Skip to main content
Log in

Recent Progress on Smart Fiber and Textile Based Wearable Strain Sensors: Materials, Fabrications and Applications

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

A Correction to this article was published on 29 March 2022

This article has been updated

Abstract

With the rapid development of smart products, flexible and stretchable smart wearable electronic devices gradually play an important role, and they are considered as the pioneers of the new generation of flexible electronic devices. Among these intelligent devices, flexible and stretchable strain sensors have been widely studied for their good flexibility, high sensitivity, high repeatability and huge potential for application in personal healthcare and motion detection. Moreover, unlike traditional rigid bulky sensors, the high-performance flexible strain sensors are lightweight portable devices with excellent mechanical and electrical performance, which can meet personalized needs and become more popular. Herein, the research progress of flexible strain sensors in recent years are reviewed, which mainly introducing the sensing principles and key parameters of strain sensors, commonly used conductive materials and flexible substrates and common preparation methods, and finally proposes the future application and prospects of strain sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Iqbal SMA, Mahgoub I, Du E, Leavitt MA, Asghar W. Advances in healthcare wearable devices. npj Flex Electron 2021;5:1–4.

    Article  Google Scholar 

  2. Lyu Q, Gong S, Yin J, Dyson JM, Cheng W. Soft Wearable Healthcare Materials and Devices. Adv Healthc Mater. 2021;10:e2100577.

    Article  CAS  Google Scholar 

  3. Wang Y, Chao M, Wan P, Zhang L. A wearable breathable pressure sensor from metal-organic framework derived nanocomposites for highly sensitive broad-range healthcare monitoring. Nano Energy 2020;70:104560.

    Article  CAS  Google Scholar 

  4. Li R-Q, Zheng D-W, Han Z-Y, Xie T-Q, Zhang C, An J-X, Xu R, Sun Y-X, Zhang X-Z. mHealth: a smartphone-controlled, wearable platform for tumour treatment. Mater Today 2020;40:91.

    Article  CAS  Google Scholar 

  5. Liu T, Zhu C, Wu W, Liao K-N, Gong X, Sun Q, Li RKY. Facilely prepared layer-by-layer graphene membrane-based pressure sensor with high sensitivity and stability for smart wearable devices. J Mater Sci Technol 2020;45:241.

    Article  Google Scholar 

  6. Hu N, Lin L, Tan J, Wang W, Lei L, Fan H, Wang J, Muller-Buschbaum P, Zhong Q. Wearable bracelet monitoring the solar ultraviolet radiation for skin health based on hybrid IPN hydrogels. ACS Appl Mater Interfaces 2020;12:56480.

    Article  CAS  Google Scholar 

  7. Yuan J, Zhu R. A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator. Appl Energy 2020;271:115250.

    Article  Google Scholar 

  8. Zou Y, Xu J, Fang Y, Zhao X, Zhou Y, Chen J. A hand-driven portable triboelectric nanogenerator using whirligig spinning dynamics. Nano Energy 2021;83:105845.

    Article  CAS  Google Scholar 

  9. Nguyen DC, Cheng P, Ding M, Lopez-Perez D, Pathirana PN, Li J, Seneviratne A, Li Y, Poor HV. Enabling AI in future wireless networks: a data life cycle perspective. IEEE Commun Surv Tutor 2021;23:553.

    Article  Google Scholar 

  10. Qiu H, Zheng Q, Zhang T, Qiu M, Memmi G, Lu J. toward secure and efficient deep learning inference in dependable IoT systems. IEEE Internet Things J 2021;8:3180.

    Article  Google Scholar 

  11. Peng X, Dong K, Ning C, Cheng R, Yi J, Zhang Y, Sheng F, Wu Z, Wang ZL. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv Funct Mater 2021;31:2103559.

    Article  CAS  Google Scholar 

  12. Lou M, Abdalla I, Zhu M, Wei X, Yu J, Li Z, Ding B. Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring. ACS Appl Mater Interfaces 2020;12:19965.

    Article  CAS  Google Scholar 

  13. Kwak SS, Yoo S, Avila R, Chung HU, Jeong H, Liu C, Vogl JL, Kim J, Yoon HJ, Park Y, Ryu H, Lee G, Kim J, Koo J, Oh YS, Kim S, Xu S, Zhao Z, Xie Z, Huang Y, Rogers JA. Skin-integrated devices with soft, holey architectures for wireless physiological monitoring, with applications in the neonatal intensive care unit. Adv Mater. 2021:e2103974.

  14. Tang N, Zhou C, Qu D, Fang Y, Zheng Y, Hu W, Jin K, Wu W, Duan X, Haick H. A highly aligned nanowire-based strain sensor for ultrasensitive monitoring of subtle human motion. Small 2020;16:e2001363.

    Article  CAS  Google Scholar 

  15. Huang J, Zhou J, Luo Y, Yan G, Liu Y, Shen Y, Xu Y, Li H, Yan L, Zhang G, Fu Y, Duan H. Wrinkle-enabled highly stretchable strain sensors for wide-range health monitoring with a big data cloud platform. ACS Appl Mater Interfaces 2020;12:43009.

    Article  CAS  Google Scholar 

  16. Chu Z, Jiao W, Huang Y, Zheng Y, Wang R, He X. Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring. J Mater Chem A 2021;9:9634.

    Article  CAS  Google Scholar 

  17. Hang C-Z, Zhao X-F, Xi S-Y, Shang Y-H, Yuan K-P, Yang F, Wang Q-G, Wang J-C, Zhang DW, Lu H-L. Highly stretchable and self-healing strain sensors for motion detection in wireless human-machine interface. Nano Energy 2020;76:105064.

    Article  CAS  Google Scholar 

  18. Yang X, Liu J, Fan D, Cao J, Huang X, Zheng Z, Zhang X. Scalable manufacturing of real-time self-healing strain sensors based on brominated natural rubber. Chem Eng J 2020;389:124448.

    Article  CAS  Google Scholar 

  19. Kim JH, Cho KG, Cho DH, Hong K, Lee KH. Ultra-sensitive and stretchable ionic skins for high-precision motion monitoring. Adv Funct Mater 2021;31:2010199.

    Article  CAS  Google Scholar 

  20. Guo L, Han S-T, Zhou Y. Electromechanical coupling effects for data storage and synaptic devices. Nano Energy 2020;77:105156.

    Article  CAS  Google Scholar 

  21. Nguyen T, Dinh T, Dau VT, Md Foisal AR, Guzman P, Nguyen H, Pham TA, Nguyen TK, Phan HP, Nguyen NT, Dao DV. Piezoresistive effect with a gauge factor of 18000 in a semiconductor heterojunction modulated by bonded light-emitting diodes. ACS Appl Mater Interfaces 2021;13:35046.

    Article  CAS  Google Scholar 

  22. Chen L, Lu M, Yang H, Salas Avila JR, Shi B, Ren L, Wei G, Liu X, Yin W. Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 2020;14:8191.

    Article  CAS  Google Scholar 

  23. Duan F, Liao Y, Zeng Z, Jin H, Zhou L, Zhang Z, Su Z. Graphene-based nanocomposite strain sensor response to ultrasonic guided waves. Compos Sci Technol 2019;174:42.

    Article  CAS  Google Scholar 

  24. Park S, Choi H, Cho Y, Jeong J, Sun J, Cha S, Choi M, Bae J, Park JJ. Wearable strain sensors with aligned macro carbon cracks using a two-dimensional triaxial-braided fabric structure for monitoring human health. ACS Appl Mater Interfaces 2021;13:22926.

    Article  CAS  Google Scholar 

  25. Yue X, Jia Y, Wang X, Zhou K, Zhai W, Zheng G, Dai K, Mi L, Liu C, Shen C. Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring. Compos Sci Technol 2020;189:108038.

    Article  CAS  Google Scholar 

  26. Guo J, Zhou B, Zong R, Pan L, Li X, Yu X, Yang C, Kong L, Dai Q. Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare. ACS Appl Mater Interfaces 2019;11:33589.

    Article  CAS  Google Scholar 

  27. Park B, Kim JU, Kim J, Tahk D, Jeong C, Ok J, Shin JH, Kang D, Kim T. Strain-visualization with ultrasensitive nanoscale crack-based sensor assembled with hierarchical thermochromic membrane. Adv Funct Mater 2019;29:1903360.

    Article  CAS  Google Scholar 

  28. Shi W, Han G, Chang Y, Song H, Hou W, Chen Q. Using stretchable PPy@PVA composites as a high-sensitivity strain sensor to monitor minute motion. ACS Appl Mater Interfaces 2020;12:45373.

    Article  CAS  Google Scholar 

  29. Sun H, Ye C, Zhao G, Zhang H, Liu Z, Dai W, Wang J, Alam FE, Yan Q, Li X, Xu J, Chen C-Y, Zhao P, Ye J, Jiang N, Chen D, Wu S, Kong J, Lin C-T. Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate’s Poisson’s ratio effect. J Mater Chem A 2020;8:10310.

    Article  CAS  Google Scholar 

  30. Yang H, Xiao X, Li Z, Li K, Cheng N, Li S, Low JH, Jing L, Fu X, Achavananthadith S, Low F, Wang Q, Yeh PL, Ren H, Ho JS, Yeow CH, Chen PY. Wireless Ti3C2Tx MXene strain sensor with ultrahigh sensitivity and designated working windows for soft exoskeletons. ACS Nano 2020;14:11860.

    Article  CAS  Google Scholar 

  31. Tang Y, Guo Q, Chen Z, Zhang X, Lu C, Cao J, Zheng Z. Scalable manufactured self-healing strain sensors based on ion-intercalated graphene nanosheets and interfacial coordination. ACS Appl Mater Interfaces 2019;11:23527.

    Article  CAS  Google Scholar 

  32. Park S, Ahn S, Sun J, Bhatia D, Choi D, Yang KS, Bae J, Park JJ. Highly bendable and rotational textile structure with prestrained conductive sewing pattern for human joint monitoring. Adv Func Mater 2019;29:1808369.

    Article  CAS  Google Scholar 

  33. Du X, Tian M, Sun G, Li Z, Qi X, Zhao H, Zhu S, Qu L. Self-powered and self-sensing energy textile system for flexible wearable applications. ACS Appl Mater Interfaces 2020;12:55876.

    Article  CAS  Google Scholar 

  34. Li J, Wang L, Wang X, Yang Y, Hu Z, Liu L, Huang Y. Highly conductive PVA/Ag coating by aqueous in situ reduction and its stretchable structure for strain sensor. ACS Appl Mater Interfaces 2020;12:1427.

    Article  CAS  Google Scholar 

  35. Afroj S, Tan S, Abdelkader AM, Novoselov KS, Karim N. Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Adv Func Mater 2020;30:2000293.

    Article  CAS  Google Scholar 

  36. Peng S, Wu S, Yu Y, Blanloeuil P, Wang CH. Nano-toughening of transparent wearable sensors with high sensitivity and a wide linear sensing range. J Mater Chem A 2020;8:20531.

    Article  CAS  Google Scholar 

  37. Mo F, Huang Y, Li Q, Wang Z, Jiang R, Gai W, Zhi C. A highly stable and durable capacitive strain sensor based on dynamically super-tough hydro/organo-gels. Adv Funct Mater 2021;31:2010830.

    Article  CAS  Google Scholar 

  38. Ahn S, Cho Y, Park S, Kim J, Sun J, Ahn D, Lee M, Kim D, Kim T, Shin H, Park J-J. Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals. Nano Energy 2020;74:104932.

    Article  CAS  Google Scholar 

  39. Parent F, Gerard M, Monet F, Loranger S, Soulez G, Kashyap R, Kadoury S. Intra-arterial image guidance with optical frequency domain reflectometry shape sensing. IEEE Trans Med Imaging 2019;38:482.

    Article  Google Scholar 

  40. Leber A, Dong C, Chandran R, Das Gupta T, Bartolomei N, Sorin F. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat Electron 2020;3:316.

    Article  Google Scholar 

  41. Chen H, Song Y, Cheng X, Zhang H. Self-powered electronic skin based on the triboelectric generator. Nano Energy 2019;56:252.

    Article  CAS  Google Scholar 

  42. Han J, Xu C, Zhang J, Xu N, Xiong Y, Cao X, Liang Y, Zheng L, Sun J, Zhai J, Sun Q, Wang ZL. Multifunctional coaxial energy fiber toward energy harvesting, storage, and utilization. ACS Nano 2021;15:1597.

    Article  CAS  Google Scholar 

  43. Liu M, Pu X, Jiang C, Liu T, Huang X, Chen L, Du C, Sun J, Hu W, Wang ZL. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv Mater 2017;29:e1703700.

    Article  CAS  Google Scholar 

  44. Miao W, Wang D, Liu Z, Tang J, Zhu Z, Wang C, Liu H, Wen L, Zheng S, Tian Y, Jiang L. Bioinspired Self-healing liquid films for ultradurable electronics. ACS Nano 2019;13:3225.

    Article  CAS  Google Scholar 

  45. Chen J, Zhu G, Wang F, Xu Y, Wang C, Zhu Y, Jiang W. Design of flexible strain sensor with both ultralow detection limit and wide sensing range via the multiple sensing mechanisms. Compos Sci Technol 2021;213:108932.

    Article  Google Scholar 

  46. Zhu L, Zhou X, Liu Y, Fu Q. Highly sensitive, ultrastretchable strain sensors prepared by pumping hybrid fillers of carbon nanotubes/cellulose nanocrystal into electrospun polyurethane membranes. ACS Appl Mater Interfaces 2019;11:12968.

    Article  CAS  Google Scholar 

  47. Hempel M, Nezich D, Kong J, Hofmann M. A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett 2012;12:5714.

    Article  CAS  Google Scholar 

  48. Chossat J-B, Park Y-L, Wood RJ, Duchaine V. A soft strain sensor based on ionic and metal liquids. IEEE Sens J 2013;13:3405.

    Article  CAS  Google Scholar 

  49. Wang H, Zhou R, Li D, Zhang L, Ren G, Wang L, Liu J, Wang D, Tang Z, Lu G, Sun G, Yu HD, Huang W. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2Tx MXene for the monitoring of human activities. ACS Nano 2021;15:9690.

    Article  CAS  Google Scholar 

  50. Guo X, Zhao Y, Xu X, Chen D, Zhang X, Yang G, Qiao W, Feng R, Zhang X, Wu J, Duan Z, Zhang H, Huang L, Xu C, Qu L. Biomimetic flexible strain sensor with high linearity using double conducting layers. Compos Sci Technol 2021;213:108908.

    Article  Google Scholar 

  51. Liu X, Liang X, Lin Z, Lei Z, Xiong Y, Hu Y, Zhu P, Sun R, Wong C-P. Highly sensitive and stretchable strain sensor based on a synergistic hybrid conductive network. ACS Appl Mater Interfaces 2020;12:42420.

    Article  CAS  Google Scholar 

  52. Paul SJ, Elizabeth I, Gupta BK. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring. ACS Appl Mater Interfaces 2021;13:8871.

    Article  CAS  Google Scholar 

  53. Sun H, Zhao Y, Wang C, Zhou K, Yan C, Zheng G, Huang J, Dai K, Liu C, Shen C. Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy 2020;76:105035.

    Article  CAS  Google Scholar 

  54. Pu J-H, Zhao X, Zha X-J, Bai L, Ke K, Bao R-Y, Liu Z-Y, Yang M-B, Yang W. Multilayer structured AgNW/WPU-MXene fiber strain sensors with ultrahigh sensitivity and a wide operating range for wearable monitoring and healthcare. J Mater Chem A 2019;7:15913.

    Article  CAS  Google Scholar 

  55. Cui X, Jiang Y, Xu Z, Xi M, Jiang Y, Song P, Zhao Y, Wang H. Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability. Compos Part B Eng 2021;211:108641.

    Article  CAS  Google Scholar 

  56. Gao Y, Guo F, Cao P, Liu J, Li D, Wu J, Wang N, Su Y, Zhao Y. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor. ACS Nano 2020;14:3442.

    Article  CAS  Google Scholar 

  57. Yang Z, Pang Y, Han XL, Yang Y, Ling J, Jian M, Zhang Y, Yang Y, Ren TL. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 2018;12:9134.

    Article  CAS  Google Scholar 

  58. Xu X, Chen Y, He P, Wang S, Ling K, Liu L, Lei P, Huang X, Zhao H, Cao J, Yang J. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res 2021;14:2875.

    Article  CAS  Google Scholar 

  59. Wang L, Zhu R, Li G. Temperature and strain compensation for flexible sensors based on thermosensation. ACS Appl Mater Interfaces 1953;2020:12.

    Google Scholar 

  60. Giesz P, Mackiewicz E, Nejman A, Celichowski G, Cieślak M. Investigation on functionalization of cotton and viscose fabrics with AgNWs. Cellulose 2016;24:409.

    Article  CAS  Google Scholar 

  61. Yu Z, Gao Y, Di X, Luo H. Cotton modified with silver-nanowires/polydopamine for a wearable thermal management device. RSC Adv 2016;6:67771.

    Article  CAS  Google Scholar 

  62. Liu X, Miao J, Fan Q, Zhang W, Zuo X, Tian M, Zhu S, Zhang X, Qu L. Smart textile based on 3d stretchable silver nanowires/MXene conductive networks for personal healthcare and thermal management. ACS Appl Mater Interfaces 2021;13:56607.

  63. Zhao Y, Ren M, Shang Y, Li J, Wang S, Zhai W, Zheng G, Dai K, Liu C, Shen C. Ultra-sensitive and durable strain sensor with sandwich structure and excellent anti-interference ability for wearable electronic skins. Compos Sci Technol 2020;200:108448.

    Article  CAS  Google Scholar 

  64. Li X, Hu H, Hua T, Xu B, Jiang S. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors. Nano Res 2018;11:5799.

    Article  CAS  Google Scholar 

  65. Chen G, Wang H, Guo R, Duan M, Zhang Y, Liu J. Superelastic EGaIn composite fibers sustaining 500% tensile strain with superior electrical conductivity for wearable electronics. ACS Appl Mater Interfaces 2020;12:6112.

    Article  CAS  Google Scholar 

  66. Yang Z, Wang W, Bi L, Chen L, Wang G, Chen G, Ye C, Pan J. Wearable electronics for heating and sensing based on a multifunctional PET/silver nanowire/PDMS yarn. Nanoscale 2020;12:16562.

    Article  CAS  Google Scholar 

  67. Cheng L, Feng J. Facile fabrication of stretchable and compressible strain sensors by coating and integrating low-cost melamine foam scaffolds with reduced graphene oxide and poly (styrene-b-ethylene-butylene-b-styrene). Chem Eng J 2020;398:125429.

    Article  CAS  Google Scholar 

  68. Wu S, Ladani RB, Zhang J, Ghorbani K, Zhang X, Mouritz AP, Kinloch AJ, Wang CH. Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/PDMS nanocomposites. ACS Appl Mater Interfaces 2016;8:24853.

    Article  CAS  Google Scholar 

  69. Wang X, Li J, Song H, Huang H, Gou J. Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity. ACS Appl Mater Interfaces 2018;10:7371.

    Article  CAS  Google Scholar 

  70. Zhou B, Liu Z, Li C, Liu M, Jiang L, Zhou Y, Zhou FL, Chen S, Jerrams S, Yu J. A highly stretchable and sensitive strain sensor based on dopamine modified electrospun SEBS fibers and MWCNTs with carboxylation. Adv Electron Mater 2021;7:2100233.

    Article  CAS  Google Scholar 

  71. Li Y, Miao X, Chen JY, Jiang G, Liu Q. Sensing performance of knitted strain sensor on two-dimensional and three-dimensional surfaces. Mater Design. 2021;197:109273.

    Article  CAS  Google Scholar 

  72. Fu X, Li, Chen S, Xu H, Li J, Shulga V, Han W. Knitted Ti3C2Tx MXene based fiber strain sensor for human-computer interaction. J Colloid Interface Sci. 2021;604:643.

  73. Ma C, Yuan Q, Du H, Ma MG, Si C, Wan P. Multiresponsive MXene (Ti3C2Tx)-decorated textiles for wearable thermal management and human motion monitoring. ACS Appl Mater Interfaces 2020;12:34226.

    Article  CAS  Google Scholar 

  74. Zheng Y, Yin R, Zhao Y, Liu H, Zhang D, Shi X, Zhang B, Liu C, Shen C. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and E-skin. Chem Eng J 2020; 420:127720.

  75. Zhao H, Tian M, Li Z, Zhang Y, Chen Z, Zhang W, Zhu S, Sun Y, Zhou Z, Qu L. Robust sandwich micro-structure coating layer for wear-resistant conductive polyester fabrics. Appl Surf Sci 2019;494:969.

    Article  CAS  Google Scholar 

  76. Yuan L, Zhang M, Zhao T, Li T, Zhang H, Chen L, Zhang J. Flexible and breathable strain sensor with high performance based on MXene/nylon fabric network. Sens Actuators A Phys 2020;315:119192.

  77. Chen Q, Li Y, Xiang D, Zheng Y, Zhu W, Zhao C, Li H, Han H, Shen Y. Enhanced strain sensing performance of polymer/carbon nanotube-coated spandex fibers via noncovalent interactions. Macromol Mater Eng 2019;305:1900525.

    Article  CAS  Google Scholar 

  78. Wang S, Ning H, Hu N, Liu Y, Liu F, Zou R, Huang K, Wu X, Weng S, Alamusi. Environmentally‐friendly and multifunctional graphene‐silk fabric strain sensor for human‐motion detection. Adv Mater Interfaces. 2019;7:1901507.

  79. Cao M, Wang M, Li L, Qiu H, Padhiar MA, Yang Z. Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire. Nano Energy 2018;50:528.

    Article  CAS  Google Scholar 

  80. Wang Z, Huang Y, Sun J, Huang Y, Hu H, Jiang R, Gai W, Li G, Zhi C. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl Mater Interfaces 2016;8:24837.

    Article  CAS  Google Scholar 

  81. Cai G, Hao B, Luo L, Deng Z, Zhang R, Ran J, Tang X, Cheng D, Bi S, Wang X, Dai K. Highly stretchable sheath-core yarns for multifunctional wearable electronics. ACS Appl Mater Interfaces 2020;12:29717.

    CAS  Google Scholar 

  82. Zeng Z, Hao B, Li D, Cheng D, Cai G, Wang X. Large-scale production of weavable, dyeable and durable spandex/CNT/cotton core-sheath yarn for wearable strain sensors. Compos Part A Appl Sci Manuf 2021;149:106520.

    Article  CAS  Google Scholar 

  83. Souri H, Bhattacharyya D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS Appl Mater Interfaces 2018;10:20845.

    Article  CAS  Google Scholar 

  84. Reddy KR, Gandla S, Gupta D. Highly sensitive, rugged, and wearable fabric strain sensor based on graphene clad polyester knitted elastic band for human motion monitoring. Adv Mater Interfaces 2019;6:1900409.

    Article  Google Scholar 

  85. Ko Y, Kim JS, Vu CC, Kim J. Ultrasensitive strain sensor based on pre-generated crack networks using Ag nanoparticles/single-walled carbon nanotube (SWCNT) hybrid fillers and a polyester woven elastic band. Sensors (Basel) 2021;21:2531.

  86. Wang B, Yang K, Cheng H, Ye T, Wang C. A hydrophobic conductive strip with outstanding one-dimensional stretchability for wearable heater and strain sensor. Chem Eng J 2021;404:12639.

  87. Yu L, Parker S, Xuan H, Zhang Y, Jiang S, Tousi M, Manteghi M, Wang A, Jia X. Flexible Multi-material fibers for distributed pressure and temperature sensing. Adv Funct Mater 2020;30:1908915.

    Article  CAS  Google Scholar 

  88. Yang Z, Zhai Z, Song Z, Wu Y, Liang J, Shan Y, Zheng J, Liang H, Jiang H. Conductive and elastic 3D helical fibers for use in washable and wearable electronics. Adv Mater 2020;32:e1907495.

    Article  CAS  Google Scholar 

  89. Chen Y, Xu B, Gong J, Wen J, Hua T, Kan CW, Deng J. Design of high-performance wearable energy and sensor electronics from fiber materials. ACS Appl Mater Interfaces 2019;11:2120.

    Article  CAS  Google Scholar 

  90. Zhao Z, Huang Q, Yan C, Liu Y, Zeng X, Wei X, Hu Y, Zheng Z. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy 2020;70:104528.

    Article  CAS  Google Scholar 

  91. Yuan B, Zhao C, Sun X, Liu J. Lightweight liquid metal entity. Adv Funct Mater 2020;30:1910709.

    Article  CAS  Google Scholar 

  92. Zhang E, Liu X, Liu Y, Shi J, Li X, Xiong X, Xu C, Wu K, Lu M. Highly stretchable, bionic self-healing waterborne polyurethane elastic film enabled by multiple hydrogen bonds for flexible strain sensors. J Mater Chem A 2021;9:23055.

    Article  CAS  Google Scholar 

  93. Kim DS, Lee YH, Kim JW, Lee H, Jung G, Ha JS. A stretchable array of high-performance electrochromic devices for displaying skin-attached multi-sensor signals. Chem Eng J 2021;429:132289.

    Article  CAS  Google Scholar 

  94. Luo C, Tian B, Liu Q, Feng Y, Wu W. One-step-printed, highly sensitive, textile-based, tunable performance strain sensors for human motion detection. Adv Mater Technol 2020;5:1900925.

    Article  CAS  Google Scholar 

  95. Wu R, Ma L, Liu S, Patil AB, Hou C, Zhang Y, Zhang W, Yu R, Yu W, Guo W, Liu XY. Fibrous inductance strain sensors for passive inductance textile sensing. Mater Today Phys. 2020;15:100243.

    Article  Google Scholar 

  96. Cheng D, Bai X, Pan J, Wu J, Ran J, Cai G, Wang X. In situ hydrothermal growth of Cu NPs on knitted fabrics through polydopamine templates for heating and sensing. Chem Eng J 2020;382:123036.

    Article  CAS  Google Scholar 

  97. Kapoor A, McKnight M, Chatterjee K, Agcayazi T, Kausche H, Bozkurt A, Ghosh TK. Toward fully manufacturable, fiber assembly-based concurrent multimodal and multifunctional sensors for e-textiles. Adv Mater Technol 2018;4:1800281.

    Article  Google Scholar 

  98. Qin Y, Qu M, Pan Y, Zhang C, Schubert DW. Fabrication, characterization and modelling of triple hierarchic PET/CB/TPU composite fibres for strain sensing. Compos Part A Appl Sci Manuf 2020;129:105724.

    Article  CAS  Google Scholar 

  99. Qi K, Wang H, You X, Tao X, Li M, Zhou Y, Zhang Y, He J, Shao W, Cui S. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity. J Colloid Interface Sci 2020;561:93.

    Article  CAS  Google Scholar 

  100. Wang L, Tian M, Qi X, Sun X, Xu T, Liu X, Zhu S, Zhang X, Qu L. Customizable textile sensors based on helical core-spun yarns for seamless smart garments. Langmuir 2021;37:3122.

    Article  CAS  Google Scholar 

  101. Wu J, Li H, Lai X, Chen Z, Zeng X. Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor. Chem Eng J 2020;386:123998.

    Article  CAS  Google Scholar 

  102. Lu Y, Sun H, Cheng J, Myong J, Mehedi HM, Bhat G, Yu B. High performance flexible wearable strain sensor based on rGO and AgNWs decorated PBT melt-blown non-woven fabrics. Sens Actuators A Phys 2020;315:112174.

    Article  CAS  Google Scholar 

  103. He S, Xin B, Chen Z, Liu Y. Flexible and highly conductive Ag/G-coated cotton fabric based on graphene dipping and silver magnetron sputtering. Cellulose 2018;25:3691.

    Article  CAS  Google Scholar 

  104. Niu B, Hua T, Hu H, Xu B, Tian X, Chan K, Chen S. A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing. J Mater Chem C 2019;7:14651.

    Article  CAS  Google Scholar 

  105. Zheng S, Wu X, Huang Y, Xu Z, Yang W, Liu Z, Yang M. Multifunctional and highly sensitive piezoresistive sensing textile based on a hierarchical architecture. Compos Sci Technol 2020;197:108255.

    Article  CAS  Google Scholar 

  106. Zhou X, Hu C, Lin X, Han X, Zhao X, Hong J. Polyaniline-coated cotton knitted fabric for body motion monitoring. Sens Actuators A Phys 2021;321:112591.

    Article  CAS  Google Scholar 

  107. Hui Z, Chen R, Chang J, Gong Y, Zhang X, Xu H, Sun Y, Zhao Y, Wang L, Zhou R, Ju F, Chen Q, Zhou J, An J, Sun G, Huang W. Solution-processed sensing textiles with adjustable sensitivity and linear detection range enabled by twisting structure. ACS Appl Mater Interfaces 2020;12:12155.

    Article  CAS  Google Scholar 

  108. Wu C, Wang H, Li Y, Kim T, Kwon SJ, Park B, He Z, Lee SB, Um MK, Byun JH, Chou TW. Sensitivity improvement of stretchable strain sensors by the internal and external structural designs for strain redistribution. ACS Appl Mater Interfaces 2020;12:50803.

    Article  CAS  Google Scholar 

  109. Eom J, Jaisutti R, Lee H, Lee W, Heo JS, Lee JY, Park SK, Kim YH. Highly sensitive textile strain sensors and wireless user-interface devices using all-polymeric conducting fibers. ACS Appl Mater Interfaces 2017;9:10190.

    Article  CAS  Google Scholar 

  110. Luo J, Gao S, Luo H, Wang L, Huang X, Guo Z, Lai X, Lin L, Li RKY, Gao J. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem Eng J 2021;406:126898.

    Article  CAS  Google Scholar 

  111. Zhang X, Wang X, Lei Z, Wang L, Tian M, Zhu S, Xiao H, Tang X, Qu L. Flexible MXene-decorated fabric with interwoven conductive networks for integrated joule heating, electromagnetic interference shielding, and strain sensing performances. ACS Appl Mater Interfaces 2020;12:14459.

    Article  CAS  Google Scholar 

  112. Zhang J, Uzun S, Seyedin S, Lynch PA, Akuzum B, Wang Z, Qin S, Alhabeb M, Shuck CE, Lei W, Kumbur EC, Yang W, Wang X, Dion G, Razal JM, Gogotsi Y. Additive-free MXene liquid crystals and fibers. ACS Cent Sci 2020;6:254.

    Article  CAS  Google Scholar 

  113. Zheng X, Nie W, Hu Q, Wang X, Wang Z, Zou L, Hong X, Yang H, Shen J, Li C. Multifunctional RGO/Ti3C2Tx MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection. Mater Design. 2021;200:109442.

    Article  CAS  Google Scholar 

  114. Gong M, Yue L, Kong J, Lin X, Zhang L, Wang J, Wang D. Knittable and sewable spandex yarn with nacre-mimetic composite coating for wearable health monitoring and thermo- and antibacterial therapies. ACS Appl Mater Interfaces 2021;13:9053.

    Article  CAS  Google Scholar 

  115. Levitt A, Seyedin S, Zhang J, Wang X, Razal JM, Dion G, Gogotsi Y. Bath electrospinning of continuous and scalable multifunctional MXene-infiltrated nanoyarns. Small 2020;16:e2002158.

    Article  CAS  Google Scholar 

  116. Cai G, Yang M, Pan J, Cheng D, Xia Z, Wang X, Tang B. Large-scale production of highly stretchable CNT/cotton/spandex composite yarn for wearable applications. ACS Appl Mater Interfaces 2018;10:32726.

    Article  CAS  Google Scholar 

  117. Yang S, Li C, Chen X, Zhao Y, Zhang H, Wen N, Fan Z, Pan L. Facile fabrication of high-performance pen ink-decorated textile strain sensors for human motion detection. ACS Appl Mater Interfaces 2020;12:19874.

    Article  CAS  Google Scholar 

  118. Lee T, Lee W, Kim S-W, Kim JJ, Kim B-S. Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv Funct Mater 2016;26:6206.

    Article  CAS  Google Scholar 

  119. Xie X, Huang H, Zhu J, Yu J, Wang Y, Hu Z. A spirally layered carbon nanotube-graphene/polyurethane composite yarn for highly sensitive and stretchable strain sensor. Compos Part A Appl Sci Manuf 2020;135:105932.

    Article  CAS  Google Scholar 

  120. Sun S, Liu Y, Chang X, Jiang Y, Wang D, Tang C, He S, Wang M, Guo L, Gao Y. A wearable, waterproof, and highly sensitive strain sensor based on three-dimensional graphene/carbon black/Ni sponge for wirelessly monitoring human motions. J Mater Chem C 2020;8:2074.

    Article  CAS  Google Scholar 

  121. Jang S, Choi JY, Yoo ES, Lim DY, Lee JY, Kim JK, Pang C. Printable wet-resistive textile strain sensors using bead-blended composite ink for robustly integrative wearable electronics. Compos Part B Eng 2021;210:108674.

    Article  CAS  Google Scholar 

  122. Sadi MS, Yang M, Luo L, Cheng D, Cai G, Wang X. Direct screen printing of single-faced conductive cotton fabrics for strain sensing, electrical heating and color changing. Cellulose 2019;26:6179.

    Article  CAS  Google Scholar 

  123. Yin R, Yang S, Li Q, Zhang S, Liu H, Han J, Liu C, Shen C. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications. Sci Bull 2020;65:899.

    Article  CAS  Google Scholar 

  124. Appiagyei AB, Banua J, Han JI. Flexible and patterned-free Ni/NiO-based temperature device on cylindrical PET fabricated by RF magnetron sputtering: Bending and washing endurance tests. J Ind Eng Chem 2021;100:372.

    Article  CAS  Google Scholar 

  125. Lu X, Shang W, Chen G, Wang H, Tan P, Deng X, Song H, Xu Z, Huang J, Zhou X. Environmentally stable, highly conductive, and mechanically robust metallized textiles. ACS Appl Electron Mater 2021;3:1477.

    Article  CAS  Google Scholar 

  126. Kim YM, Moon HC. Ionoskins: nonvolatile, highly transparent, ultrastretchable ionic sensory platforms for wearable electronics. Adv Funct Mater 2019;30:1907290.

    Article  CAS  Google Scholar 

  127. Wei H, Kong D, Li T, Xue Q, Wang S, Cui D, Huang Y, Wang L, Hu S, Wan T, Yang G. Solution-processable conductive composite hydrogels with multiple synergetic networks toward wearable pressure/strain sensors. ACS Sens 2021;6:2938.

    Article  CAS  Google Scholar 

  128. Huang T, He P, Wang R, Yang S, Sun J, Xie X, Ding G. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv Funct Mater 2019;29:1903732.

    Article  CAS  Google Scholar 

  129. Zhou J, Xu X, Xin Y, Lubineau G. Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors. Adv Funct Mater 2018;28:1705591.

    Article  CAS  Google Scholar 

  130. Seyedin S, Uzun S, Levitt A, Anasori B, Dion G, Gogotsi Y, Razal JM. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv Funct Mater 2020;30:1910504.

    Article  CAS  Google Scholar 

  131. Kanygin MA, Shafiei M, Bahreyni B. electrostatic twisting of core-shell nanofibers for strain sensing applications. ACS Appl Polym Mater 2020;2:4472.

    Article  CAS  Google Scholar 

  132. Li Y, Zhou B, Zheng G, Liu X, Li T, Yan C, Cheng C, Dai K, Liu C, Shen C, Guo Z. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J Mater Chem C 2018;6:2258.

  133. Yan W, Page A, Nguyen-Dang T, Qu Y, Sordo F, Wei L, Sorin F. Advanced multimaterial electronic and optoelectronic fibers and textiles. Adv Mater 2019;31:e1802348.

    Article  CAS  Google Scholar 

  134. Qu Y, Nguyen-Dang T, Page AG, Yan W, Das Gupta T, Rotaru GM, Rossi RM, Favrod VD, Bartolomei N, Sorin F. Superelastic multimaterial electronic and photonic fibers and devices via thermal drawing. Adv Mater 2018;30:e1707251.

    Article  CAS  Google Scholar 

  135. Zhang M, Wang C, Wang H, Jian M, Hao X, Zhang Y. Carbonized cotton fabric for high-performance wearable strain sensors. Adv Func Mater 2017;27:1604795.

    Article  CAS  Google Scholar 

  136. Liu Z, Li Z, Zhai H, Jin L, Chen K, Yi Y, Gao Y, Xu L, Zheng Y, Yao S, Liu Z, Li G, Song Q, Yue P, Xie S, Li Y, Zheng Z. A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration monitoring and identification. Chem Eng J 2021;426:130869.

    Article  CAS  Google Scholar 

  137. Liu W, Huang Y, Peng Y, Walczak M, Wang D, Chen Q, Liu Z, Li L. stable wearable strain sensors on textiles by direct laser writing of graphene. ACS Appl Nano Mater 2020;3:283.

    Article  CAS  Google Scholar 

  138. Wang Z, Chen B, Sun S, Pan L, Gao Y. Maskless formation of conductive carbon layer on leather for highly sensitive flexible strain sensors. Adv Electron Mater 2020;6:2000549.

    Article  CAS  Google Scholar 

  139. Han X, Xiao W, Wen S, Lin J, He A, Jiang Q, Nie H. High-performance stretchable strain sensor based on Ag nanoparticles sandwiched between two 3D-printed polyurethane fibrous textiles. Adv Electron Mater 2021;7:2001242.

    Article  CAS  Google Scholar 

  140. Cao WT, Ma C, Mao DS, Zhang J, Ma MG, Chen F. MXene-reinforced cellulose nanofibril inks for 3D-printed smart fibres and textiles. Adv Funct Mater 2019;29:1905898.

    Article  CAS  Google Scholar 

  141. Park H, Kim JW, Hong SY, Lee G, Lee H, Song C, Keum K, Jeong YR, Jin SW, Kim DS, Ha JS. Dynamically stretchable supercapacitor for powering an integrated biosensor in an all-in-one textile system. ACS Nano 2019;13:10469.

    Article  CAS  Google Scholar 

  142. Uzun S, Seyedin S, Stoltzfus AL, Levitt AS, Alhabeb M, Anayee M, Strobel CJ, Razal JM, Dion G, Gogotsi Y. Knittable and washable multifunctional MXene-coated cellulose yarns. Adv Funct Mater 2019;29:1905015.

    Article  CAS  Google Scholar 

  143. Kim T, Park C, Samuel EP, An S, Aldalbahi A, Alotaibi F, Yarin AL, Yoon SS. Supersonically sprayed washable, wearable, stretchable, hydrophobic, and antibacterial rGO/AgNW fabric for multifunctional sensors and supercapacitors. ACS Appl Mater Interfaces 2021;13:10013.

    Article  CAS  Google Scholar 

  144. Li Z, Li M, Fan Q, Qi X, Qu L, Tian M. Smart-fabric-based supercapacitor with long-term durability and waterproof properties toward wearable applications. ACS Appl Mater Interfaces 2021;13:14778.

    Article  CAS  Google Scholar 

  145. Zhao H, Qi X, Ma Y, Sun X, Liu X, Zhang X, Tian M, Qu L. Wearable sunlight-triggered bimorph textile actuators. Nano Lett 2021;21:8126.

    Article  CAS  Google Scholar 

  146. Ma Y, Ouyang J, Raza T, Li P, Jian A, Li Z, Liu H, Chen M, Zhang X, Qu L, Tian M, Tao G. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo. Nano Energy 2021;85:105941.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work was provided by Natural Science Foundation of Shandong Province of China (ZR2018QEM004, ZR2020QE081), Shandong Province Key Research and Development Plan (Major scientific and technological innovation projects) (2019JZZY010340, 2019JZZY010335, 2019GGX102022), and China Postdoctoral Science Foundation via grant No. 2020M671994.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinlei Miao or Lijun Qu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to an unfortunate oversight during the e.proofing process Jinlei Miao has not been assigned as co-correspondence author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Miao, J., Fan, Q. et al. Recent Progress on Smart Fiber and Textile Based Wearable Strain Sensors: Materials, Fabrications and Applications. Adv. Fiber Mater. 4, 361–389 (2022). https://doi.org/10.1007/s42765-021-00126-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-021-00126-3

Keywords

Navigation