Skip to main content
Log in

Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrical conductivity of mixtures of conductive and insulating materials is reviewed. In general, the conductivity of such mixtures increases drastically at a certain concentration of the conductive component, the so-called percolation concentration. Among the parameters influencing the percolation concentration, the filler distribution, filler shape, filler/matrix interactions and the processing technique are the most important ones. On the basis of these parameters, different models have been proposed aimed at the prediction of the conductivity or the percolation concentration. It will be shown here that statistical, geometric or thermodynamic models explain the conductivity behaviour of specific mixtures on the basis of insufficient assumptions. However, the conductivity seems to be predictable with the help of structure-oriented models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Zallen, in “The physics of amorphous solids” (Wiley, New York, 1983) Ch. 4, and references therein.

    Google Scholar 

  2. S. Kirkpatrick, Rev. Mod. Phys. 45 (1973) 574.

    Google Scholar 

  3. J. Janzen, J. Appl. Phys. 46 (1975) 966.

    Google Scholar 

  4. G. E. Pike and C. H. Seager, Phys. Rev. B 10 (1974) 1435.

    Google Scholar 

  5. Idem, ibid. 10 (1974) 1421.

    Google Scholar 

  6. P.S. Clarke, J. W. Orton and A. J. Guest, ibid. 18 (1978) 1813.

    Google Scholar 

  7. X. Quan, J. Polym. Sci. B Polym. Phys. 25 (1987) 1557.

    Google Scholar 

  8. S. Etemand, X. Quan and N. A. Sanders, Appl. Phys. Lett. 48 (1986) 607.

    Google Scholar 

  9. J. I. Yamaki, O. Maeda and Y. Katayama, Rev. Elec. Commun. Lab. 26 (1978) 616.

    Google Scholar 

  10. S. M. Aharoni, J. Appl. Phys. 43 (1972) 2463.

    Google Scholar 

  11. J. Gurland, Trans. Met. Soc. AIME 236 (1966) 642.

    Google Scholar 

  12. R. M. Scarsbrick, J. Phys. D Appl. Phys. 6 (1973) 2098.

    Google Scholar 

  13. F. Bueche, J. Appl. Phys. 43 (1972) 4837.

    Google Scholar 

  14. T. A. Ezquerra, M. Kulescza, C. Santa Cruz and F. J. Balta Calleja, Adv. Mater. 2 (1990) 597.

    Google Scholar 

  15. L. Benguigui, J. Yacubowicz and M. Narkis, J. Polym. Sci. B Polym. Sci. 25 (1987) 127.

    Google Scholar 

  16. S. Reich, J. Mater. Sci. 22 (1987) 3391.

    Google Scholar 

  17. J. Yacubowicz and M. Narkis, Polym. Engng Sci. 26 (1986) 1568.

    Google Scholar 

  18. A. Andreatta, S. Tokito, P. Smith and A. J. Heeger, Molec. Cryst. Liq. Cryst. 189 (1990) 169.

    Google Scholar 

  19. A. Andreatta, A. J. Heeger and P. Smith, Polym. Commun. 31 (1990) 275.

    Google Scholar 

  20. S. Hotta, S. D. D. V. Rughooputh and A. J. Heeger, Synth. Met. 22 (1987) 79.

    Google Scholar 

  21. M. Aldissi, ibid. 13 (1986) 87.

    Google Scholar 

  22. M. Sumita, K. Sakata, S. Asai, K. Miyasaka and H. Nakagawa, Polym. Bull. 25 (1991) 265.

    Google Scholar 

  23. M. Sumita, A. Asai, N. Miyadera, E. Jojima and K. Miyasaka, Coll. Polym. Sci. 264 (1986) 212.

    Google Scholar 

  24. M. Sumita, H. Abe, H. Kayaki and K. Miyasaka, J. Macromol. Sci. Phys. B25 (1986) 171.

    Google Scholar 

  25. K. Miyasaka, K. Watanabe, E. Jojima, H. Aida, M. Sumita and K. Ishikawa, J. Mater. Sci. 17 (1982) 1610.

    Google Scholar 

  26. B. Wessling, Synth. Met. 28 (1989) C849.

    Google Scholar 

  27. B. Wessling, H. Volk, W. R. Mathew and V. G. Kulkarni, Molec. Cryst. Liq. Cryst. 160 (1988) 205.

    Google Scholar 

  28. B. Wessling, Synth. Met. 27 (1988) A83.

    Google Scholar 

  29. Idem, private communication (1990).

  30. Idem, GB Pat. 8901424.5 (1988).

  31. B. Wessling and H. Volk, Synth. Met. 18 (1987) 671.

    Google Scholar 

  32. B. Wessling, Die Makromol. Chem. 185 (1984) 1265.

    Google Scholar 

  33. B. Wessling and H. Volk, Synth. Met. 15 (1986) 183.

    Google Scholar 

  34. B. Wessling, in “Electronic Properties of Polymers” (Springer Verlag, Heidelberg, 1988) p. 407.

    Google Scholar 

  35. Idem, in “Elektrisch leitende Kunststoffe (2. Aufl.)” (Hanser, München, 1989) p. 521.

    Google Scholar 

  36. Idem, Kunststoffe 80 (1990) 323.

    Google Scholar 

  37. S. Radhakrishnan, Polym. Commun. 26 (1985) 153.

    Google Scholar 

  38. T. Slupkowski, Phys. Status Solidi A 83 (1984) 329.

    Google Scholar 

  39. C. Rajagopal and M. Satyam, J. Appl. Phys. 49 (1978) 5536.

    Google Scholar 

  40. A. Malliaris and D. T. Turner, ibid. 42 (1971) 614.

    Google Scholar 

  41. S. K. Bhattacharya and A. C. D. Chaklader, Polym. Plast. Technol. Engng 19 (1982) 21.

    Google Scholar 

  42. R. G. Gilg, private communication (1991).

  43. K. Yoshida, J. Phys. Soc. Jpn 59 (1990) 4087.

    Google Scholar 

  44. F. M. Fowkes, Ind. Eng. Chem. 56 (1964) 40.

    Google Scholar 

  45. R. L. McCullough, Comp. Sci. Technol. 22 (1985) 3.

    Google Scholar 

  46. M. A. Berger and R. L. McCullough, ibid. 22 (1985) 81.

    Google Scholar 

  47. G. Ondracek, private communication (1991).

  48. B. Schulz, High Temp. High Press. 13 (1981) 649.

    Google Scholar 

  49. G. Ondracek, Metall. 36 (1982) 523.

    Google Scholar 

  50. Idem, ibid. 36 (1982) 1288.

    Google Scholar 

  51. Idem, ibid. 37 (1983) 1016.

    Google Scholar 

  52. L. E. Nielsen, Ind. Engng Chem. Fund. 13 (1974) 17.

    Google Scholar 

  53. S. Ahmed and F. R. Jones, J. Mater. Sci. 25 (1990) 4933.

    Google Scholar 

  54. E. J. Bradbury and D. M. Bigg, ASME Paper No. 80-DE-4 (1980).

  55. S. Tokito, P. Smith and A. J. Heeger, Synth. Met. 36 (1990) 183.

    Google Scholar 

  56. A. I. Medalia, Rubb. Chem. Tech. 59 (1985) 432.

    Google Scholar 

  57. R. G. Gilg, in “Elektrisch leitende Kunststoffe (1. Aufl.)” (Hanser, München, 1986) p. 55.

    Google Scholar 

  58. R. Bode, Kautschuk Gummi Kunststoffe 36 (1983) 660.

    Google Scholar 

  59. D. M. Bigg, J. Rheology 28 (1984) 501.

    Google Scholar 

  60. J. R. Harbour and M. J. Walzak, J. Coll. Int. Sci. 119 (1987) 150.

    Google Scholar 

  61. K. H. Möbius, Kunststoffe 78 (1988) 53.

    Google Scholar 

  62. W. F. Verhelst, Communication Akzo Chemie B. V., Netherlands (1985).

  63. J. M. Machado, F. E. Karasz and R. W. Lenz, Polymer 29 (1988) 1412.

    Google Scholar 

  64. K. A. Mazich, M. A. Samus, P. C. Killgoar Jr and H. K. Plummer Jr, Rubb. Chem. Technol. 59 (1986) 623.

    Google Scholar 

  65. H. Dragaun, M. Radax and M. Veith, Oesterr. Kunststoff Z. 16 (1985) 9.

    Google Scholar 

  66. M. Y. Boluk and H. P. Schreiber, Polym. Compos. 10 (1989) 215.

    Google Scholar 

  67. J. D. Van Drumpt, ANTEC 33 (1987) 1276.

    Google Scholar 

  68. A. Vidal and J. B. Donnet, Prog. Coll. Polym. Sci. 75 (1987) 201.

    Google Scholar 

  69. R. K. Bayer, T. A. Ezquerra, H. G. Zachmann, F. J. Balta Calleja, J. Martinez Salazar, W. Meins, R. E. Diekow and P. Wiegel, J. Mater. Sci. 23 (1988) 475.

    Google Scholar 

  70. T. A. Ezquerra, R. K. Bayer and F. J. Balta Calleja, ibid. 23 (1988) 4121.

    Google Scholar 

  71. J. Martinez Salazar, R. K. Bayer, T. A. Ezquerra and F. J. Balta Calleja, Coll. Polym. Sci. 267 (1989) 409.

    Google Scholar 

  72. M. E. Galvin and G. E. Wnek, J. Polym. Sci. Polym. Chem. Ed. 21 (1983) 2727.

    Google Scholar 

  73. I. Watanabe, K. Hong and M. F. Rubner, Langumir 6 (1990) 1164.

    Google Scholar 

  74. B. D. Malhorta, S. Gosh and R. Chandra, J. Appl. Polym. Sci. 40 (1990) 1049.

    Google Scholar 

  75. J. R. Harbour, M. J. Walzak and R. P. Veregin, J. Coll. Int. Sci. 138 (1990) 380.

    Google Scholar 

  76. L. Nicodemo, L. Nicolais and E. Scafora, Polym. Engng Sci. 18 (1978) 293.

    Google Scholar 

  77. T. Noguchi, K. Gotoh, Y. Yamaguchi and S. Deki, J. Mater. Sci. Lett. 10 (1991) 477.

    Google Scholar 

  78. F. Lux, Polym. Engng Sci. in press.

  79. G. Geuskens, E. Dekezel, S. Blacher and F. Brouers, Eur. Polym. J. 27 (1991) 1261.

    Google Scholar 

  80. L. C. Sawyer and D. T. Grubb, in “Polymer Microscopy” (Chapman and Hall, London, 1987) Ch. 4

    Google Scholar 

  81. M. M. Pohl and F. Lux, unpublished results.

  82. K. L. Tan, B. T. G. Tan, S. H. Khor, K. G. Neoh and E. T. Kang, J. Phys. Chem. Solids 52 (1991) 673.

    Google Scholar 

  83. F. Lux, unpublished results (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lux, F. Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. JOURNAL OF MATERIALS SCIENCE 28, 285–301 (1993). https://doi.org/10.1007/BF00357799

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357799

Keywords

Navigation