. Nano Energy. 2022;97:107114.

    Article  CAS  Google Scholar 

  104. Ahn S, Cho Y, Park S, Kim J, Sun J, Ahn D, Lee M, Kim D, Kim T, Shin H, Park JJ. Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals. Nano Energy. 2020;74:104932.

    Article  CAS  Google Scholar 

  105. Wu R, Liu S, Lin Z, Zhu S, Ma L, Wang ZL. Industrial fabrication of 3D braided stretchable hierarchical interlocked fancy-yarn triboelectric nanogenerator for self-powered smart fitness system. Adv Energy Mater. 2022;12:2201288.

    Article  CAS  Google Scholar 

  106. Viry L, Levi A, Totaro M, Mondini A, Mattoli V, Mazzolai B, Beccai L. Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv Mater. 2014;26:2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li QS, Ding C, Yuan W, Xie RJ, Zhou XM, Zhao Y, Yu M, Yang ZJ, Sun J, Tian Q, Han F, Li HF, Deng XP, Li GL, Liu ZY. Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv Fiber Mater. 2021;3:302.

    Article  CAS  Google Scholar 

  108. Xiao G, He J, Qiao Y, Wang F, Xia QY, Wang X, Yu L, Lu ZS, Li CM. Facile and low-cost fabrication of a thread/paper-based wearable system for simultaneous detection of lactate and pH in human sweat. Adv Fiber Mater. 2020;2:265.

    Article  CAS  Google Scholar 

  109. Paul G, Torah R, Beeby S, Tudor J. The development of screen printed conductive networks on textiles for biopotential monitoring applications. Sens Actuators A. 2014;206:35.

    Article  CAS  Google Scholar 

  110. Yang K, Torah R, Wei Y, Beeby S, Tudor J. Waterproof and durable screen printed silver conductive tracks on textiles. Text Res J. 2013;83:2023.

    Google Scholar 

  111. Cochrane C, Koncar V, Lewandowski M, Dufour C. Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors. 2007;7:473.

    Article  CAS  PubMed Central  ADS  Google Scholar 

  112. Wang JL, Lu CH, Zhang K. Textile-based strain sensor for human motion detection. Energy Environ Mater. 2020;3:80.

    Article  Google Scholar 

  113. Yang QS, Liu N, Yin JJ, Tian H, Yang Y, Ren TL. Understanding the origin of tensile response in a graphene textile strain sensor with negative differential resistance. ACS Nano. 2022;16:14230.

    Article  CAS  PubMed  Google Scholar 

  114. Zhao RL, He Y, He Y, Li ZC, Chen M, Zhou N, Tao GM, Hou C. Dual-mode fiber strain sensor based on mechanochromic photonic crystal and transparent conductive elastomer for human motion detection. ACS Appl Mater Interfaces. 2023;15:16063.

    Article  CAS  PubMed  Google Scholar 

  115. Ma SQ, Wang XY, Li P, Yao N, Xiao JL, Liu HT, Zhang Z, Yu LT, Tao GM, Li X, Tong LM, Zhang L. Optical micro/nano fibers enabled smart textiles for human–machine interface. Adv Fiber Mater. 2022;4:1108.

    Article  Google Scholar 

  116. Shirley JA, Sundarsingh E, Sreeja BS, Shankararajan R. Performance analysis of wearable pressure sensor based on structural properties of zinc oxide nanostructures grown on fabric. IEEE Trans Nanotechnol. 2021;20:837.

    Article  ADS  Google Scholar 

  117. Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater. 2020;32:1902549.

    Article  CAS  Google Scholar 

  118. Xu F, Jin X, Lan C, Guo ZH, Zhou R, Sun H, Shao Y, Meng J, Liu Y, Pu X. 3D arch-structured and machine-knitted triboelectric fabrics as self-powered strain sensors of smart textiles. Nano Energy. 2023;109:108312.

    Article  CAS  Google Scholar 

  119. Kim YN, Lee J, Kang SK. Ultrasensitive crack-based strain sensors: mechanism, performance, and biomedical applications. J Mech Sci Technol. 2022;36:1059.

    Article  Google Scholar 

  120. Wang X, Li Q, Tao XM. Sensing mechanism of a carbon nanocomposite-printed fabric as a strain sensor. Composites A. 2021;144:106350.

    Article  CAS  Google Scholar 

  121. Lin SH, Cao LT, Lv ZC, Ren J, Ling SJ. Quantitative evaluation of pseudo strain signals caused by yarn structural deformation. Adv Fiber Mater. 2022;4:214.

    Article  CAS  Google Scholar 

  122. Kim KH, Hong SK, Ha SH, Li L, Lee HW, Kim JM. Enhancement of linearity range of stretchable ultrasensitive metal crack strain sensorviasuperaligned carbon nanotube-based strain engineering. Mater Horiz. 2020;7:2662.

    Article  CAS  Google Scholar 

  123. Han F, Su R, Teng LJ, Xie RJ, Yu QY, Li QS, Tian Q, Li HF, Sun J, Zhang Y, Li M, Liu X, Ye HY, Li GL, Zhang GQ, Liu ZY. Brittle-layer-tuned microcrack propagation for high-performance stretchable strain sensors. J Mater Chem C. 2021;9:7319.

    Article  CAS  Google Scholar 

  124. Liu ZK, Li ZH, Zhai H, Jin L, Chen KL, Yi YP, Gao Y, Xu LL, Zheng Y, Yao SR, Liu ZC, Li G, Song QW, Yue PF, Xie SQ, Li Y, Zheng ZJ. A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration monitoring and identification. Chem Eng J. 2021;426:130869.

    Article  CAS  Google Scholar 

  125. Li WY, Zhou YF, Wang YH, Jiang L, Ma JW, Chen SJ, Zhou FL. Core–sheath fiber-based wearable strain sensor with high stretchability and sensitivity for detecting human motion. Adv Electron Mater. 2021;7:2000865.

    Article  CAS  Google Scholar 

  126. Wang XJ, Fu XL, Chung DDL. Strain sensing using carbon fiber. J Mater Res. 1999;14:790.

    Article  CAS  ADS  Google Scholar 

  127. Yu YF, Zhai Y, Yun ZG, Zhai W, Wang XZ, Zheng GQ, Yan C, Dai K, Liu CT, Shen CY. Ultra-stretchable porous fiber-shaped strain sensor with exponential response in full sensing range and excellent anti-interference ability toward buckling, torsion, temperature, and humidity. Adv Electron Mater. 2019;5:1900538.

    Article  CAS  Google Scholar 

  128. Eom J, Lee YR, Lee JH, Park SK, Jeong Y, Park JS, Kim YH. Highly conductive and stretchable fiber interconnections using dry-spun carbon nanotube fibers modified with ionic liquid/poly(vinylidene fluoride) copolymer composite. Compos Sci Technol. 2019;169:1.

    Article  CAS  Google Scholar 

  129. Lux F. Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. J Mater Sci. 1993;28:285.

    Article  ADS  Google Scholar 

  130. Park J, Lee Y, Hong J, Ha M, Jung YD, Lim H, Kim SY, Ko H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano. 2014;8:4689.

    Article  CAS  PubMed  Google Scholar 

  131. Zhang XW, Pan Y, Zheng Q, Yi XS. Time dependence of piezoresistance for the conductor-filled polymer composites. J Polym Sci B Polym Phys. 2000;38:2739.

    Article  CAS  ADS  Google Scholar 

  132. Albrecht T. Electrochemical tunnelling sensors and their potential applications. Nat Commun. 2012;3:829.

    Article  CAS  PubMed  ADS  Google Scholar 

  133. Celzard A, Mareche JF, Payot F, Furdin G. Electrical conductivity of carbonaceous powders. Carbon. 2002;40:2801.

    Article  CAS  Google Scholar 

  134. Shevchenko VG, Ponomarenko AT, Klason C. Strain sensitive polymer composite material. Smart Mater Struct. 1995;4:31.

    Article  CAS  ADS  Google Scholar 

  135. Zhao J, Wang GL, Yang R, Lu XB, Cheng M, He CL, Xie GB, Meng JL, Shi DX, Zhang GY. Tunable piezoresistivity of nanographene films for strain sensing. ACS Nano. 2015;9:1622.

    Article  CAS  PubMed  Google Scholar 

  136. Zhang CC, Chen DB, Niu SC, Zhang JQ, Meng XC, Liu LP, Sun T, Wen SF, Zhou Y, Shi YS, Han ZW, Ren LQ. High-aspect-ratio deflection transducers inspired by the ultra-sensitive cantilever configuration of scorpion trichobothria. J Mater Chem C. 2020;8:6093.

    Article  CAS  Google Scholar 

  137. Barth FG. Spider mechanoreceptors. Curr Opin Neurobiol. 2004;14:415.

    Article  CAS  PubMed  Google Scholar 

  138. Kwon Y, Park C, Kim J, Kim H, Park C, Lee B, Jeong Y, Cho SJ. Effects of bending strain and crack direction on crack-based strain sensors. Smart Mater Struct. 2020;29:115007.

    Article  CAS  ADS  Google Scholar 

  139. Han ZW, Liu LP, Zhang JQ, Han QG, Wang KJ, Song HL, Wang Z, Jiao ZB, Niu SC, Ren LQ. High-performance flexible strain sensor with bio-inspired crack arrays. Nanoscale. 2018;10:15178.

    Article  CAS  PubMed  Google Scholar 

  140. Wang JP, Xue P, Tao XM. Strain sensing behavior of electrically conductive fibers under large deformation. Mater Sci Eng A Struct. 2011;528:2863.

    Article  Google Scholar 

  141. Wang JP, Xue P, Tao XM, Yu TX. Strain sensing behavior and its mechanisms of electrically conductive PPy-coated fabric. Adv Eng Mater. 2014;16:565.

    Article  CAS  Google Scholar 

  142. Holm R. Electric contact: theory and application. New York: Springer-Verlag; 1967.

    Book  Google Scholar 

  143. Li S, Liu GD, Li R, Li QL, Zhao Y, Huang MQ, Zhang MY, Yin SZ, Zhou YX, Tang H, Wang LW, Fang GH, Su YW. Contact-resistance-free stretchable strain sensors with high repeatability and linearity. ACS Nano. 2022;16:541.

    Article  CAS  PubMed  Google Scholar 

  144. Abouraddy AF, Bayindir M, Benoit G, Hart SD, Kuriki K, Orf N, Shapira O, Sorin F, Temelkuran B, Fink Y. Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nat Mater. 2007;6:336.

    Article  CAS  PubMed  ADS  Google Scholar 

  145. Zhou YX, Lin YT, Huang SM, Chen GT, Chen SW, Wu HS, Ni IC, Pan WP, Tsai ML, Wu CI, Yang PK. Tungsten disulfide nanosheets for piezoelectric nanogenerator and human-machine interface applications. Nano Energy. 2022;97:107172.

    Article  CAS  Google Scholar 

  146. Guo TH, Shang BF, Duan B, Luo XB. Design and testing of a liquid cooled garment for hot environments. J Therm Biol. 2015;49:47.

    Article  PubMed  Google Scholar 

  147. Xu DW, Ouyang ZF, Dong YJ, Yu HY, Zheng S, Li SH, Tam KC. Robust, breathable and flexible smart textiles as multifunctional sensor and heater for personal health management. Adv Fiber Mater. 2023;5:282.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the major project of the National Natural Science Foundation of China (52090033/52090030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qilin Wu or Malcolm Xing.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhang, W., He, J. et al. Fabrication Techniques and Sensing Mechanisms of Textile-Based Strain Sensors: From Spatial 1D and 2D Perspectives. Adv. Fiber Mater. 6, 36–67 (2024). https://doi.org/10.1007/s42765-023-00338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00338-9

Keywords

Navigation