Skip to main content
Log in

Ultrasensitive crack-based strain sensors: mechanism, performance, and biomedical applications

  • Invited Review Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Accurate and sensitive detection of strain generated from biomechanical motion and metabolism paves the way for diverse biomedical applications, including personalized healthcare, early detection of pathological symptoms, medical robotics, and human-machine interfaces. A crack-based strain sensor provides highly sensitive measurement with flexibility, cost-effectiveness, and simple device fabrication. Here, the working principle of a crack-based strain sensor based on the disconnection and reconnection of cracks is reviewed. Crack geometry and morphology, such as depth, density, and arrangement, which affect the sensitivity, repeatability, and linearity of the sensor, are discussed. Crack formation methods affecting the performance of crack-based strain sensors are also discussed. Lastly, representative biomedical applications of ultrasensitive crack-based sensors as wearable healthcare devices, precise medical tools, and cellular force analyzer are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Windmiller and J. Wang, Wearable electrochemical sensors and biosensors: a review, Electroanalysis, 25(1) (2013) 29–46.

    Article  Google Scholar 

  2. C. Mattmann, F. Clemens and G. Tröster, Sensor for measuring strain in textile, Sensors, 8(6) (2008) 3719–3732.

    Article  Google Scholar 

  3. P. Bingger, M. Zens and P. Woias, Highly flexible capacitive strain gauge for continuous long-term blood pressure monitoring, Biomedical Microdevices, 14(3) (2012) 573–581.

    Article  Google Scholar 

  4. D.-H. Kim, R. Ghaffari, N. Lu and J. A. Rogers, Flexible and stretchable electronics for biointegrated devices, Annual Review of Biomedical Engineering, 14 (2012) 113–128.

    Article  Google Scholar 

  5. W. Honda, S. Harada, T. Arie, S. Akita and K. Takei, Printed wearable temperature sensor for health monitoring, Sensors, 2014 IEEE, IEEE (2014) 2227–2229.

  6. F. Lorussi, W. Rocchia, E. P. Scilingo, A. Tognetti and D. De Rossi, Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture, IEEE Sensors Journal, 4(6) (2004) 807–818.

    Article  Google Scholar 

  7. C. Luo, J. Jia, Y. Gong, Z. Wang, Q. Fu and C. Pan, Highly sensitive, durable, and multifunctional sensor inspired by a spider, ACS Applied Materials and Interfaces, 9(23) (2017) 19955–19962.

    Article  Google Scholar 

  8. S.-K. Kang, R. K. Murphy, S.-W. Hwang, S. M. Lee, D. V. Harburg, N. A. Krueger, J. Shin, P. Gamble, H. Cheng and S. Yu, Bioresorbable silicon electronic sensors for the brain, Nature, 530(7588) (2016) 71–76.

    Article  Google Scholar 

  9. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu and I. Park, Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite, ACS Nano, 8(5) (2014) 5154–5163.

    Article  Google Scholar 

  10. N. Lu, C. Lu, S. Yang and J. Rogers, Highly sensitive skin — mountable strain gauges based entirely on elastomers, Advanced Functional Materials, 22(19) (2012) 4044–4050.

    Article  Google Scholar 

  11. C. Pang, C. Lee and K. Y. Suh, Recent advances in flexible sensors for wearable and implantable devices, Journal of Applied Polymer Science, 130(3) (2013) 1429–1441.

    Article  Google Scholar 

  12. S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim and J.-H. Ahn, Graphene-based transparent strain sensor, Carbon, 51 (2013) 236–242.

    Article  Google Scholar 

  13. Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou, J. Wang, S. Luo and Y. Gao, A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances, Nature Communications, 8(1) (2017) 1–8.

    Article  Google Scholar 

  14. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba and K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection, Nature Nanotechnology, 6(5) (2011) 296–301.

    Article  Google Scholar 

  15. C. Pang, G.-Y. Lee, T.-i. Kim, S. M. Kim, H. N. Kim, S.-H. Ahn and K.-Y. Suh, A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres, Nature Materials, 11(9) (2012) 795–801.

    Article  Google Scholar 

  16. C. Wang, J. Zhao, C. Ma, J. Sun, L. Tian, X. Li, F. Li, X. Han, C. Liu and C. Shen, Detection of non-joint areas tiny strain and anti-interference voice recognition by micro-cracked metal thin film, Nano Energy, 34 (2017) 578–585.

    Article  Google Scholar 

  17. H. Jeon, S. K. Hong, M. S. Kim, S. J. Cho and G. Lim, Omnipurpose stretchable strain sensor based on a highly dense nanocracking structure for whole-body motion monitoring, ACS Applied Materials and Interfaces, 9(48) (2017) 41712–41721.

    Article  Google Scholar 

  18. F. G. Barth, Spider senses-technical perfection and biology, Zoology, 105(4) (2002) 271–285.

    Article  Google Scholar 

  19. P. Fratzl and F. G. Barth, Biomaterial systems for mechanosensing and actuation, Nature, 462(7272) (2009) 442–448.

    Article  Google Scholar 

  20. S. L. Young, M. Chyasnavichyus, F. G. Barth, I. Zlotnikov, Y. Politi and V. V. Tsukruk, Micromechanical properties of strain-sensitive lyriform organs of a wandering spider (Cupiennius salei), Acta Biomaterialia, 41 (2016) 40–51.

    Article  Google Scholar 

  21. F. G. Barth and M. Wadepuhl, Slit sense organs on the scorpion leg (Androctonus australis L., Buthidae), Journal of Morphology, 145(2) (1975) 209–227.

    Article  Google Scholar 

  22. P. Brownell and R. D. Farley, Detection of vibrations in sand by tarsal sense organs of the nocturnal scorpion, Paruroctonus mesaensis, Journal of Comparative Physiology, 131(1) (1979) 23–30.

    Article  Google Scholar 

  23. C. Zhang, D. Chen, S. Niu, J. Zhang, X. Meng, L. Liu, T. Sun, S. Wen, Y. Zhou and Y. Shi, High-aspect-ratio deflection transducers inspired by the ultra-sensitive cantilever configuration of scorpion trichobothria, Journal of Materials Chemistry C, 8(18) (2020) 6093–6101.

    Article  Google Scholar 

  24. F. G. Barth, Spider mechanoreceptors, Current Opinion in Neurobiology, 14(4) (2004) 415–422.

    Article  Google Scholar 

  25. M. Amjadi, M. Turan, C. P. Clementson and M. Sitti, Parallel microcracks-based ultrasensitive and highly stretchable strain sensors, ACS Applied Materials and Interfaces, 8(8) (2016) 5618–5626.

    Article  Google Scholar 

  26. E. Aslanidis, E. Skotadis and D. Tsoukalas, Resistive crack-based NP strain sensors with extreme sensitivity and adjustable gauge factor, made on flexible substrates, Nanoscale, 13(5) (2021) 3263–3274.

    Article  Google Scholar 

  27. Z. Han, L. Liu, J. Zhang, Q. Han, K. Wang, H. Song, Z. Wang, Z. Jiao, S. Niu and L. Ren, High-performance flexible strain sensor with bio-inspired crack arrays, Nanoscale, 10(32) (2018) 15178–15186.

    Article  Google Scholar 

  28. D.-S. Kim, Y. W. Choi, T. Lee, G. Lee, D. Kang, M. Choi and D.-W. Lee, Photocurable PUA (Poly Urethaneacrylat) cantilever integrated with ultra-high sensitive crack-based sensor, 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), IEEE (2017) 78–81.

  29. Y. Kwon, C. Park, J. Kim, H. Kim, C. Park, B. Lee, Y. Jeong and S. J. Cho, Effects of bending strain and crack direction on crack-based strain sensors, Smart Materials and Structures, 29(11) (2020) 115007.

    Article  Google Scholar 

  30. S. Wang, P. Xiao, Y. Liang, J. Zhang, Y. Huang, S. Wu, S.-W. Kuo and T. Chen, Network cracks-based wearable strain sensors for subtle and large strain detection of human motions, Journal of Materials Chemistry C, 6(19) (2018) 5140–5147.

    Article  Google Scholar 

  31. C. Zhang, J. Zhang, D. Chen, X. Meng, L. Liu, K. Wang, Z. Jiao, T. Sun, D. Wang and S. Niu, Crack-based and hair-like sensors inspired from arthropods: a review, Journal of Bionic Engineering, 17(5) (2020) 867–898.

    Article  Google Scholar 

  32. D. Kang, P. V. Pikhitsa, Y. W. Choi, C. Lee, S. S. Shin, L. Piao, B. Park, K.-Y. Suh, T.-i. Kim and M. Choi, Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system, Nature, 516(7530) (2014) 222–226.

    Article  Google Scholar 

  33. J. Park, M. Kim, I. Hong, T. Kim, E. Lee, E. Kim, J.-K. Ryu, Y. Jo, J. Koo and S. Han, Foot plantar pressure measurement system using highly sensitive crack-based sensor, Sensors, 19(24) (2019) 5504.

    Article  Google Scholar 

  34. D.-S. Kim, Y. W. Choi, A. Shanmugasundaram, Y.-J. Jeong, J. Park, N.-E. Oyunbaatar, E.-S. Kim, M. Choi and D.-W. Lee, Highly durable crack sensor integrated with silicone rubber cantilever for measuring cardiac contractility, Nature Communications, 11(1) (2020) 1–13.

    Google Scholar 

  35. P. J. Fleming, R. Gilbert, Y. Azaz, P. J. Berry, P. T. Rudd, A. Stewart and E. Hall, Interaction between bedding and sleeping position in the sudden infant death syndrome: a population based case-control study, British Medical Journal, 301(6743) (1990) 85–89.

    Article  Google Scholar 

  36. J. Opara, W. Brola, M. Leonardi and B. Btaszczyk, Quality of life in Parkinsons disease, Journal of Medicine and Life, 5(4) (2012) 375.

    Google Scholar 

  37. W. B. Kannel, T. Gordon and M. J. Schwartz, Systolic versus diastolic blood pressure and risk of coronary heart disease: the Framingham study, The American Journal of Cardiology, 27(4) (1971) 335–346.

    Article  Google Scholar 

  38. D.-S. Kim, Y.-J. Jeong, B.-K. Lee, A. Shanmugasundaram and D.-W. Lee, Piezoresistive sensor-integrated PDMS cantilever: A new class of device for measuring the drug-induced changes in the mechanical activity of cardiomyocytes, Sensors and Actuators B: Chemical, 240 (2017) 566–572.

    Article  Google Scholar 

  39. B. Park, J. Kim, D. Kang, C. Jeong, K. S. Kim, J. U. Kim, P. J. Yoo and T. i. Kim, Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth, Advanced Materials, 28(37) (2016) 8130–8137.

    Article  Google Scholar 

  40. Y. Xin, J. Zhou, R. Tao, X. Xu and G. Lubineau, Making a bilateral compression/tension sensor by pre-stretching open-crack networks in carbon nanotube papers, ACS Applied Materials and Interfaces, 10(39) (2018) 33507–33515.

    Article  Google Scholar 

  41. T. Lee, Y. W. Choi, G. Lee, S. M. Kim, D. Kang and M. Choi, Crack-based strain sensor with diverse metal films by inserting an inter-layer, RSC Advances, 7(55) (2017) 34810–34815.

    Article  Google Scholar 

  42. J. Lee, S. Kim, J. Lee, D. Yang, B. C. Park, S. Ryu and I. Park, A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection, Nanoscale, 6(20) (2014) 11932–11939.

    Article  Google Scholar 

  43. J. Jung, K. K. Kim, Y. D. Suh, S. Hong, J. Yeo and S. H. Ko, Recent progress in controlled nano/micro cracking as an alternative nano-patterning method for functional applications, Nanoscale Horizons, 5(7) (2020) 1036–1049.

    Article  Google Scholar 

  44. T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li and H. Zhu, Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing, Materials Horizons, 3(3) (2016) 248–255.

    Article  Google Scholar 

  45. T. Lee, Y. W. Choi, G. Lee, P. V. Pikhitsa, D. Kang, S. M. Kim and M. Choi, Transparent ITO mechanical crack-based pressure and strain sensor, Journal of Materials Chemistry C, 4(42) (2016) 9947–9953.

    Article  Google Scholar 

  46. J. Chen, H. Liu, W. Wang, N. Nabulsi, W. Zhao, J. Y. Kim, M. K. Kwon and J. H. Ryou, High durable, biocompatible, and flexible piezoelectric pulse sensor using single-crystalline III-N thin film, Advanced Functional Materials, 29(37) (2019) 1903162.

    Article  Google Scholar 

  47. G. Schwartz, B. C.-K. Tee, J. Mei, A. L. Appleton, D. H. Kim, H. Wang and Z. Bao, Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring, Nature Communications, 4(1) (2013) 1–8.

    Article  Google Scholar 

  48. Y. Wei, S. Chen, X. Dong, Y. Lin and L. Liu, Flexible piezoresistive sensors based on dynamic bridging effect of silver nanowires toward graphene, Carbon, 113 (2017) 395–403.

    Article  Google Scholar 

  49. R. Takpara, M. Duquennoy, M. Ouaftouh, C. Courtois, F. Jenot and M. Rguiti, Optimization of PZT ceramic IDT sensors for health monitoring of structures, Ultrasonics, 79 (2017) 96–104.

    Article  Google Scholar 

  50. J. Zhu, L. Jia and R. Huang, Electrospinning poly (l-lactic acid) piezoelectric ordered porous nanofibers for strain sensing and energy harvesting, Journal of Materials Science: Materials in Electronics, 28(16) (2017) 12080–12085.

    Google Scholar 

  51. R. Chen, L. Zhang and W. Shen, Controlling the contact angle of biological sessile drops for study of their desiccated cracking patterns, Journal of Materials Chemistry B, 6(37) (2018) 5867–5875.

    Article  Google Scholar 

  52. M.-K. Chung, J.-Y. Yoo, J.-S. Lee, M.-S. Jo, K.-W. Choi, S.-B. Kim and J.-B. Yoon, Ultra-sensitive strain sensor using high density self-aligned nano-cracks, 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), IEEE (2020) 20–23.

  53. Y. Xiang, T. Li, Z. Suo and J. J. Vlassak, High ductility of a metal film adherent on a polymer substrate, Applied Physics Letters, 87(16) (2005) 161910.

    Article  Google Scholar 

  54. M. J. Cordill, A. Taylor, J. Schalko and G. Dehm, Fracture and delamination of chromium thin films on polymer substrates, Metallurgical and Materials Transactions A, 41(4) (2010) 870–875.

    Article  Google Scholar 

  55. H. Jin, W.-Y. Lu, M. Cordill and K. Schmidegg, In situ study of cracking and buckling of chromium films on PET substrates, Experimental Mechanics, 51(2) (2011) 219–227.

    Article  Google Scholar 

  56. Y. Huang, Y. Xiang, W. Ren, F. Li, C. Li and T. Yang, Enhancing the sensitivity of crack-based strain sensor assembled by functionalized graphene for human motion detection, Science China Technological Sciences, 64(8) (2021) 1805–1813.

    Article  Google Scholar 

  57. T. Sakorikar, M. K. Kavitha, P. Vayalamkuzhi and M. Jaiswal, Thickness-dependent crack propagation in uniaxially strained conducting graphene oxide films on flexible substrates, Scientific Reports, 7(1) (2017) 1–10.

    Google Scholar 

  58. E. Lee, T. Kim, H. Suh, M. Kim, P. V. Pikhitsa, S. Han, J.-s. Koh and D. Kang, Effect of metal thickness on the sensitivity of crack-based sensors, Sensors, 18(9) (2018) 2872.

    Article  Google Scholar 

  59. S. P. Lacour, S. Wagner, Z. Huang and Z. Suo, Stretchable gold conductors on elastomeric substrates, Applied Physics Letters, 82(15) (2003) 2404–2406.

    Article  Google Scholar 

  60. D. R. Cairns, R. P. Witte, D. K. Sparacin, S. M. Sachsman, D. C. Paine, G. P. Crawford and R. R. Newton, Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates, Applied Physics Letters, 76(11) (2000) 1425–1427.

    Article  Google Scholar 

  61. N. Lu, X. Wang, Z. Suo and J. Vlassak, Metal films on polymer substrates stretched beyond 50 %, Applied Physics Letters, 91(22) (2007) 221909.

    Article  Google Scholar 

  62. G. Lee, T. Lee, Y. W. Choi, P. V. Pikhitsa, S. J. Park, S. M. Kim, D. Kang and M. Choi, Metal-elastomer bilayered switches by utilizing the superexponential behavior of crack widening, Journal of Materials Chemistry C, 5(42) (2017) 10920–10925.

    Article  Google Scholar 

  63. Y. W. Choi, D. Kang, P. V. Pikhitsa, T. Lee, S. M. Kim, G. Lee, D. Tahk and M. Choi, Ultra-sensitive pressure sensor based on guided straight mechanical cracks, Scientific Reports, 7(1) (2017) 1–8.

    Google Scholar 

  64. B. Putz, R. L. Schoeppner, O. Glushko, D. F. Bahr and M. J. Cordill, Improved electro-mechanical performance of gold films on polyimide without adhesion layers, Scripta Materialia, 102 (2015) 23–26.

    Article  Google Scholar 

  65. H. Jung, C. Park, H. Lee, S. Hong, H. Kim and S. J. Cho, Nano-cracked strain sensor with high sensitivity and linearity by controlling the crack arrangement, Sensors, 19(12) (2019) 2834.

    Article  Google Scholar 

  66. K.-H. Kim, S. K. Hong, S.-H. Ha, L. Li, H. W. Lee and J.-M. Kim, Enhancement of linearity range of stretchable ultrasensitive metal crack strain sensor via superaligned carbon nanotube-based strain engineering, Materials Horizons, 7(10) (2020) 2662–2672.

    Article  Google Scholar 

  67. K. K. Kim, I. Ha, M. Kim, J. Choi, P. Won, S. Jo and S. H. Ko, A deep-learned skin sensor decoding the epicentral human motions, Nature Communications, 11(1) (2020) 1–8.

    Google Scholar 

  68. S. Y. Choi, M. Mamak, N. Coombs, N. Chopra and G. A. Ozin, Thermally stable two-dimensional hexagonal mesoporous nanocrystalline anatase, meso-nc-TiO2: bulk and crack — free thin film morphologies, Advanced Functional Materials, 14(4) (2004) 335–344.

    Article  Google Scholar 

  69. J. Lee, S. Chung, H. Song, S. Kim and Y. Hong, Lateral-crack-free, buckled, inkjet-printed silver electrodes on highly pre-stretched elastomeric substrates, Journal of Physics D: Applied Physics, 46(10) (2013) 105305.

    Article  Google Scholar 

  70. B. E. Alaca, H. Sehitoglu and T. Saif, Guided self-assembly of metallic nanowires and channels, Applied Physics Letters, 84(23) (2004) 4669–4671.

    Article  Google Scholar 

  71. K. H. Nam, I. H. Park and S. H. Ko, Patterning by controlled cracking, Nature, 485(7397) (2012) 221–224.

    Article  Google Scholar 

  72. J. Chung, S. Ko, N. R. Bieri, C. P. Grigoropoulos and D. Poulikakos, Conductor microstructures by laser curing of printed gold nanoparticle ink, Applied Physics Letters, 84(5) (2004) 801–803.

    Article  Google Scholar 

  73. D. Paeng, J. H. Yoo, J. Yeo, D. Lee, E. Kim, S. H. Ko and C. P. Grigoropoulos, Low-cost facile fabrication of flexible transparent copper electrodes by nanosecond laser ablation, Advanced Materials, 27(17) (2015) 2762–2767.

    Article  Google Scholar 

  74. F. Han, R. Su, L. Teng, R. Xie, Q. Yu, Q. Li, Q. Tian, H. Li, J. Sun and Y. Zhang, Brittle-layer-tuned microcrack propagation for high-performance stretchable strain sensors, Journal of Materials Chemistry C, 9(23) (2021) 7319–7327.

    Article  Google Scholar 

  75. D. Gerard and D. Koss, Porosity and crack initiation during low cycle fatigue, Materials Science and Engineering: A, 129(1) (1990) 77–85.

    Article  Google Scholar 

  76. H. Vandeparre, Q. Liu, I. R. Minev, Z. Suo and S. P. Lacour, Localization of folds and cracks in thin metal films coated on flexible elastomer foams, Advanced Materials, 25(22) (2013) 3117–3121.

    Article  Google Scholar 

  77. M. C. Coen, R. Lehmann, P. Groening and L. Schlapbach, Modification of the micro-and nanotopography of several polymers by plasma treatments, Applied Surface Science, 207(1–4) (2003) 276–286.

    Article  Google Scholar 

  78. S. Chen, Y. Wei, S. Wei, Y. Lin and L. Liu, Ultrasensitive cracking-assisted strain sensors based on silver nanowires/graphene hybrid particles, ACS Applied Materials and Interfaces, 8(38) (2016) 25563–25570.

    Article  Google Scholar 

  79. B. C. Kim, C. Moraes, J. Huang, T. Matsuoka, M. Thouless and S. Takayama, Fracture-based fabrication of normally closed, adjustable, and fully reversible microscale fluidic channels, Small, 10(19) (2014) 4020–4029.

    Article  Google Scholar 

  80. S. Hong, J. Yeo, G. Kim, D. Kim, H. Lee, J. Kwon, H. Lee, P. Lee and S. H. Ko, Nonvacuum, maskless fabrication of a flexible metal grid transparent conductor by low-temperature selective laser sintering of nanoparticle ink, ACS Nano, 7(6) (2013) 5024–5031.

    Article  Google Scholar 

  81. S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee and M. Y. Yang, Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics, Advanced Materials, 26(33) (2014) 5808–5814.

    Article  Google Scholar 

  82. K. K. Kim, I. Ha, P. Won, D.-G. Seo, K.-J. Cho and S. H. Ko, Transparent wearable three-dimensional touch by self-generated multiscale structure, Nature Communications, 10(1) (2019) 1–8.

    Google Scholar 

  83. Y. Tan, J. Hu, L. Ren, J. Zhu, J. Yang and D. Liu, A passive and wireless sensor for bone plate strain monitoring, Sensors, 17(11) (2017) 2635.

    Article  Google Scholar 

  84. K. Y. Kwon, Y. J. Shin, J. H. Shin, C. Jeong, Y. H. Jung, B. Park and T. I. Kim, Stretchable, patch-type calorie-expenditure measurement device based on pop-up shaped nanoscale crack-based sensor, Advanced Healthcare Materials, 8(19) (2019) 1801593.

    Article  Google Scholar 

  85. J. Ross Jr, E. H. Sonnenblick, J. W. Covell, G. A. Kaiser and D. Spiro, The architecture of the heart in systole and diastole: technique of rapid fixation and analysis of left ventricular geometry, Circulation Research, 21(4) (1967) 409–421.

    Article  Google Scholar 

  86. R. Bao, C. Wang, L. Dong, R. Yu, K. Zhao, Z. L. Wang and C. Pan, Flexible and controllable piezo-phototronic pressure mapping sensor matrix by ZnO NW/p-polymer LED array, Advanced Functional Materials, 25(19) (2015) 2884–2891.

    Article  Google Scholar 

  87. W. H. Yeo, Y. S. Kim, J. Lee, A. Ameen, L. Shi, M. Li, S. Wang, R. Ma, S. H. Jin and Z. Kang, Multifunctional epidermal electronics printed directly onto the skin, Advanced Materials, 25(20) (2013) 2773–2778.

    Article  Google Scholar 

  88. C. Wang, R. Bao, K. Zhao, T. Zhang, L. Dong and C. Pan, Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect, Nano Energy, 14 (2015) 364–371.

    Article  Google Scholar 

  89. L. Sura, A. Madhavan, G. Carnaby and M. A. Crary, Dysphagia in the elderly: management and nutritional considerations, Clinical Interventions in Aging, 7 (2012) 287.

    Google Scholar 

  90. E. A. Storch, L. J. Merlo, C. Lack, V. A. Milsom, G. R. Geffken, W. K. Goodman and T. K. Murphy, Quality of life in youth with Tourette’s syndrome and chronic tic disorder, Journal of Clinical Child and Adolescent Psychology, 36(2) (2007) 217–227.

    Article  Google Scholar 

  91. S. D. Na, G. Lee, Q. Wei, K. W. Seong, J. H. Cho and M. N. Kim, Mastication noise reduction method for fully implantable hearing aid using piezo-electric sensor, Technology and Health Care, 25(S1) (2017) 29–34.

    Article  Google Scholar 

  92. M.-C. Rousseau, S. Pietra, J. Blaya and A. Catala, Quality of life of ALS and LIS patients with and without invasive mechanical ventilation, Journal of Neurology, 258(10) (2011) 1801–1804.

    Article  Google Scholar 

  93. A. Heilinger, R. Ortner, V. La Bella, Z. R. Lugo, C. Chatelle, S. Laureys, R. Spataro and C. Guger, Performance differences using a vibro-tactile P300 BCI in LIS-patients diagnosed with stroke and ALS, Frontiers in Neuroscience, 12 (2018) 514.

    Article  Google Scholar 

  94. N. Birbaumer and L. G. Cohen, Brain-computer interfaces: communication and restoration of movement in paralysis, The Journal of Physiology, 579(3) (2007) 621–636.

    Article  Google Scholar 

  95. A. Kübler, B. Kotchoubey, T. Hinterberger, N. Ghanayim, J. Perelmouter, M. Schauer, C. Fritsch, E. Taub and N. Birbaumer, The thought translation device: a neurophysiological approach to communication in total motor paralysis, Experimental Brain Research, 124(2) (1999) 223–232.

    Article  Google Scholar 

  96. N. Birbaumer, G. Gallegos-Ayala, M. Wildgruber, S. Silvoni and S. R. Soekadar, Direct brain control and communication in paralysis, Brain Topography, 27(1) (2014) 4–11.

    Article  Google Scholar 

  97. A. Nourmahnad, F. Benboujja and C. J. Hartnick, Using intraoperative optical coherence tomography to image pediatric unilateral vocal fold paralysis, International Journal of Pediatric Otorhinolaryngology, 121 (2019) 72–75.

    Article  Google Scholar 

  98. S. Jebakani, J. Divya, S. Megha and H. Santhosh, Eye blink to voice for paralyzed patients, International Journal of Information Technology (IJIT), 6 (3) (2020).

  99. M. Totaro, T. Poliero, A. Mondini, C. Lucarotti, G. Cairoli, J. Ortiz and L. Beccai, Soft smart garments for lower limb joint position analysis, Sensors, 17(10) (2017) 2314.

    Article  Google Scholar 

  100. T. R. Clites, M. J. Carty, J. B. Ullauri, M. E. Carney, L. M. Mooney, J.-F. Duval, S. S. Srinivasan and H. M. Herr, Proprioception from a neurally controlled lower-extremity prosthesis, Science Translational Medicine, 10 (443) (2018).

  101. L. J. Hargrove, A. M. Simon, A. J. Young, R. D. Lipschutz, S. B. Finucane, D. G. Smith and T. A. Kuiken, Robotic leg control with EMG decoding in an amputee with nerve transfers, New England Journal of Medicine, 369(13) (2013) 1237–1242.

    Article  Google Scholar 

  102. R. Tibold and A. J. Fuglevand, Prediction of muscle activity during loaded movements of the upper limb, Journal of Neuroengineering and Rehabilitation, 12(1) (2015) 1–12.

    Article  Google Scholar 

  103. M. Su, F. Li, S. Chen, Z. Huang, M. Qin, W. Li, X. Zhang and Y. Song, Nanoparticle based curve arrays for multirecognition flexible electronics, Advanced Materials, 28(7) (2016) 1369–1374.

    Article  Google Scholar 

  104. I. Hammami, L. Salhi and S. Labidi, Pathological voices detection using support vector machine, 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), IEEE (2016) 662–666.

  105. J. Yang, J. Chen, Y. Su, Q. Jing, Z. Li, F. Yi, X. Wen, Z. Wang and Z. L. Wang, Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition, Advanced Materials, 27(8) (2015) 1316–1326.

    Article  Google Scholar 

  106. Y. Wang, T. Yang, J. Lao, R. Zhang, Y. Zhang, M. Zhu, X. Li, X. Zang, K. Wang and W. Yu, Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition, Nano Research, 8(5) (2015) 1627–1636.

    Article  Google Scholar 

  107. K. Ronaldson-Bouchard, S. P. Ma, K. Yeager, T. Chen, L. Song, D. Sirabella, K. Morikawa, D. Teles, M. Yazawa and G. Vunjak-Novakovic, Advanced maturation of human cardiac tissue grown from pluripotent stem cells, Nature, 556(7700) (2018) 239–243.

    Article  Google Scholar 

  108. F. Qian, C. Huang, Y.-D. Lin, A. N. Ivanovskaya, T. J. O’Hara, R. H. Booth, C. J. Creek, H. A. Enright, D. A. Soscia and A. M. Belle, Simultaneous electrical recording of cardiac electrophysiology and contraction on chip, Lab on a Chip, 17(10) (2017) 1732–1739.

    Article  Google Scholar 

  109. H. Ryu, Y. Park, H. Luan, G. Dalgin, K. Jeffris, H. J. Yoon, T. S. Chung, J. U. Kim, S. S. Kwak and G. Lee, Transparent, compliant 3D mesostructures for precise evaluation of mechanical characteristics of organoids, Advanced Materials (2021) 2100026.

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (NRF-2021R1A4A1052035), KIST Institutional Program (Project No. 2E31121-21-111), and the Technology Innovation Program (or Industrial Strategic Technology Development Program-Alchemist Project) (20012502, Development of Supercritical Materials with Controlled Electrochemical Decomposition and Degradation Rate using Artificial Intelligence) funded by the Ministry of Trade, Industry, & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Kyun Kang.

Additional information

Yoon-nam Kim is a master’s student at the Department of Materials Science and Engineering, Seoul National University, Seoul, Korea. He received his B.S. in Materials Science and Engineering from Seoul National University. His research interests include transient electronics, 3D compressive buckling, and bio/material interfaces.

Junsang Lee is a Ph.D. student at Materials Science and Engineering, Seoul National University, Seoul, Korea. He received his B.S. in Materials Science and Engineering from Seoul National University. His research interests include mechanical behavior and microstructural characterization, small-scale testing, and stress analysis.

Seung-Kyun Kang is an Associate Professor at the Department of Materials Science and Engineering, Seoul National University, Seoul, Korea. He received his Ph.D. in Materials Science and Engineering from Seoul National University. His research interests include bioresorbable and bioimplantable electronics, unusual semiconductor fabrication and material processing, and material strategy for reliability control of devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Yn., Lee, J. & Kang, SK. Ultrasensitive crack-based strain sensors: mechanism, performance, and biomedical applications. J Mech Sci Technol 36, 1059–1077 (2022). https://doi.org/10.1007/s12206-022-0246-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-022-0246-z

Keywords

Navigation