Skip to main content
Log in

Optical Micro/Nano Fibers Enabled Smart Textiles for Human–Machine Interface

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Wearable human–machine interface (HMI) is an advanced technology that has a wide range of applications from robotics to augmented/virtual reality (AR/VR). In this study, an optically driven wearable human-interactive smart textile is proposed by integrating a polydimethylsiloxane (PDMS) patch embedded with optical micro/nanofibers (MNF) array with a piece of textiles. Enabled by the highly sensitive pressure dependent bending loss of MNF, the smart textile shows high sensitivity (65.5 kPa−1) and fast response (25 ms) for touch sensing. Benefiting from the warp and weft structure of the textile, the optical smart textile can feel slight finger slip along the MNF. Furthermore, machine learning is utilized to classify the touch manners, achieving a recognition accuracy as high as 98.1%. As a proof-of-concept, a remote-control robotic hand and a smart interactive doll are demonstrated based on the optical smart textile. This optical smart textile represents an ideal HMI for AR/VR and robotics applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lim S, Son D, Kim J, Lee YB, Song J-K, Choi S, Lee DJ, Kim JH, Lee M, Hyeon T, Kim D-H. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv Funct Mater 2015;25:375.

    Article  CAS  Google Scholar 

  2. Wang J, Lin M-F, Park S, Lee PS. Deformable conductors for human–machine interface. Mater Today 2018;21:508.

    Article  Google Scholar 

  3. Chen J, Zhu G, Yang J, Jing Q, Bai P, Yang W, Qi X, Su Y, Wang ZL. Personalized keystroke dynamics for self-powered human-machine interfacing. ACS Nano 2015;9:105.

    Article  Google Scholar 

  4. Yi J, Dong K, Shen S, Jiang Y, Peng X, Ye C, Wang ZL. Fully fabric‑based triboelectric nanogenerators as self‑powered human–machine interactive keyboards. Nanomicro Lett 2021;13:103.

    CAS  Google Scholar 

  5. Weng W, Yang J, Zhang Y, Li Y, Yang S, Zhu L, Zhu M. A route toward smart system integration: from fiber design to device construction. Adv Mater 2020;32:e1902301.

    Article  Google Scholar 

  6. Loke G, Khudiyev T, Wang B, Fu S, Payra S, Shaoul Y, Fung J, Chatziveroglou I, Chou PW, Chinn I, Yan W, Gitelson-Kahn A, Joannopoulos J, Fink Y. Digital electronics in fibres enable fabric-based machine-learning inference. Nat Commun 2021;12:3317.

    Article  CAS  Google Scholar 

  7. Lee GH, Park JK, Byun J, Yang JC, Kwon SY, Kim C, Jang C, Sim JY, Yook JG, Park S. Parallel signal processing of a wireless pressure-sensing platform combined with machine-learning-based cognition, inspired by the human somatosensory system. Adv Mater 2020;32:e1906269.

    Article  Google Scholar 

  8. Xiong Y, Shen Y, Tian L, Hu Y, Zhu P, Sun R, Wong C-P. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring. Nano Energy 2020;70:104436.

    Article  CAS  Google Scholar 

  9. Choi S, Yoon K, Lee S, Lee HJ, Lee J, Kim DW, Kim MS, Lee T, Pang C. Conductive hierarchical hairy fibers for highly sensitive, stretchable, and water-resistant multimodal gesture-distinguishable sensor VR applications. Adv Funct Mater 2019;29:1905808.

    Article  CAS  Google Scholar 

  10. Pan L, Chortos A, Yu G, Wang Y, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat Commun 2014;5:3002.

    Article  Google Scholar 

  11. Zhong J, Ma Y, Song Y, Zhong Q, Chu Y, Karakurt I, Bogy DB, Lin L. A flexible piezoelectret actuator/sensor patch for mechanical human−machine interfaces. ACS Nano 2019;13:7107.

    Article  CAS  Google Scholar 

  12. Pu X, Guo H, Chen J, Wang X, Xi Y, Hu C, Wang ZL. Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Sci Adv 2017;3:e1700694.

    Article  Google Scholar 

  13. Zhu G, Yang WQ, Zhang T, Jing Q, Chen J, Zhou YS, Bai P, Wang ZL. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett 2014;14:3208.

    Article  CAS  Google Scholar 

  14. Persano L, Dagdeviren C, Su Y, Zhang Y, Girardo S, Pisignano D, Huang Y, Rogers JA. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun 2013;4:1633.

    Article  Google Scholar 

  15. Zhao H, O’Brien K, Li S, Shepherd RF. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Sci Robot 2016;1:eaai7529.

    Article  Google Scholar 

  16. Guo J, Niu M, Yang C. Highly flexible and stretchable optical strain sensing for human motion detection. Optica 2017;4:1285.

    Article  Google Scholar 

  17. Shi X, Zuo Y, Zhai P, Shen J, Yang Y, Gao Z, Liao M, Wu J, Wang J, Xu X, Tong Q, Zhang B, Wang B, Sun X, Zhang L, Pei Q, Jin D, Chen P, Peng H. Large-area display textiles integrated with functional systems. Nature 2021;591:240.

    Article  CAS  Google Scholar 

  18. Ma Y, Ouyang J, Raza T, Li P, Jian A, Li Z, Liu H, Chen M, Zhang X, Qu L, Tian M, Tao G. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo. Nano Energy 2021;85:105941.

    Article  CAS  Google Scholar 

  19. Yan W, Dong C, Xiang Y, Jiang S, Leber A, Loke G, Xu W, Hou C, Zhou S, Chen M, Hu R, Shum PP, Wei L, Jia X, Sorin F, Tao X, Tao G. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater Today 2020;35:168.

    Article  CAS  Google Scholar 

  20. Zhu C, Li R, Chen X, Chalmers E, Liu X, Wang Y, Xu BB, Liu X. Ultraelastic Yarns from curcumin-assisted ELD toward wearable human-machine interface textiles. Adv Sci 2020;7:2002009.

    Article  CAS  Google Scholar 

  21. Cao R, Pu X, Du X, Yang W, Wang J, Guo H, Zhao S, Yuan Z, Zhang C, Li C, Wang ZL. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensor for intelligent human-machine interaction. ACS Nano 2018;12:5190.

    Article  CAS  Google Scholar 

  22. Wu R, Ma L, Patil A, Hou C, Zhu S, Fan X, Lin H, Yu W, Guo W, Liu XY. All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers. ACS Appl Mater Interfaces 2019;11:33336.

    Article  CAS  Google Scholar 

  23. Lin X, Wu M, Zhang L, Wang D. Superior stretchable conductors by electroless plating copper on knitted fabrics. ACS Appl Electron Mater 2019;1:397.

    Article  CAS  Google Scholar 

  24. Karim N, Afroj S, Tan S, He P, Fernando A, Carr C, Novoselov KS. Scalable production of graphene-based wearable e-textiles. ACS Nano 2017;11:12266.

    Article  CAS  Google Scholar 

  25. Li Jh, Chen Jh, Xu F. Sensitive and wearable optical microfiber sensor for human health monitoring. Adv Mater Technol 2018;3:1800296.

    Article  Google Scholar 

  26. Zhang L, Pan J, Zhang Z, Wu H, Yao N, Cai D, Xu Y, Zhang J, Sun G, Wang L, Geng W, Jin W, Fang W, Di D, Tong L. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 2020;3:19002201.

    Article  Google Scholar 

  27. Pan J, Zhang Z, Jiang C, Zhang L, Tong L. A multifunctional skin-like wearable optical sensor based on an optical micro-/nanofiber. Nanoscale 2020;12:17538.

    Article  CAS  Google Scholar 

  28. Tang Y, Liu H, Pan J, Zhang Z, Xu Y, Yao N, Zhang L, Tong L. Optical micro/nanofiber-enabled compact tactile sensor for hardness discrimination. ACS Appl Mater Interfaces 2021;13:4560.

    Article  CAS  Google Scholar 

  29. Zhu HT, Zhan LW, Dai Q, Xu B, Chen Y, Lu YQ, Xu F. Self-assembled wavy optical microfiber for stretchable wearable sensor. Adv Optical Mater 2021;9:2002206.

    Article  CAS  Google Scholar 

  30. Brambilla G, Payne DN. The ultimate strength of glass silica nanowires. Nano Lett 2019;9:831.

    Article  Google Scholar 

  31. Tong L, Gattass R, Ashcom J, He S, Lou J, Shen M, Maxwell I, Mazur E. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 2003;426:816.

    Article  CAS  Google Scholar 

  32. Yao N, Linghu S, Xu Y, Zhu R, Zhou N, Gu F, Zhang L, Fang W, Ding W, Tong L. Ultra-long subwavelength micro/nanofibers with low loss. IEEE Photon Technol Lett 2020;32:1069.

    Article  Google Scholar 

  33. Kang Y, Gong J, Xu Y, Yao N, Fang W, Guo X, Tong L. Ultrahigh-precision diameter control of nanofiber using direct mode cutoff feedback. IEEE Photon Technol Lett 2020;32:219.

    Article  CAS  Google Scholar 

  34. Sirbuly DJ, Tao A, Law M, Fan R, Yang P. Multifunctional nanowire evanescent wave optical sensors. Adv Mater 2007;19:61.

    Article  CAS  Google Scholar 

  35. Dellon ES, Keller K, Moratz V, Dellon AL. The relationships between skin hardness, pressure perception and two-point discrimination in the fingertip. Hand Surg 1995;20:44.

    Article  CAS  Google Scholar 

  36. Wu C, Ding W, Liu R, Wang J, Wang AC, Wang J, Li S, Zi Y, Wang ZL. Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array. Mater Today 2018;21:216.

    Article  Google Scholar 

  37. Jin T, Sun Z, Li L, Zhang Q, Zhu M, Zhang Z, Yuan G, Chen T, Tian Y, Hou X, Lee C. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat Commun 2020;11:5381.

    Article  CAS  Google Scholar 

  38. Wen F, Sun Z, He T, Shi Q, Zhu M, Zhang Z, Li L, Zhang T, Lee C. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv Sci 2020;9:2000261.

    Article  Google Scholar 

  39. Li G, Liu S, Wang L, Zhu R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci Robot 2020; 5:eabc8134.

  40. Zhu M, Sun Z, Zhang Z, Shi Q, He T, Liu H, Chen T, Lee C. Haptic-feedback smart glove as a creative human-machine interface (HMI) for virtual/augmented reality applications. Sci Adv 2020;6:eaaz8693.

Download references

Acknowledgements

We acknowledge funding from the National Natural Science Foundation of China (No. 61975173), Major Scientific Research Project of Zhejiang Lab (No. 2019MC0AD01), and Key Research and Development Project of Zhejiang Province (No. 2021C05003), the CIE-Tencent Robotics X Rhino-Bird Focused Research Program (No. 2020-01-006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangming Tao or Lei Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 7678 kb)

Supplementary file2 (MP4 12765 kb)

Supplementary file3 (PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Wang, X., Li, P. et al. Optical Micro/Nano Fibers Enabled Smart Textiles for Human–Machine Interface. Adv. Fiber Mater. 4, 1108–1117 (2022). https://doi.org/10.1007/s42765-022-00163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00163-6

Keywords

Navigation