Skip to main content
Log in

Revolutionizing waste-to-energy: harnessing the power of triboelectric nanogenerators

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Recently, there has been a lot of focus on developing new waste-to-energy technologies because they help us to provide sustainable energy solutions for future generations. This review paper investigates an innovative waste-to-energy technology known as triboelectric nanogenerators (TENGs), which uses the electrostatic induction and contact electrification principles of physics. The underlying physics of TENG technology allows for a wide range of material choices for its fabrication; as a result, waste materials are utilized for energy production using TENGs. It comprehensively discusses how various types of waste, including plastic, electronic, medical, household, and biowaste, can be integrated into TENG technology for efficient energy production. Furthermore, various applications of waste-based TENGs are discussed in detail. Finally, we projected challenges and future directions for creating a sustainable, green energy landscape.

Graphical abstract

The review article presents a detailed exploration of triboelectric nanogenerators (TENGs) as novel waste-to-energy technologies that utilize waste materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Copyright © 2022 Elsevier

Fig. 6

Copyright © 2020 American Chemical Society. c Biowaste sunflower husks and powder. d 3D nanoprofile of SFP thin film. e Schematic illustration of fabricated TENG. f Output current and power with variable load resistance. Reprinted from [84]. Copyright © 2021 Elsevier. g Schematic representations of the ostrich EM-TENG device. h SEM image of ostrich EM. Reprinted from [101]. CC BY-NC-ND 4.0. i 3D volumetric image of PVA-chitosan composites using synchrotron radiated X-ray tomography. j The digital image of the PVA composites is rollable and stretchable. k Current output of PC10 device at different frequencies. l Voltage and power output of the PC10 TENG at various load resistances. m Digital image of the powering of LED using a PC 10 device. Reprinted from [102]. Copyright © 2023 American Chemical Society

Fig. 7

Copyright © 2023 American Chemical Society. h COVID-19 clinical waste collected and disinfected. i 3D printed TENG device: three-layered mask-copper electrode, glove-aluminum electrode. j Load analysis: variation of voltage and current with respect to load resistances. k Variation of power and power density according to the load resistances. Reprinted from [103]. Copyright © 2023 Elsevier

Fig. 8

Copyright © 2022 Elsevier. d Three-dimensional schematic illustration of the H-TENG. e Stability test. f Power density curve of the H-TENG. Reprinted from [108]. Copyright © 2018 Elsevier. g photograph of the cloth trash and surface morphology of the waste textile fibers collected from cloth trash. h Deformation of the knitted textile and digital image of the 4-finger knitted TENG. i digital image of the F-TENG. j Voltage output response of F-TENG while crumpling, folding, knotting, and enwinding. k Power density curve of the F-TENG. Reprinted from [109]. Copyright © 2022 Elsevier

Fig. 9

Copyright © 2023 Elsevier. d Photographs of WPS material. e Recycled WPS film attached with Cu electrode. f SEM micrograph of the WPS film. g Photographs of the WPS-TENG. h Stability test for 20,000 cycles and 180 days. Reprinted from [110]. Copyright © 2022 Elsevier. i Huge amount of waste rubber and waste rubber powder (WRP). j Schematic showing the structural design of the TENG based on WRP. k Digital photograph of WRP-TENG. l Output voltages and power density of the TENG based on WRP-20 under variable external load resistances. Reprinted from [111]. Copyright © 2017, American Chemical Society

Fig. 10

Copyright © 2021 Elsevier

Fig. 11

Copyright © 2019 Elsevier. d Schematic of FNP-based TENG. e Electrical performance of FNP-based TENG with respect to load resistance [116]. Copyright © 2019 Elsevier. f, g Molecular structure of Mo-MOF and photograph of original TENG device [117]. Copyright 2023, Wiley-VCH. h, i Photograph of stacked CFP TENG, SEM image of cosmetic powder layer, and potential distribution calculation using COMSOL [118]. Creative Commons Attribution 4.0

Fig. 12
Fig. 13

Copyright © 2016 Elsevier. b Turning on of tally counter, Lumex display, wristwatch, and connected LEDs in series using MG-CS TENG device [103]. Copyright © 2023 Elsevier. c Instantaneous glowing of commercial 100 LEDs with the aid of WRP-based TENG [111]. Copyright © 2017 American Chemical Society. d Lighting up 100 colored LEDs using CF-based TENG [152]. Copyright © 2022 American Chemical Society. e Glowing 300 LEDs using C-S mode WP TENG device [169]. Copyright 2023, Wiley–VCH. f Powering the LCD of timer clock using CF-TENG device [107]. Copyright © 2022 Elsevier. g Lighting of 22 LEDs using TENG device fabricated using waste food packaging aluminum covers [149]. Copyright © 2022 Elsevier. h Powering of portable electronic gadgets using WM-TENG device [83]. Copyright © 2021 American Chemical Society

Fig. 14

Copyright © 2021 Elsevier. g Picture of the robot arm approaching the cup to recognize the distance between the cup and hand (distance sensor). h Electrical behavior curve and the subsequent fitting data. i Voltage behavior of the TENG active layer for noncontact and contact responding motion at various initiating points (from 0 to 27 mm) [133]. Copyright © 2020 American Chemical Society

Fig. 15

Copyright © 2021 Elsevier. c, d Voltage behavior of the aloe vera gel and PDMS-based TENG with hand tapping force under 10, 25, 52, 75, and 99% humidity conditions [129]. Copyright © 2020 Elsevier. e Humidity setup. f Dependence of relative humidity on the power of almond, walnut, and pistachio waste fruit shell-based TENG [97]. Copyright © 2022 Elsevier. g Influence of relative humidity on peanut shell powder-based TENG [99]. Copyright © 2020 American Chemical Society

Fig. 16

Copyright © 2021 Elsevier

Fig. 17

Copyright © 2023, American Chemical Society. d Centrifuge machine image. e Electrical behaviors were obtained at different RPMs (400–3600 RPM) by placing CF-TENG device on centrifuge machine. f Extended view of the electrical result at the 2000 RPM [107]. Copyright © 2022 Elsevier. g Usage of the PE-H-TENG to exploit biomechanical energy harvested by leg and hand motions. h Voltage harvested by biomechanical leg and hand motions utilizing the PE- and PP-H-TENGs [108]. Copyright © 2018 Elsevier

Fig. 18

Copyright © 2023 American Chemical Society. h Medical alcohol detoxification, the NC/MC film-based TENG is fully applied to the abdomen skin. i Comparable periodic signals of volunteer 1 and volunteer 2 in various breathing states [154]. Copyright © 2022 Elsevier

Fig. 19

Copyright © 2023 Elsevier. (ii) Morse code sensor. h Photographic and schematic demonstration of C@PW-TENG as wearable wristband for the transmission of information during an emergency through Morse code. i Flow process diagram for identifying Morse code signals, message decoding, and issuing an alert via the LabVIEW platform to inform people in case of emergency. j International Morse code representation for alphabets. k The electrical behaviors noticed by tapping wristband with a hand finger conferring to Morse code, representing TENG and DANGER. l The LabVIEW Morse decoder sends an email notification to person’s take career. m Schematic representation and n image of a nine-segment self-power keyboard established using C@PW-TENG. o Alphabets and numbers exhibited by hand touching the C@PW-based TENG and nine-segment keyboard through Arduino circuit board [106]. CC-BY 4.0. Copyright © 2022 American Chemical Society

Fig. 20

Copyright © 2018 Elsevier. Speed sensor. e Schematic illustration of TB/TENG speed sensor utilized for smart traffic surveillance. f Arrangement of TB/TENG speed sensor on road for detection of vehicle speed. g Sensing peaks profiled by data collection segment. h Vehicle speed wirelessly communicated to the smartphone through e-mail [166]. Copyright © 2023 American Chemical Society

Fig. 21

Copyright © 2023 Elsevier

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Stafford-Smith M, Griggs D, Gaffney O, Ullah F, Reyers B, Kanie N, Stigson B, Shrivastava P, Leach M, O’Connell D (2017) Integration: the key to implementing the Sustainable Development Goals. Sustain Sci 12:911–919. https://doi.org/10.1007/s11625-016-0383-3

    Article  PubMed  Google Scholar 

  2. Department of Economic and Social Affairs (n.d.) https://sdgs.un.org/goals

  3. Hepp P, Somerville C, Borisch B (2019) Accelerating the United Nation’s 2030 global agenda: why prioritization of the gender goal is essential, Glob. Policy 10:677–685. https://doi.org/10.1111/1758-5899.12721

    Article  Google Scholar 

  4. Franco IB, Power C, Whereat J (2020) SDG 7 affordable and clean energy, pp 105–116. https://doi.org/10.1007/978-981-32-9927-6_8

  5. Franco IB, Newey L (2020) SDG 12 responsible consumption and production, pp 187–217. https://doi.org/10.1007/978-981-32-9927-6_13

  6. Sustainable development (n.d.) The 17 goals. https://sdgs.un.org/goals. Accessed 27 Mar 2024

  7. Foster W, Azimov U, Gauthier-Maradei P, Molano LC, Combrinck M, Munoz J, Esteves JJ, Patino L (2021) Waste-to-energy conversion technologies in the UK: processes and barriers – a review. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2020.110226

    Article  Google Scholar 

  8. Caló A, Pongrácz E (2014) The role of smart energy networks to support the application of waste-to-energy technologies. Pollack Periodica 9:61–73. https://doi.org/10.1556/Pollack.9.2014.S.7

    Article  Google Scholar 

  9. Armenise S, SyieLuing W, Ramírez-Velásquez JM, Launay F, Wuebben D, Ngadi N, Rams J, Muñoz M (2021) Plastic waste recycling via pyrolysis: a bibliometric survey and literature review. J Anal Appl Pyrolysis. https://doi.org/10.1016/j.jaap.2021.105265

    Article  Google Scholar 

  10. Hoang AT, Varbanov PS, Nižetić S, Sirohi R, Pandey A, Luque R, Ng KH, Pham VV (2022) Perspective review on municipal solid waste-to-energy route: characteristics, management strategy, and role in circular economy. J Clean Prod. https://doi.org/10.1016/j.jclepro.2022.131897

    Article  Google Scholar 

  11. Cudjoe D, Wang H (2022) Plasma gasification versus incineration of plastic waste: energy, economic and environmental analysis. Fuel Process Technol. https://doi.org/10.1016/j.fuproc.2022.107470

    Article  Google Scholar 

  12. Feng B, van Dam KH, Guo M, Shah N, Passmore S, Wang X (2020) Planning of food-energy-water-waste (FEW2) nexus for sustainable development. BMC Chem Eng. https://doi.org/10.1186/s42480-020-0027-3

    Article  Google Scholar 

  13. Anuar Sharuddin SD, Abnisa F, Wan Daud WMA, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326. https://doi.org/10.1016/j.enconman.2016.02.037

    Article  CAS  Google Scholar 

  14. Makarichi L, Jutidamrongphan W, anan Techato K (2018) The evolution of waste-to-energy incineration: a review. Renew Sustain Energy Rev 91:812–821. https://doi.org/10.1016/j.rser.2018.04.088

    Article  CAS  Google Scholar 

  15. Peng X, Jiang Y, Chen Z, Osman AI, Farghali M, Rooney DW, Yap PS (2023) Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility: a review. Environ Chem Lett 21:765–801. https://doi.org/10.1007/s10311-022-01551-5

    Article  CAS  Google Scholar 

  16. Singh MV (2022) Pyrolysis of waste polyolefins into liquid petrochemicals using metal carbonate catalyst. Eng Sci 19:285–291. https://doi.org/10.30919/ES8D699

    Article  CAS  Google Scholar 

  17. Pannucharoenwong N, Duanguppama K, Chaiphet K, Turakarn C, Echaroj S, Rattanadecho P (2023) The fuel production for diesel engine from catalytic pyrolysis of plastic waste. Eng Sci 1:1. https://doi.org/10.30919/ES964

    Article  Google Scholar 

  18. Khan S, Ul-Islam M, Fatima A, Manan S, Khattak WA, Ullah MW, Yang G (2023) Potential of food and agro-industrial wastes for cost-effective bacterial cellulose production: an updated review of literature. ES Food and Agroforestry 1:1. https://doi.org/10.30919/ESFAF905

    Article  Google Scholar 

  19. Emebu S, Pecha J, Janáčová D (2022) Review on anaerobic digestion models: model classification & elaboration of process phenomena. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2022.112288

    Article  Google Scholar 

  20. Zamri MFMA, Hasmady S, Akhiar A, Ideris F, Shamsuddin AH, Mofijur M, Fattah IMR, Mahlia TMI (2021) A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2020.110637

    Article  Google Scholar 

  21. Zhang K, Liu X, Bi J, BaQais A, Bin Xu B, Amin MA, Hou Y, Liu X, Li H, Algadi H, Xu J, Guo Z (2023) Bimetallic NiCe/Lay catalysts facilitated co-pyrolysis of oleic acid and methanol for efficiently preparing anaerobic hydrocarbon fuels. New J Chem 47:18272–18284. https://doi.org/10.1039/D3NJ01359F

    Article  CAS  Google Scholar 

  22. Fan W, Wang Q, Rong K, Shi Y, Peng W, Li H, Guo Z, Bin Xu B, Hou H, Algadi H, Ge S (2024) MXene enhanced 3D needled waste denim felt for high-performance flexible supercapacitors. Nanomicro Lett 16:36. https://doi.org/10.1007/s40820-023-01226-y

    Article  CAS  Google Scholar 

  23. Bhat SA, Kumar V, Kumar S, Atabani AE, Anjum Badruddin I, Chae KJ (2023) Supercapacitors production from waste: a new window for sustainable energy and waste management. Fuel 337:127125. https://doi.org/10.1016/J.FUEL.2022.127125

    Article  CAS  Google Scholar 

  24. Yang S, Qu K, Huang Z (2022) Optimizing hierarchical porous carbon from biomass waste for high-performance supercapacitors. ES Food and Agroforestry 10:39–50. https://doi.org/10.30919/ESFAF803

    Article  CAS  Google Scholar 

  25. Karimi-Maleh H, Orooji Y, Karimi F, Karaman C, Vasseghian Y, Dragoi EN, Karaman O (2022) Integrated approaches for waste to biohydrogen using nanobiomediated towards low carbon bioeconomy. Adv Compos Hybrid Mater 6:1–38. https://doi.org/10.1007/S42114-022-00597-X

    Article  Google Scholar 

  26. Stephen JL, Periyasamy B (2018) Innovative developments in biofuels production from organic waste materials: a review. Fuel 214:623–633. https://doi.org/10.1016/J.FUEL.2017.11.042

    Article  CAS  Google Scholar 

  27. Meng X, Yang H, Lu Z, Liu Y (2022) Study on catalytic pyrolysis and combustion characteristics of waste cable sheath with crosslinked polyethylene. Adv Compos Hybrid Mater 5:2948–2963. https://doi.org/10.1007/s42114-022-00516-0

    Article  CAS  Google Scholar 

  28. Ye H, Jiang J, Yang Y, Shi J, Sun H, Zhang L, Ge S, Zhang Y, Zhou Y, Liew RK, Zhang Z (2023) Ultra-strong and environmentally friendly waste polyvinyl chloride/paper biocomposites. Adv Compos Hybrid Mater 6:81. https://doi.org/10.1007/s42114-023-00664-x

    Article  CAS  Google Scholar 

  29. Ge S, Shi Y, Chen X, Zhou Y, Naushad Mu, Verma M, Lam SS, Ng HS, Chen W-H, Sonne C, Peng W (2023) Sustainable upcycling of plastic waste and wood fibers into high-performance laminated wood-polymer composite via one-step cell collapse and chemical bonding approach. Adv Compos Hybrid Mater 6:146. https://doi.org/10.1007/s42114-023-00723-3

    Article  CAS  Google Scholar 

  30. Zhang D, Wang Y, Yang Y (2019) Design, performance, and application of thermoelectric nanogenerators. Small 15:1805241. https://doi.org/10.1002/smll.201805241

    Article  CAS  Google Scholar 

  31. Zhao L, Yang Y (2017) Toward small-scale wind energy harvesting: design, enhancement, performance comparison, and applicability. Shock Vib. https://doi.org/10.1155/2017/3585972

    Article  Google Scholar 

  32. Hudak NS, Amatucci GG (2008) Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J Appl Phys 103:101301. https://doi.org/10.1063/1.2918987

    Article  CAS  Google Scholar 

  33. Wu C, Wang AC, Ding W, Guo H, Wang ZL (2019) Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater 9:1802906. https://doi.org/10.1002/aenm.201802906

    Article  CAS  Google Scholar 

  34. Zhang R, Olin H (2020) Material choices for triboelectric nanogenerators: a critical review. EcoMat 2:e12062. https://doi.org/10.1002/EOM2.12062

    Article  CAS  Google Scholar 

  35. Rajaboina RK, Khanapuram UK, Vivekananthan V, Khandelwal G, Potu S, Babu A, Madathil N, Velpula M, Kodali P (2023) crystalline porous material-based nanogenerators: recent progress, applications, challenges, and opportunities. Small. https://doi.org/10.1002/SMLL.202306209

    Article  PubMed  Google Scholar 

  36. Kim DW, Lee JH, Kim JK, Jeong U (2020) Material aspects of triboelectric energy generation and sensors. NPG Asia Mater 12:6. https://doi.org/10.1038/s41427-019-0176-0

    Article  CAS  Google Scholar 

  37. Chen A, Zhang C, Zhu G, Lin Wang Z, Chen A, Zhang C, Zhu G, Wang ZL (2020) Polymer materials for high-performance triboelectric nanogenerators. Adv Sci 7:2000186. https://doi.org/10.1002/ADVS.202000186

    Article  CAS  Google Scholar 

  38. Zhang R, Olin H (2022) Advances in inorganic nanomaterials for triboelectric nanogenerators. ACS Nanoscience Au 2:12–31. https://doi.org/10.1021/acsnanoscienceau.1c00026

    Article  CAS  PubMed  Google Scholar 

  39. Paosangthong W, Torah R, Beeby S (2019) Recent progress on textile-based triboelectric nanogenerators. Nano Energy 55:401–423. https://doi.org/10.1016/j.nanoen.2018.10.036

    Article  CAS  Google Scholar 

  40. Torres FG, Troncoso OP, De-la-Torre GE (2022) Hydrogel-based triboelectric nanogenerators: properties, performance, and applications. Int J Energy Res 46:5603–5624. https://doi.org/10.1002/er.7585

    Article  CAS  Google Scholar 

  41. Bindhu A, Arun AP, Pathak M (2024) Review on polyvinylidene fluoride-based triboelectric nanogenerators for applications in health monitoring and energy harvesting. ACS Appl Electron Mater 0:null. https://doi.org/10.1021/acsaelm.3c01297

    Article  CAS  Google Scholar 

  42. Shao Z, Chen J, Xie Q, Mi L (2023) Functional metal/covalent organic framework materials for triboelectric nanogenerator. Coord Chem Rev 486:215118. https://doi.org/10.1016/j.ccr.2023.215118

    Article  CAS  Google Scholar 

  43. Liu Y, Ping J, Ying Y (2021) Recent progress in 2D-nanomaterial-based triboelectric nanogenerators. Adv Funct Mater 31:2009994. https://doi.org/10.1002/ADFM.202009994

    Article  CAS  Google Scholar 

  44. Hatta FF, Mohammad Haniff MAS, Mohamed MA (2022) A review on applications of graphene in triboelectric nanogenerators. Int J Energy Res 46:544–576. https://doi.org/10.1002/er.7245

    Article  CAS  Google Scholar 

  45. Tian Y, An Y, Xu B (2022) MXene-based materials for advanced nanogenerators. Nano Energy 101:107556. https://doi.org/10.1016/j.nanoen.2022.107556

    Article  CAS  Google Scholar 

  46. Zhou J, Wang H, Du C, Zhang D, Lin H, Chen Y, Xiong J (2022) Cellulose for sustainable triboelectric nanogenerators. Adv Energy Sustainability Res 3:2100161. https://doi.org/10.1002/AESR.202100161

    Article  CAS  Google Scholar 

  47. Liu C, Jiang L, Yue O, Feng Y, Zeng B, Wu Y, Wang Y, Wang J, Zhao L, Wang X, Shao C, Wu Q, Sun X (2023) Thermal enhancement of gelatin hydrogels for a multimodal sensor and self-powered triboelectric nanogenerator at low temperatures. Adv Compos Hybrid Mater 6:112. https://doi.org/10.1007/s42114-023-00693-6

    Article  CAS  Google Scholar 

  48. Xu Q, Wu Z, Zhao W, He M, Guo N, Weng L, Lin Z, Taleb MFA, Ibrahim MM, Singh MV, Ren J, El-Bahy ZM (2023) Strategies in the preparation of conductive polyvinyl alcohol hydrogels for applications in flexible strain sensors, flexible supercapacitors, and triboelectric nanogenerator sensors: an overview. Adv Compos Hybrid Mater 6:1–34. https://doi.org/10.1007/S42114-023-00783-5

    Article  CAS  Google Scholar 

  49. Kulandaivel A, Potu S, Babu A, Madathil N, Velpula M, Rajaboina RK, Khanapuram UK (2024) Advances in ferrofluid-based triboelectric nanogenerators: design, performance, and prospects for energy harvesting applications. Nano Energy 120:109110. https://doi.org/10.1016/J.NANOEN.2023.109110

    Article  CAS  Google Scholar 

  50. Jiang D, Lian M, Xu M, Sun Q, Bin Xu B, Thabet HK, El-Bahy SM, Ibrahim MM, Huang M, Guo Z (2023) Advances in triboelectric nanogenerator technology—applications in self-powered sensors, Internet of things, biomedicine, and blue energy. Adv Compos Hybrid Mater 6:57. https://doi.org/10.1007/s42114-023-00632-5

    Article  CAS  Google Scholar 

  51. Cao X, Xiong Y, Sun J, Xie X, Sun Q, Wang ZL (2022) Multidiscipline applications of triboelectric nanogenerators for the intelligent era of Internet of Things. Nanomicro Lett 15:1–41. https://doi.org/10.1007/S40820-022-00981-8

    Article  Google Scholar 

  52. Liao L, Ni Q, Peng W, Mei Q (2024) Advances in multifunctional sensors based on triboelectric nanogenerator – applications, triboelectric materials, and manufacturing integration. Adv Mater Technol 9:2301592. https://doi.org/10.1002/ADMT.202301592

    Article  CAS  Google Scholar 

  53. Yadav P, Sahay K, Verma A, Maurya DK, Yadav BC (2023) Applications of multifunctional triboelectric nanogenerator (TENG) devices: materials and prospects, Sustain. Energy Fuels 7:3796–3831. https://doi.org/10.1039/D3SE00714F

    Article  CAS  Google Scholar 

  54. Lin J, Li J, Feng S, Gu C, Li H, Lu H, Hu F, Pan D, Bin Xu B, Guo Z (2023) An active bacterial anti-adhesion strategy based on directional transportation of bacterial droplets driven by triboelectric nanogenerators. Nano Res 16:1052–1063. https://doi.org/10.1007/s12274-022-5177-6

    Article  CAS  Google Scholar 

  55. Fan F-R, Tian Z-Q, Lin Wang Z (2012) Flexible triboelectric generator. Nano Energy 1:328–334. https://doi.org/10.1016/j.nanoen.2012.01.004

    Article  CAS  Google Scholar 

  56. Suo X, Li B, Ji H, Mei S, Miao S, Gu M, Yang Y, Jiang D, Cui S, Chen L, Chen G, Wen Z, Huang H (2023) Dielectric layer doping for enhanced triboelectric nanogenerators. Nano Energy 114:108651. https://doi.org/10.1016/j.nanoen.2023.108651

    Article  CAS  Google Scholar 

  57. Jia B, Lei M, Zou Y, Qin G, Zhang C, Han L, Zhang Q, Lu P (2022) The electron transfer mechanism between metal and silicon oxide composites for triboelectric nanogenerators. Adv Compos Hybrid Mater 5:3223–3231. https://doi.org/10.1007/s42114-022-00561-9

    Article  CAS  Google Scholar 

  58. Sarkar D, Das N, Saikh MdM, Roy S, Paul S, Hoque NA, Basu R, Das S (2023) Elevating the performance of nanoporous bismuth selenide incorporated arch-shaped triboelectric nanogenerator by implementing piezo-tribo coupling effect: harvesting biomechanical energy and low scale energy sensing applications. Adv Compos Hybrid Mater 6:232. https://doi.org/10.1007/s42114-023-00807-0

    Article  CAS  Google Scholar 

  59. Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7:9533–9557. https://doi.org/10.1021/nn404614z

    Article  CAS  PubMed  Google Scholar 

  60. Wang ZL (2017) On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20:74–82. https://doi.org/10.1016/J.MATTOD.2016.12.001

    Article  Google Scholar 

  61. Gao H, Hu M, Ding J, Xia B, Yuan G, Sun H, Xu Q, Zhao S, Jiang Y, Wu H, Yuan M, Li J, Li B, Zhao J, Rao D, Xie Y (2023) Investigation of contact electrification between 2D MXenes and MoS2 through density functional theory and triboelectric probes. Adv Funct Mater 33:2213410. https://doi.org/10.1002/ADFM.202213410

    Article  CAS  Google Scholar 

  62. Luo J, Wang ZL (2020) Recent progress of triboelectric nanogenerators: from fundamental theory to practical applications. EcoMat. https://doi.org/10.1002/eom2.12059

    Article  Google Scholar 

  63. Niu S, Wang ZL (2015) Theoretical systems of triboelectric nanogenerators. Nano Energy 14:161–192. https://doi.org/10.1016/j.nanoen.2014.11.034

    Article  CAS  Google Scholar 

  64. Wang ZL (2015) Triboelectric nanogenerators as new energy technology and self-powered sensors – principles, problems and perspectives. Faraday Discuss 176:447–458. https://doi.org/10.1039/C4FD00159A

    Article  CAS  Google Scholar 

  65. Wang S, Xie Y, Niu S, Lin L, Wang ZL (2014) Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv Mater 26:2818–2824. https://doi.org/10.1002/ADMA.201305303

    Article  CAS  PubMed  Google Scholar 

  66. Niu S, Wang S, Lin L, Liu Y, Zhou YS, Hu Y, Wang ZL (2013) Theoretical study of contact-mode triboelectric nanogenerators as an effective power source, Energy. Environ Sci 6:3576–3583. https://doi.org/10.1039/C3EE42571A

    Article  Google Scholar 

  67. Yang B, Zeng W, Peng Z-H, Liu S-R, Chen K, Tao X-M, Yang B, Zeng W, Peng Z-H, Liu S-R, Chen K, Tao X-M (2016) A fully verified theoretical analysis of contact-mode triboelectric nanogenerators as a wearable power source. Adv Energy Mater 6:1600505. https://doi.org/10.1002/AENM.201600505

    Article  Google Scholar 

  68. Lin L, Wang S, Xie Y, Jing Q, Niu S, Hu Y, Wang ZL (2013) Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett 13:2916–2923. https://doi.org/10.1021/nl4013002

    Article  CAS  PubMed  Google Scholar 

  69. Hu Y, Yang J, Jing Q, Niu S, Wu W, Wang ZL (2013) Triboelectric nanogenerator built on suspended 3D spiral structure as vibration and positioning sensor and wave energy harvester. ACS Nano 7:10424–10432. https://doi.org/10.1021/nn405209u

    Article  CAS  PubMed  Google Scholar 

  70. Yang Y, Zhang H, Chen J, Jing Q, Zhou YS, Wen X, Wang ZL (2013) Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7:7342–7351. https://doi.org/10.1021/nn403021m

    Article  CAS  PubMed  Google Scholar 

  71. Liu S, Tong W, Gao C, Liu Y, Li X, Zhang Y (2023) Environmentally friendly natural materials for triboelectric nanogenerators: a review. J Mater Chem A Mater 11:9270–9299. https://doi.org/10.1039/D2TA10024J

    Article  CAS  Google Scholar 

  72. Zhao Z, Zhou L, Li S, Liu D, Li Y, Gao Y, Liu Y, Dai Y, Wang J, Wang ZL (2021) Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat Commun. https://doi.org/10.1038/s41467-021-25046-z

    Article  PubMed  PubMed Central  Google Scholar 

  73. Babu A, Bochu L, Potu S, Kaja R, Madathil N, Velpula M, Kulandaivel A, Khanapuram UK, Rajaboina RK, Divi H, Kodali P, Ketharachapalli B, Ammanabrolu R (2023) Facile direct growth of ZIF-67 metal–organic framework for triboelectric nanogenerators and their application in the internet of vehicles. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.3c05198

    Article  Google Scholar 

  74. Psomopoulos CS, Bourka A, Themelis NJ (2009) Waste-to-energy: a review of the status and benefits in USA. Waste Manage 29:1718–1724. https://doi.org/10.1016/J.WASMAN.2008.11.020

    Article  CAS  Google Scholar 

  75. Kothari R, Tyagi VV, Pathak A (2010) Waste-to-energy: a way from renewable energy sources to sustainable development. Renew Sustain Energy Rev 14:3164–3170. https://doi.org/10.1016/J.RSER.2010.05.005

    Article  CAS  Google Scholar 

  76. Brunner PH, Rechberger H (2015) Waste to energy – key element for sustainable waste management. Waste Manage 37:3–12. https://doi.org/10.1016/J.WASMAN.2014.02.003

    Article  CAS  Google Scholar 

  77. Nickolas JT (2003) An overview of the global waste-to-energy industry - full text article from Waste Management World Magazine July - August 2003, pp 40–47. http://www.columbia.edu/cu/seas/earth/papers/global_waste_to_energy.html. Accessed 15 Dec 2023

  78. Tabasová A, Kropáč J, Kermes V, Nemet A, Stehlík P (2012) Waste-to-energy technologies: impact on environment. Energy 44:146–155. https://doi.org/10.1016/J.ENERGY.2012.01.014

    Article  Google Scholar 

  79. Zhu G, Peng B, Chen J, Jing Q, Lin Wang Z (2015) Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14:126–138. https://doi.org/10.1016/J.NANOEN.2014.11.050

    Article  CAS  Google Scholar 

  80. Hajra S, Panda S, Khanberh H, Vivekananthan V, Chamanehpour E, Mishra YK, Kim HJ (2023) Revolutionizing self-powered robotic systems with triboelectric nanogenerators. Nano Energy 115:108729. https://doi.org/10.1016/J.NANOEN.2023.108729

    Article  CAS  Google Scholar 

  81. Navaneeth M, Potu S, Babu A, Rajaboina RK, Uday Kumar K, Divi H, Kodali P, Balaji K (2023) A medical waste X-ray film based triboelectric nanogenerator for self-powered devices, sensors, and smart buildings. Env Sci Adv 2:848–860. https://doi.org/10.1039/D3VA00018D

    Article  CAS  Google Scholar 

  82. Navaneeth M, Potu S, Babu A, Lakshakoti B, Rajaboina RK, Kumar KU, Divi H, Kodali P, Balaji K (2023) Transforming medical plastic waste into high-performance triboelectric nanogenerators for sustainable energy, health monitoring, and sensing applications. ACS Sustain Chem Eng 11:12145–12154. https://doi.org/10.1021/acssuschemeng.3c03136

    Article  CAS  Google Scholar 

  83. Varghese H, Chandran A (2021) Triboelectric nanogenerator from used surgical face mask and waste mylar materials aiding the circular economy. ACS Appl Mater Interfaces 13:51132–51140. https://doi.org/10.1021/acsami.1c16557

    Article  CAS  PubMed  Google Scholar 

  84. Shaukat RA, Saqib QM, Khan MU, Chougale MY, Bae J (2021) Bio-waste sunflower husks powder based recycled triboelectric nanogenerator for energy harvesting. Energy Rep 7:724–731. https://doi.org/10.1016/J.EGYR.2021.01.036

    Article  Google Scholar 

  85. Sunitha VL, Supraja P, Prasad KAKD, Navaneeth M, Babu A, Mahesh V, Kumar KU, Haranath D, Kumar RR (2023) Wood plastic composites (WPC) waste based triboelectric nanogenerator for mechanical energy harvesting and self-powered applications. Mater Lett 351:134995. https://doi.org/10.1016/J.MATLET.2023.134995

    Article  CAS  Google Scholar 

  86. Elvira-Hernández EA, Hernández-Hernández J, de León A, Gallardo-Vega C, Delgado-Alvarado E, López-Huerta F, Herrera-May AL (2024) Green energy harvesting to power electronic devices using portable triboelectric nanogenerator based on waste corn husk and recycled polystyrene. Energy Rep 11:276–286. https://doi.org/10.1016/j.egyr.2023.11.059

    Article  Google Scholar 

  87. Weldemhret TG, Lee JH, Park CU, Lee DW, Prabhakar MN, Park YT, Il Song J (2024) Triboelectric nanogenerator and UV-blocking solid polymer electrolyte nanocomposite from recycled waste cigarette butts. Sustain Mater Technol 39:e00847. https://doi.org/10.1016/J.SUSMAT.2024.E00847

    Article  CAS  Google Scholar 

  88. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303. https://doi.org/10.1038/nature11475

    Article  CAS  PubMed  Google Scholar 

  89. Chu S, Cui Y, Liu N (2016) The path towards sustainable energy. Nat Mater 16:16–22. https://doi.org/10.1038/nmat4834

    Article  CAS  PubMed  Google Scholar 

  90. Walden R, Kumar C, Mulvihill DM, Pillai SC (2022) Opportunities and challenges in triboelectric nanogenerator (TENG) based sustainable energy generation technologies: a mini-review. Chem Eng J Adv 9:100237. https://doi.org/10.1016/J.CEJA.2021.100237

    Article  Google Scholar 

  91. Divya S, Hajra S, Panda S, Vivekananthan V, Mistewicz K, Joon Kim H, Hwan Oh T (2023) A review on the next generation of healing: exploring the use of triboelectric nanogenerators in wound care. Chem Phys Lett 826:140648. https://doi.org/10.1016/J.CPLETT.2023.140648

    Article  CAS  Google Scholar 

  92. Baños R, Manzano-Agugliaro F, Montoya FG, Gil C, Alcayde A, Gómez J (2011) Optimization methods applied to renewable and sustainable energy: a review. Renew Sustain Energy Rev 15:1753–1766. https://doi.org/10.1016/J.RSER.2010.12.008

    Article  Google Scholar 

  93. Zhao E, Jiang K, Li B, Liu X, Zeng F, Chen L, Zhang H, Zhu Z (2022) Classification and utilization of waste electronic components based on triboelectric nanogenerator. Nanotechnology 33:495401. https://doi.org/10.1088/1361-6528/ac8f4f

    Article  CAS  Google Scholar 

  94. Bukhari MU, Khan A, Maqbool KQ, Arshad A, Riaz K, Bermak A (2022) Waste to energy: facile, low-cost and environment-friendly triboelectric nanogenerators using recycled plastic and electronic wastes for self-powered portable electronics. Energy Rep 8:1687–1695. https://doi.org/10.1016/J.EGYR.2021.12.072

    Article  Google Scholar 

  95. Zhang B, He L, Wang J, Liu Y, Xue X, He S, Zhang C, Zhao Z, Zhou L, Wang J, Wang ZL (2023) Self-powered recycling of spent lithium iron phosphate batteries via triboelectric nanogenerator, Energy. Environ Sci 16:3873–3884. https://doi.org/10.1039/D3EE01156A

    Article  CAS  Google Scholar 

  96. Natarajan S, Krishnamoorthy K, Sathyaseelan A, Mariappan VK, Pazhamalai P, Manoharan S, Kim SJ (2022) A new route for the recycling of spent lithium-ion batteries towards advanced energy storage, conversion, and harvesting systems. Nano Energy 101:107595. https://doi.org/10.1016/J.NANOEN.2022.107595

    Article  CAS  Google Scholar 

  97. Saqib QM, Chougale MY, Khan MU, Shaukat RA, Kim J, Bhat KS, Bae J (2022) Triboelectric nanogenerator based on lignocellulosic waste fruit shell tribopositive material: comparative analysis. Mater Today Sustain 18:100146. https://doi.org/10.1016/J.MTSUST.2022.100146

    Article  Google Scholar 

  98. Li M, Cheng WY, Li YC, Wu HM, Wu YC, Lu HW, Cheng SL, Li L, Chang KC, Liu HJ, Lin YF, Lin LY, Lai YC (2021) Deformable, resilient, and mechanically-durable triboelectric nanogenerator based on recycled coffee waste for wearable power and self-powered smart sensors. Nano Energy 79:105405. https://doi.org/10.1016/J.NANOEN.2020.105405

    Article  CAS  Google Scholar 

  99. Saqib QM, Shaukat RA, Khan MU, Chougale M, Bae J (2020) Biowaste peanut shell powder-based triboelectric nanogenerator for biomechanical energy scavenging and sustainably powering electronic supplies. ACS Appl Electron Mater 2:3953–3963. https://doi.org/10.1021/acsaelm.0c00791

    Article  CAS  Google Scholar 

  100. Ding J, Wang H, Li Z, Cui K, Karpuzov D, Tan X, Kohandehghan A, Mitlin D (2015) Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors, Energy. Environ Sci 8:941–955. https://doi.org/10.1039/C4EE02986K

    Article  CAS  Google Scholar 

  101. Lin M-F, Chang P-Y, Lee C-H, Wu X-X, Jeng R-J, Chen C-P (2023) Biowaste eggshell membranes for bio-triboelectric nanogenerators and smart sensors. ACS Omega 8:6699–6707. https://doi.org/10.1021/acsomega.2c07292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Panda S, Hajra S, Kim H-G, Achary PGR, Pakawanit P, Yang Y, Mishra YK, Kim HJ (2023) Sustainable solutions for oral health monitoring: biowaste-derived triboelectric nanogenerator. ACS Appl Mater Interfaces 15:36096–36106. https://doi.org/10.1021/acsami.3c04024

    Article  CAS  PubMed  Google Scholar 

  103. Basith SA, Chandrasekhar A (2023) COVID-19 clinical waste reuse: a triboelectric touch sensor for IoT-cloud supported smart hand sanitizer dispenser. Nano Energy 108:108183. https://doi.org/10.1016/J.NANOEN.2023.108183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Feng X, Li Q, Wang K (2021) Waste plastic triboelectric nanogenerators using recycled plastic bags for power generation. ACS Appl Mater Interfaces 13:400–410. https://doi.org/10.1021/acsami.0c16489

    Article  CAS  PubMed  Google Scholar 

  105. Zhang P, Zhang W, Zhang H (2021) A triboelectric nanogenerator based on waste polyvinyl chloride for Morse code generator. Sens Actuators A Phys 322:112633. https://doi.org/10.1016/J.SNA.2021.112633

    Article  CAS  Google Scholar 

  106. Dudem B, Dharmasena RDIG, Riaz R, Vivekananthan V, Wijayantha KGU, Lugli P, Petti L, Silva SRP (2022) Wearable triboelectric nanogenerator from waste materials for autonomous information transmission via Morse code. ACS Appl Mater Interfaces 14:5328–5337. https://doi.org/10.1021/acsami.1c20984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rani GM, Wu CM, Motora KG, Umapathi R (2022) Waste-to-energy: utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting. J Clean Prod 363:132532. https://doi.org/10.1016/J.JCLEPRO.2022.132532

    Article  Google Scholar 

  108. Khandelwal G, Chandrasekhar A, Alluri NR, Vivekananthan V, Raj NPJM, Kim SJ (2018) Trash to energy: a facile, robust and cheap approach for mitigating environment pollutant using household triboelectric nanogenerator. Appl Energy 219:338–349. https://doi.org/10.1016/J.APENERGY.2018.03.031

    Article  Google Scholar 

  109. Sahu M, Hajra S, Panda S, Rajaitha M, Panigrahi BK, Rubahn HG, Mishra YK, Kim HJ (2022) Waste textiles as the versatile triboelectric energy-harvesting platform for self-powered applications in sports and athletics. Nano Energy 97:107208. https://doi.org/10.1016/J.NANOEN.2022.107208

    Article  CAS  Google Scholar 

  110. Nawaz SM, Saha M, Sepay N, Mallik A (2022) Energy-from-waste: a triboelectric nanogenerator fabricated from waste polystyrene for energy harvesting and self-powered sensor. Nano Energy 104:107902. https://doi.org/10.1016/J.NANOEN.2022.107902

    Article  CAS  Google Scholar 

  111. Ren X, Fan H, Ma J, Wang C, Zhao Y, Lei S (2017) Triboelectric nanogenerators based on fluorinated wasted rubber powder for self-powering application. ACS Sustain Chem Eng 5:1957–1964. https://doi.org/10.1021/acssuschemeng.6b02756

    Article  CAS  Google Scholar 

  112. Lin S-L, Lee K-L, Wu J-L, Kiprotich Cheruiyot N (2019) Effects of a quenching treatment on PCDD/F reduction in the bottom ash of a lab waste incinerator to save the energy and cost incurred from post-thermal treatment. Waste Manag 95:316–324. https://doi.org/10.1016/j.wasman.2019.06.024

    Article  PubMed  Google Scholar 

  113. Sahu M, Hajra S, Kim H-G, Rubahn H-G, Kumar Mishra Y, Kim HJ (2021) Additive manufacturing-based recycling of laboratory waste into energy harvesting device for self-powered applications. Nano Energy 88:106255. https://doi.org/10.1016/j.nanoen.2021.106255

    Article  CAS  Google Scholar 

  114. Lebreton L, Andrady A (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Commun 5:1–11. https://doi.org/10.1057/s41599-018-0212-7

    Article  Google Scholar 

  115. Xia K, Zhu Z, Fu J, Li Y, Chi Y, Zhang H, Du C, Xu Z (2019) A triboelectric nanogenerator based on waste tea leaves and packaging bags for powering electronic office supplies and behavior monitoring. Nano Energy 60:61–71. https://doi.org/10.1016/J.NANOEN.2019.03.050

    Article  CAS  Google Scholar 

  116. Chavan VD, Aziz J, Kim H, Patil SR, Ustad RE, Sheikh ZA, Patil CS, Chougale MY, Sabale SR, Patil SA, Sutar SS, Kamat RK, Bae J, Dongale TD, kee Kim D (2024) Transformation of rust iron into a sustainable product for applications in the electronic, energy, biomedical, and environment fields: Towards a multitasking approach. Nano Today 54:102085. https://doi.org/10.1016/J.NANTOD.2023.102085

    Article  CAS  Google Scholar 

  117. Swain J, Hajra S, Das N, Parhi P, Panda S, Priyadarshini A, Panda J, Sahu AK, Alagarsamy P, Vivekananthan V, Kim HJ, Sahu R (2023) Spent catalyst-derived Mo-MOF: triboelectric nanogenerators and energy harvesting. Energ Technol 11:2300498. https://doi.org/10.1002/ENTE.202300498

    Article  CAS  Google Scholar 

  118. Xia K, Chi Y, Fu J, Zhu Z, Zhang H, Du C, Xu Z (2019) A triboelectric nanogenerator based on cosmetic fixing powder for mechanical energy harvesting. Microsyst Nanoeng 5:1–9. https://doi.org/10.1038/s41378-019-0066-1

    Article  Google Scholar 

  119. Wu JM, Chang CK, Chang YT (2016) High-output current density of the triboelectric nanogenerator made from recycling rice husks. Nano Energy 19:39–47. https://doi.org/10.1016/j.nanoen.2015.11.014

    Article  CAS  Google Scholar 

  120. Yao C, Hernandez A, Yu Y, Cai Z, Wang X (2016) Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy 30:103–108. https://doi.org/10.1016/J.NANOEN.2016.09.036

    Article  CAS  Google Scholar 

  121. Bao Y, Wang R, Lu Y, Wu W (2017) Lignin biopolymer based triboelectric nanogenerators. APL Mater 5:74109. https://doi.org/10.1063/1.4984625

    Article  CAS  Google Scholar 

  122. Costa SV, Azana NT, Shieh P, Mazon T (2018) Synthesis of ZnO rod arrays on aluminum recyclable paper and effect of the rod size on power density of eco-friendly nanogenerators. Ceram Int 44:12174–12179. https://doi.org/10.1016/j.ceramint.2018.03.272

    Article  CAS  Google Scholar 

  123. Jiang W, Li H, Liu Z, Li Z, Tian J, Shi B, Zou Y, Ouyang H, Zhao C, Zhao L, Sun R, Zheng H, Fan Y, Wang ZL, Li Z (2018) Fully bioabsorbable natural-materials-based triboelectric nanogenerators. Adv Mater 30:1801895. https://doi.org/10.1002/ADMA.201801895

    Article  Google Scholar 

  124. Jie Y, Jia X, Zou J, Chen Y, Wang N, Lin Wang Z, Cao X, Jie Y, Jia XT, Cao X, Zou JD, Chen YD, Wang ZL, Wang N (2018) Natural leaf made triboelectric nanogenerator for harvesting environmental mechanical energy. Adv Energy Mater 8:1703133. https://doi.org/10.1002/AENM.201703133

    Article  Google Scholar 

  125. Chen Y, Jie Y, Wang J, Ma J, Jia X, Dou W, Cao X (2018) Triboelectrification on natural rose petal for harvesting environmental mechanical energy. Nano Energy 50:441–447. https://doi.org/10.1016/J.NANOEN.2018.05.021

    Article  CAS  Google Scholar 

  126. Chi Y, Xia K, Zhu Z, Fu J, Zhang H, Du C, Xu Z (2019) Rice paper-based biodegradable triboelectric nanogenerator. Microelectron Eng. https://doi.org/10.1016/j.mee.2019.111059

    Article  Google Scholar 

  127. Zhang X, Sinha TK, Lee J, Ahn Y, Kim JK (2019) Temperature dependent amphoteric behavior of bis[3-(triethoxysilyl)propyl]tetrasulfide towards recycling of waste rubber: a triboelectric investigation. J Clean Prod 213:569–576. https://doi.org/10.1016/j.jclepro.2018.12.149

    Article  CAS  Google Scholar 

  128. Feng Y, Zhang L, Zheng Y, Wang D, Zhou F, Liu W (2019) Leaves based triboelectric nanogenerator (TENG) and TENG tree for wind energy harvesting. Nano Energy 55:260–268. https://doi.org/10.1016/J.NANOEN.2018.10.075

    Article  CAS  Google Scholar 

  129. Alluri NR, Raj NP, Khandelwal G, Vivekananthan V, Kim SJ (2020) Aloe vera: a tropical desert plant to harness the mechanical energy by triboelectric and piezoelectric approaches. Nano Energy. https://doi.org/10.1016/j.nanoen.2020.104767

    Article  Google Scholar 

  130. Kaur J, Sawhney RS, Singh H, Singh M (2020) Electricity nanogenerator from egg shell membrane: a natural waste bioproduct. Int J Green Energy 17:309–318. https://doi.org/10.1080/15435075.2020.1727482

    Article  Google Scholar 

  131. Han G, Wu B, Pu Y (2020) A triboelectric nanogenerator based on waste plastic bags for flexible vertical interconnection system. Microsyst Technol 26:3893–3899. https://doi.org/10.1007/s00542-020-04879-6

    Article  CAS  Google Scholar 

  132. Sukumaran C, Vivekananthan V, Mohan V, Alex ZC, Chandrasekhar A, Kim S-J (2020) Triboelectric nanogenerators from reused plastic: an approach for vehicle security alarming and tire motion monitoring in rover. Appl Mater Today 19:100625. https://doi.org/10.1016/j.apmt.2020.100625

    Article  Google Scholar 

  133. Ma J, Zhu J, Ma P, Jie Y, Wang ZL, Cao X (2020) Fish bladder film-based triboelectric nanogenerator for noncontact position monitoring. ACS Energy Lett 5:3005–3011. https://doi.org/10.1021/acsenergylett.0c01062

    Article  CAS  Google Scholar 

  134. Jakmuangpak S, Prada T, Mongkolthanaruk W, Harnchana V, Pinitsoontorn S (2020) Engineering bacterial cellulose films by nanocomposite approach and surface modification for biocompatible triboelectric nanogenerator. ACS Appl Electron Mater 2:2498–2506. https://doi.org/10.1021/acsaelm.0c00421

    Article  CAS  Google Scholar 

  135. Kaur J, Singh H (2020) Fabrication of composite material based nanogenerator for electricity generation enhancement of food waste by-product. Mater Chem Phys 256:123331. https://doi.org/10.1016/j.matchemphys.2020.123331

    Article  CAS  Google Scholar 

  136. Han Y, Han Y, Zhang X, Li L, Zhang C, Liu J, Lu G, Yu H-D, Huang W (2020) Fish gelatin based triboelectric nanogenerator for harvesting biomechanical energy and self-powered sensing of human physiological signals. ACS Appl Mater Interfaces 12:16442–16450. https://doi.org/10.1021/acsami.0c01061

    Article  CAS  PubMed  Google Scholar 

  137. Sun Q, Wang L, Yue X, Zhang L, Ren G, Li D, Wang H, Han Y, Xiao L, Lu G, Yu H-D, Huang W (2021) Fully sustainable and high-performance fish gelatin-based triboelectric nanogenerator for wearable movement sensing and human-machine interaction. Nano Energy 89:106329. https://doi.org/10.1016/j.nanoen.2021.106329

    Article  CAS  Google Scholar 

  138. Roy S, Maji PK, Goh K-L (2021) Sustainable design of flexible 3D aerogel from waste PET bottle for wastewater treatment to energy harvesting device. Chem Eng J 413:127409. https://doi.org/10.1016/j.cej.2020.127409

    Article  CAS  Google Scholar 

  139. Li Y, Zhao Z, Gao Y, Li S, Zhou L, Wang J, Wang ZL (2021) Low-cost, environmentally friendly, and high-performance triboelectric nanogenerator based on a common waste material. ACS Appl Mater Interfaces 13:30776–30784. https://doi.org/10.1021/acsami.1c09192

    Article  CAS  PubMed  Google Scholar 

  140. Sahu M, Hajra S, Kim HG, Rubahn HG, Kumar Mishra Y, Kim HJ (2021) Additive manufacturing-based recycling of laboratory waste into energy harvesting device for self-powered applications. Nano Energy 88:106255. https://doi.org/10.1016/J.NANOEN.2021.106255

    Article  CAS  Google Scholar 

  141. Jalili MA, Khosroshahi Z, Kheirabadi NR, Karimzadeh F, Enayati MH (2021) Green triboelectric nanogenerator based on waste polymers for electrophoretic deposition of titania nanoparticles. Nano Energy 90:106581. https://doi.org/10.1016/j.nanoen.2021.106581

    Article  CAS  Google Scholar 

  142. Saqib QM, Chougale MY, Khan MU, Shaukat RA, Kim J, Bae J, Lee HW, Park J-I, Kim MS, Lee BG (2021) Natural seagrass tribopositive material based spray coatable triboelectric nanogenerator. Nano Energy 89:106458. https://doi.org/10.1016/j.nanoen.2021.106458

    Article  CAS  Google Scholar 

  143. Ma P, Zhu H, Lu H, Zeng Y, Zheng N, Wang ZL, Cao X (2021) Design of biodegradable wheat-straw based triboelectric nanogenerator as self-powered sensor for wind detection. Nano Energy 86:106032. https://doi.org/10.1016/j.nanoen.2021.106032

    Article  CAS  Google Scholar 

  144. Shen D, Xiao M, Zhao X, Xiao Y, Duley WW, Zhou YN (2021) Multifunctional self-powered electronics based on a reusable low-cost polypropylene fabric triboelectric nanogenerator. ACS Appl Mater Interfaces 13:34266–34273. https://doi.org/10.1021/acsami.1c07791

    Article  CAS  PubMed  Google Scholar 

  145. Zhang P, Zhang Z, Cai J (2021) A foot pressure sensor based on triboelectric nanogenerator for human motion monitoring. Microsyst Technol 27:3507–3512. https://doi.org/10.1007/s00542-020-05199-5

    Article  Google Scholar 

  146. Saqib QM, Khan MU, Song H, Chougale MY, Shaukat RA, Kim J, Bae J, Choi MJ, Kim SC, Kwon O, Bermak A (2021) Natural hierarchically structured highly porous tomato peel based tribo- and piezo-electric nanogenerator for efficient energy harvesting. Adv Sustain Syst 5:2100066. https://doi.org/10.1002/adsu.202100066

    Article  CAS  Google Scholar 

  147. Sahu M, Hajra S, Jadhav S, Panigrahi BK, Dubal D, Kim HJ (2022) Bio-waste composites for cost-effective self-powered breathing patterns monitoring: an insight into energy harvesting and storage properties. Sustain Mater Technol 32:e00396. https://doi.org/10.1016/J.SUSMAT.2022.E00396

    Article  CAS  Google Scholar 

  148. Nawaz A, Sarwar N, Jeong DI, Yoon DH (2022) Energy from discarded graphite-based pencils: recycling the potential waste material for sensing application. Sens Actuators A Phys 336:113403. https://doi.org/10.1016/j.sna.2022.113403

    Article  CAS  Google Scholar 

  149. Ravi Sankar P, Supraja P, Mishra S, Prakash K, Rakesh Kumar R, Haranath D (2022) A novel triboelectric nanogenerator based on only food packaging aluminium foils. Mater Lett 310:131474. https://doi.org/10.1016/j.matlet.2021.131474

    Article  CAS  Google Scholar 

  150. Yan X, Yang D, Huang Z, Feng X, Wang K, Shan B (2022) Applied research and prospects of triboelectric nanogenerators based on waste plastic bags. Int J Electrochem Sci 17:221233. https://doi.org/10.20964/2022.12.41

    Article  CAS  Google Scholar 

  151. Ali F, Hussain Z, Numan M, Fatima B, ul Haq MN, Majeed S, Ahmad T (2022) Triboelectric nanogenerator based on PTFE plastic waste bottle and aluminum foil. Mater Innov 2:203–213. https://doi.org/10.54738/MI.2022.2803

    Article  CAS  Google Scholar 

  152. Roy S, Das T, Dasgupta Ghosh B, Goh KL, Sharma K, Chang Y-W (2022) From hazardous waste to green applications: selective surface functionalization of waste cigarette filters for high-performance robust triboelectric nanogenerators and CO2 adsorbents. ACS Appl Mater Interfaces 14:31973–31985. https://doi.org/10.1021/acsami.2c06463

    Article  CAS  PubMed  Google Scholar 

  153. Kaur J, Singh H, Sawhney RS, Sui T, Trdan U (2022) Waste biomaterial–SnO nanoparticles composite based green triboelectric nanogenerator for self-powered human motion monitoring. ACS Appl Electron Mater 4:4694–4707. https://doi.org/10.1021/acsaelm.2c00887

    Article  CAS  Google Scholar 

  154. Wang T, Li S, Tao X, Yan Q, Wang X, Chen Y, Huang F, Li H, Chen X, Bian Z (2022) Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring. Nano Energy 93:106787. https://doi.org/10.1016/J.NANOEN.2021.106787

    Article  CAS  Google Scholar 

  155. Khan A, Bukhari MU, Qasim Maqbool K, Riaz K, Bermak A (2022) Recycled plastic waste-based triboelectric nanogenerator reinforcing circular economy. In: 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), pp. 1–4. IEEE. https://doi.org/10.1109/FLEPS53764.2022.9781571

  156. Kim WJ, Kim SW, Park SH, Doh YH, Yang YJ (2022) Triboelectric nanogenerator based on Mandarin peel powder. Journal of the Korean Society of Manufacturing Process Engineers 21:9–15. https://doi.org/10.14775/ksmpe.2022.21.05.009

    Article  Google Scholar 

  157. Zhang P, Deng L, Zhang H, Li P, Zhang W (2022) High performance triboelectric nanogenerator based on bamboo fibers with trench structure for self-powered sensing. Sustainable Energy Technol Assess 53:102489. https://doi.org/10.1016/j.seta.2022.102489

    Article  Google Scholar 

  158. Jia P, Wang L, Yao X, Zhang D, Lin H, Li Y, Chen Y, Xiong J (2022) Amino-terminated hyperbranched polymer-based recyclable elastic fibers for a breathable and antibacterial triboelectric nanogenerator. Macromol Mater Eng 307:2200128. https://doi.org/10.1002/mame.202200128

    Article  CAS  Google Scholar 

  159. Jiang C, Zhang Q, He C, Zhang C, Feng X, Li X, Zhao Q, Ying Y, Ping J (2022) Plant-protein-enabled biodegradable triboelectric nanogenerator for sustainable agriculture. Fundam Res 2:974–984. https://doi.org/10.1016/j.fmre.2021.09.010

    Article  CAS  Google Scholar 

  160. Chen X, Ouyang Y, Liu X, Ruan H, Xu X, Lu S, Li Y (2022) Dynamic covalent-crosslinked furan-modified CaCu3Ti4O12/polyurethane composite-based triboelectric nanogenerator and its application in self-powered cathodic protection. J Mater Sci Mater Electron 33:22773–22784. https://doi.org/10.1007/S10854-022-09045-4/TABLES/2

    Article  CAS  Google Scholar 

  161. Zhang R, Xia R, Cao X, Wang N (2022) Nutshell powder-based green triboelectric nanogenerator for wind energy harvesting. Adv Mater Interfaces 9:2200293. https://doi.org/10.1002/admi.202200293

    Article  CAS  Google Scholar 

  162. Dai S, Li X, Jiang C, Shao Y, Luo J, Ying Y, Ping J (2022) A water-driven and low-damping triboelectric nanogenerator based on agricultural debris for smart agriculture. Small 18:2204949. https://doi.org/10.1002/smll.202204949

    Article  CAS  Google Scholar 

  163. Patil SR, Chougale MY, Kim J, Shaukat RA, Noman M, Saqib QM, Khan MU, Dongale TD, Bae J (2022) Triboelectric nanogenerator based on biowaste tribopositive Delonix Regia flowers powder. Energ Technol 10:2200876. https://doi.org/10.1002/ente.202200876

    Article  CAS  Google Scholar 

  164. Gu G, Gu G, Shang W, Zhang Z, Zhang W, Wang C, Fang D, Cheng G, Du Z (2022) The self-powered agricultural sensing system with 1.7 km wireless multichannel signal transmission using a pulsed triboelectric nanogenerator of corn husk composite film. Nano Energy 102:107699. https://doi.org/10.1016/j.nanoen.2022.107699

    Article  CAS  Google Scholar 

  165. Jaiban P, Khumtrong S, Kongchana P, Theethuan T, Lokakaew S, Phutthami P, Watcharapasorn A, Guo R, Bhalla AS (2022) The biofilm from soybean meal for application in triboelectric generator. Mater Lett 325:132862. https://doi.org/10.1016/j.matlet.2022.132862

    Article  CAS  Google Scholar 

  166. Gu L, Wang Y, Wang X, Li S, Wang W, Li C, Lin C, Li Z, Xu J, Cui N, Liu J (2023) Waste take-out boxes reused in high-performance triboelectric nanogenerator for energy harvesting and self-powered sensor. ACS Appl Electron Mater 5:2145–2155. https://doi.org/10.1021/acsaelm.3c00038

    Article  CAS  Google Scholar 

  167. Khan MU, Mohammad E, Abbas Y, Rezeq M, Mohammad B (2023) Chicken skin based Milli Watt range biocompatible triboelectric nanogenerator for biomechanical energy harvesting. Sci Rep 13:10160. https://doi.org/10.1038/s41598-023-36817-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Chau NM, Le TH, La TTH, Bui V-T (2023) Industrially compatible production of customizable honeycomb-patterned poly(vinyl chloride) using food-wrapping waste for power-boosting triboelectric nanogenerator and ocean wave energy harvester. J Sci Adv Mater Devices 8:100637. https://doi.org/10.1016/j.jsamd.2023.100637

    Article  CAS  Google Scholar 

  169. Zhang R, Hummelgård M, Örtegren J, Andersson H, Olsen M, Chen W, Wang P, Dahlström C, Eivazi A, Norgren M (2023) Energy harvesting using wastepaper-based triboelectric nanogenerators. Adv Eng Mater 25:2300107. https://doi.org/10.1002/ADEM.202300107

    Article  CAS  Google Scholar 

  170. Moreira KS, Santos da Campo YA, Lorenzett E, Burgo TAL (2023) Low-cost triboelectric nanogenerator based on aseptic carton package. Res Eng 17:100965. https://doi.org/10.1016/J.RINENG.2023.100965

    Article  CAS  Google Scholar 

  171. Singh H, Sheetal A, Singh M, Kaur J, Sui T, Loja MAR, Trdan U, Sharma M (2023) Electrical energy generation using fish scale of Rohu fish by harvesting human motion mechanical energy for self powered battery-less devices. Sens Actuators A Phys 349:114023. https://doi.org/10.1016/j.sna.2022.114023

    Article  CAS  Google Scholar 

  172. Huang X, Zhou B, Sun G, Yang X, Wang Y, Zhang X (2023) Upcycling of plastic wastes and biomass to mechanically robust yet recyclable energy-harvesting materials. Nano Energy 116:108843. https://doi.org/10.1016/j.nanoen.2023.108843

    Article  CAS  Google Scholar 

  173. Singh H, Sheetal A, Kaur J, Singh M, Sharma M (2023) Generation of electrical energy using fish market waste fish fin from mechanical motion for battery-less self—powered wearable sensors and IoT devices. Electron Mater Lett 19:483–494. https://doi.org/10.1007/s13391-023-00420-9

    Article  CAS  Google Scholar 

  174. Kumar Das N, Badhulika S (2024) Recyclable waste derived green triboelectric nanogenerator for self-powered synthesis of defect-free graphene via mechano-electrochemical exfoliation. Chem Eng J 480:147897. https://doi.org/10.1016/j.cej.2023.147897

    Article  CAS  Google Scholar 

  175. Patil CS, Saqib QM, Patil SR, Noman M, Chougale MY, Shaukat RA, Kim J, Ko Y, Dongale TD, Bae J (2024) Triboelectric nanogenerator based on reactivated electrode materials derived from waste alkaline battery: influence of pyrolysis temperature and surface morphology. Nano Energy 121:109205. https://doi.org/10.1016/j.nanoen.2023.109205

    Article  CAS  Google Scholar 

  176. Zhou Z, Li X, Wu Y, Zhang H, Lin Z, Meng K, Lin Z, He Q, Sun CC, Yang J, Wang ZL (2018) Wireless self-powered sensor networks driven by triboelectric nanogenerator for in-situ real time survey of environmental monitoring. Nano Energy 53:501–507. https://doi.org/10.1016/j.nanoen.2018.08.055

    Article  CAS  Google Scholar 

  177. Rani GM, Wu CM, Motora KG, Umapathi R, Jose CRM (2023) Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting. Nano Energy 108:108211. https://doi.org/10.1016/J.NANOEN.2023.108211

    Article  CAS  Google Scholar 

  178. Sonu GM, Rani D. Pathania, Abhimanyu R, Umapathi S, Rustagi YS, Huh VK, Gupta A, Kaushik V. Chaudhary (2023) Agro-waste to sustainable energy: a green strategy of converting agricultural waste to nano-enabled energy applications. Sci Total Environ 875:162667. https://doi.org/10.1016/J.SCITOTENV.2023.162667

    Article  CAS  PubMed  Google Scholar 

  179. Lai WL, Sharma S, Roy S, Maji PK, Sharma B, Ramakrishna S, Goh KL (2022) Roadmap to sustainable plastic waste management: a focused study on recycling PET for triboelectric nanogenerator production in Singapore and India. Environ Sci Pollut Res 29:51234–51268. https://doi.org/10.1007/S11356-022-20854-2

    Article  CAS  Google Scholar 

  180. Ganiyu SO, Martínez-Huitle CA, Rodrigo MA (2020) Renewable energies driven electrochemical wastewater/soil decontamination technologies: a critical review of fundamental concepts and applications. Appl Catal B 270:118857. https://doi.org/10.1016/J.APCATB.2020.118857

    Article  CAS  Google Scholar 

  181. Zhang D, Huang G, Xu Y, Gong Q (2015) Waste-to-energy in China: key challenges and opportunities. Energies 8:14182–14196. https://doi.org/10.3390/EN81212422

    Article  Google Scholar 

  182. Pavlas M, Touš M, Bébar L, Stehlík P (2010) Waste to energy – an evaluation of the environmental impact. Appl Therm Eng 30:2326–2332. https://doi.org/10.1016/j.applthermaleng.2009.10.019

    Article  CAS  Google Scholar 

  183. Ata B, Lee D, Tongarlak MH (2012) Optimizing organic waste to energy operations. Manuf Serv Oper Manag 14:231–244. https://doi.org/10.1287/msom.1110.0359

    Article  Google Scholar 

  184. Di Maria F, Contini S, Bidini G, Boncompagni A, Lasagni M, Sisani F (2016) Energetic efficiency of an existing waste to energy power plant. Energy Procedia 101:1175–1182. https://doi.org/10.1016/J.EGYPRO.2016.11.159

    Article  Google Scholar 

  185. Ahmed A, Hassan I, Ibn-Mohammed T, Mostafa H, Reaney IM, Koh LSC, Zu J, Wang ZL (2017) Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators, Energy. Environ Sci 10:653–671. https://doi.org/10.1039/C7EE00158D

    Article  CAS  Google Scholar 

  186. Tian J, Chen X, Wang ZL (2020) Environmental energy harvesting based on triboelectric nanogenerators. Nanotechnology 31:242001. https://doi.org/10.1088/1361-6528/AB793E

    Article  CAS  PubMed  Google Scholar 

  187. Hajra S, Sahu M, Padhan AM, Lee IS, Yi DK, Alagarsamy P, Nanda SS, Kim HJ (2021) A green metal–organic framework-cyclodextrin MOF: a novel multifunctional material based triboelectric nanogenerator for highly efficient mechanical energy harvesting. Adv Funct Mater 31:2101829. https://doi.org/10.1002/ADFM.202101829

    Article  CAS  Google Scholar 

  188. Panda S, Jeong H, Hajra S, Rajaitha PM, Hong S, Kim HJ (2023) Biocompatible polydopamine based triboelectric nanogenerator for humidity sensing. Sens Actuators B Chem 394:134384. https://doi.org/10.1016/J.SNB.2023.134384

    Article  CAS  Google Scholar 

  189. Yoon HJ, Ryu H, Kim SW (2018) Sustainable powering triboelectric nanogenerators: approaches and the path towards efficient use. Nano Energy 51:270–285. https://doi.org/10.1016/J.NANOEN.2018.06.075

    Article  CAS  Google Scholar 

  190. Boruah BD (2021) Recent advances in off-grid electrochemical capacitors. Energy Storage Mater 34:53–75. https://doi.org/10.1016/J.ENSM.2020.08.031

    Article  Google Scholar 

  191. Luo J, Gao W, Wang ZL (2021) The triboelectric nanogenerator as an innovative technology toward intelligent sports. Adv Mater 33:2004178. https://doi.org/10.1002/ADMA.202004178

    Article  CAS  Google Scholar 

  192. Chen H, Yang W, Zhang C, Wu M, Li W, Zou Y, Lv L, Yu H, Ke H, Liu R, Xu Y, Wang J, Li Z (2022) Performance-enhanced and cost-effective triboelectric nanogenerator based on stretchable electrode for wearable SpO2 monitoring. Nano Res 15:2465–2471. https://doi.org/10.1007/s12274-021-3724-1

    Article  CAS  Google Scholar 

  193. Chen B, Wang ZL (2022) Toward a new era of sustainable energy: advanced triboelectric nanogenerator for harvesting high entropy energy. Small 18:2107034. https://doi.org/10.1002/SMLL.202107034

    Article  CAS  Google Scholar 

  194. Chhetri K, Muthurasu A, Dahal B, Kim T, Mukhiya T, Chae SH, Ko TH, Choi YC, Kim HY (2022) Engineering the abundant heterointerfaces of integrated bimetallic sulfide-coupled 2D MOF-derived mesoporous CoS2 nanoarray hybrids for electrocatalytic water splitting. Mater Today Nano 17:100146. https://doi.org/10.1016/J.MTNANO.2021.100146

    Article  CAS  Google Scholar 

  195. Zhao Z, Lu Y, Mi Y, Meng J, Cao X, Wang N (2022) Structural flexibility in triboelectric nanogenerators: a review on the adaptive design for self-powered systems. Micromachines 13:1586. https://doi.org/10.3390/MI13101586

    Article  PubMed  PubMed Central  Google Scholar 

  196. Zhu J, Zhu M, Shi Q, Wen F, Liu L, Dong B, Haroun A, Yang Y, Vachon P, Guo X, He T, Lee C (2020) Progress in TENG technology—a journey from energy harvesting to nanoenergy and nanosystem. EcoMat 2:e12058. https://doi.org/10.1002/EOM2.12058

    Article  CAS  Google Scholar 

  197. El-Shahat A (2017) Recent advances in waste-to-energy. Natural Gas & Electricity 33:19–24. https://doi.org/10.1002/GAS.21974

    Article  Google Scholar 

  198. Jahirul MI, Rasul MG, Schaller D, Khan MMK, Hasan MM, Hazrat MA (2022) Transport fuel from waste plastics pyrolysis – a review on technologies, challenges and opportunities. Energy Convers Manag 258:115451. https://doi.org/10.1016/J.ENCONMAN.2022.115451

    Article  CAS  Google Scholar 

  199. Pan H, Qi L, Zhang Z, Yan J (2021) Kinetic energy harvesting technologies for applications in land transportation: a comprehensive review. Appl Energy 286:116518. https://doi.org/10.1016/J.APENERGY.2021.116518

    Article  Google Scholar 

  200. Ahmadi MH, Ghazvini M, Nazari MA, Ahmadi MA, Pourfayaz F, Lorenzini G, Ming T (2019) Renewable energy harvesting with the application of nanotechnology: a review. Int J Energy Res 43:1387–1410. https://doi.org/10.1002/ER.4282

    Article  Google Scholar 

  201. Bai S, Liu C (2021) Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles. Renew Sustain Energy Rev 147:111188. https://doi.org/10.1016/J.RSER.2021.111188

    Article  Google Scholar 

  202. Shi Q, He T, Lee C (2019) More than energy harvesting – combining triboelectric nanogenerator and flexible electronics technology for enabling novel micro-/nano-systems. Nano Energy 57:851–871. https://doi.org/10.1016/J.NANOEN.2019.01.002

    Article  CAS  Google Scholar 

  203. Nagarajan N, Panchatcharam P (2023) A comprehensive review on sustainable metal recovery from E-waste based on physiochemical and biotechnological methods. Eng Sci 22:844. https://doi.org/10.30919/ES8D844

    Article  CAS  Google Scholar 

  204. Sun Y, Li YZ, Yuan M (2023) Requirements, challenges, and novel ideas for wearables on power supply and energy harvesting. Nano Energy 115:108715. https://doi.org/10.1016/J.NANOEN.2023.108715

    Article  CAS  Google Scholar 

  205. Ali A, Shaukat H, Bibi S, Altabey WA, Noori M, Kouritem SA (2023) Recent progress in energy harvesting systems for wearable technology. Energ Strat Rev 49:101124. https://doi.org/10.1016/J.ESR.2023.101124

    Article  Google Scholar 

  206. Parida K, Xiong J, Zhou X, Lee PS (2019) Progress on triboelectric nanogenerator with stretchability, self-healability and bio-compatibility. Nano Energy 59:237–257. https://doi.org/10.1016/J.NANOEN.2019.01.077

    Article  CAS  Google Scholar 

  207. Haghayegh M, Cao R, Zabihi F, Bagherzadeh R, Yang S, Zhu M (2022) Recent advances in stretchable, wearable and bio-compatible triboelectric nanogenerators. J Mater Chem C Mater 10:11439–11471. https://doi.org/10.1039/D2TC01931K

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Ministry of Trade, Industry and Energy of Korea (RS-2023-00231350) and NRF (RS-2024-00346135). YKM acknowledge the partial financing by Interreg Deutschland-Danmark and the European Union under grant number 04-3.2-23 2 (TORCH).

Author information

Authors and Affiliations

Authors

Contributions

K Uday Kumar: conceptualization, data curation, formal analysis, visualization, writing—original draft, writing—review and editing. Sugato Hajra: data curation, formal analysis, visualization, methodology, writing—original draft. G Mohana Rani: data curation, formal analysis, visualization, methodology, writing—original draft. Swati Panda: data curation, formal analysis, visualization, methodology, writing—original draft. R Umapathi: data curation, formal analysis, visualization, methodology, writing—original draft. S Venkateswarlu: data curation, formal analysis, visualization, methodology, writing—review and editing. Hoe Joon Kim: data curation, formal analysis, visualization, methodology, writing—review and editing. Yogendra Kumar Mishra: data curation, formal analysis, visualization, methodology, writing—review and editing. R Rakesh Kumar: conceptualization, data curation, formal analysis, visualization, supervision, writing—original draft, writing—review and editing.

Corresponding authors

Correspondence to Gokana Mohana Rani, Hoe Joon Kim or Rajaboina Rakesh Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.U., Hajra, S., Mohana Rani, G. et al. Revolutionizing waste-to-energy: harnessing the power of triboelectric nanogenerators. Adv Compos Hybrid Mater 7, 91 (2024). https://doi.org/10.1007/s42114-024-00903-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00903-9

Keywords

Navigation