Skip to main content

Waste-Recovered Nanomaterials for Emerging Electrocatalytic Applications

  • Chapter
  • First Online:
Waste Recycling Technologies for Nanomaterials Manufacturing

Abstract

Energy is essential and affects all aspects of our society, including the economy and modern living. However, the unparalleled rise in the global population, technological advancements, and changes in the scope of energy resources are all affecting the present energy landscape. With the increasing demands for energy and over-consumption of fossil energy, CO2 emission is anticipated to rise over the next decades with devastating consequences on the environment and humans’ lives. To avoid future eventualities, clean energy technologies have evolved with the expectation to diversify the global energy resources. Alternative energies are likely to show a crucial role in meeting not just the future energy needs but to remedy the escalating negative impact of fossil energy. Various clean energy systems, including fuel cells, electrolytic cells, rechargeable batteries, solar cells, etc., have emerged as viable renewable energy systems with even a wider range of applications and less impact on the environment. The efficiency of these energy systems is critical but is dependent on several technical factors, including electrochemical hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). An efficient electrocatalyst is required to drive the kinetics of these electrochemical processes effectively. However, developing practically efficient electrocatalyst is a significant challenge in terms of striking a balance between cost, performance, and sustainability of the active materials. Irrespective of any challenges, developing cost-effective and efficient electrode materials is vital for large-scale implementations of these energy systems. This chapter discusses the alternatives, recent progress, and future trends of using various waste materials for the development of advanced electrodes for various electrochemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

BCMs/a-BCMs:

Biochar microspheres/activated biochar microspheres

BET:

Brunauer–Emmett–Teller

CE:

Counter electrode

CNFs:

Carbon nanofibers

CSEM:

Carbonized sucrose-coated eggshell membrane

DSSCs:

Dye-sensitized solar cells

1D:

One-dimensional

3D:

Three-dimensional

Eo:

The standard potential

FESEM:

Field emission scanning electron microscope

HER:

Hydrogen evolution reaction

HPNS:

Hierarchical porous nanosheets

HRTEM:

High-resolution TEM

LiBs:

Lithium-ion batteries

LSV:

Linear sweep voltammetry

MFCs:

Microbial fuel cells

OER:

Oxygen evolution reaction

ORR:

Oxygen reduction reaction

PCE:

Power conversion efficiency

PV:

Photovoltaics

REN21:

Renewable Energy Policy Network for the twenty-first Century

TEM:

Transmission electron microscopy

TFSCs:

Thin-film solar cells

XRD:

X-ray powder diffraction

ΔGo:

The free energy change for the reaction

η:

Overpotential

References

  1. International Energy Outlook (2018) https://www.eia.gov/outlooks/ieo/

  2. Annual Energy Outlook (2019) www.eia.gov/aeo

  3. Gong J, Sumathy K, Qiao Q, Zhou Z (2017) Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew Sustai Energy Rev 68:234–246

    Article  CAS  Google Scholar 

  4. Smalley RE (2003) Our energy challenge. Public lecture presented at low library. Columbia University 23

    Google Scholar 

  5. REN21, Renewables 2018 Global Status Report. REN21 Secretariat, Paris

    Google Scholar 

  6. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. https://eur-lex.europa.eu/eli/dir/2018/2001/2018-12-21

  7. Downes CA, Marinescu SC (2017) Electrocatalytic metal-organic frameworks for energy applications. Chemsuschem 10(22):4374–4392

    Article  CAS  Google Scholar 

  8. Dutta T, Kim K-H, Deep A, Szulejko JE, Vellingiri K, Kumar S, Kwon EE, Yun S-T (2018) Recovery of nanomaterials from battery and electronic wastes: a new paradigm of environmental waste management. Renew Sustain Energy Rev 82:3694–3704

    Article  CAS  Google Scholar 

  9. Bennett JA, Wilson K, Lee AF (2016) Catalytic applications of waste derived materials. J Mater Chem A 4(10):3617–3637

    Article  CAS  Google Scholar 

  10. Sadh PK, Duhan S, Duhan JS (2018) Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour Bioprocess 5:1

    Google Scholar 

  11. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Application of response surface methodology for optimization of palm kernel shell activated carbon preparation factors for removal of H2S from industrial wastewater. Jurnal Teknologi 79(7):1–10

    Google Scholar 

  12. Hegde G, Abdul Manaf SA, Kumar A, Ali GAM, Chong KF, Ngaini Z, Sharma KV (2015) Biowaste sago bark based catalyst free carbon nanospheres: waste to wealth approach. ACS Sustain Chem Eng 5(9):2247–2253

    Article  CAS  Google Scholar 

  13. Ali GAM, Divyashree A, Supriya S, Chong KF, Ethiraj AS, Reddy M, Algarni H, Hegde G (2017) Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach. Dalton Trans 46(40):14034–14044

    Google Scholar 

  14. Ali GAM, Tan LL, Jose R, Yusoff MM, Chong KF (2014) Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery. Mater Res Bull 60:5–9

    Article  CAS  Google Scholar 

  15. Ali GAM, Yusoff MM, Feng CK (2015) Electrochemical properties of electrodeposited MnO2 nanoparticles. Adv Mater Res 1113:550–553

    Article  Google Scholar 

  16. Ali GAM, Abdul Manaf SA, Kumar A, Chong KF, Hegde G (2014) High performance supercapacitor using catalysis free porous carbon nanoparticles. J Phys D-Appl Phys 47(49):495307–495313

    Article  CAS  Google Scholar 

  17. Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44(7):7799–7807

    Google Scholar 

  18. Ali GAM, Supriya S, Chong KF, Shaaban ER, Algarni H, Maiyalagan T, Hegde G (2019) Superior supercapacitance behavior of oxygen self-doped carbon nanospheres: a conversion of Allium cepa peel to energy storage system. Biomass Conv Bioref

    Google Scholar 

  19. Ali GAM, Manaf SAA, Divyashree A, Chong KF, Hegde G (2016) Superior supercapacitive performance in porous nanocarbons. J Energy Chem 25(4):734–739

    Article  Google Scholar 

  20. Ali GAM, Habeeb OA, Algarni H, Chong KF (2018) CaO impregnated highly porous honeycomb activated carbon from agriculture waste: symmetrical supercapacitor study. J Mater Sci 54:683–692

    Article  CAS  Google Scholar 

  21. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Experimental design technique on removal of hydrogen sulfide using CaO-eggshells dispersed onto palm kernel shell activated carbon: experiment, optimization, equilibrium and kinetic studies. J Wuhan University Technol-Mater Sci Ed 32(2):305–320

    Google Scholar 

  22. Ali GAM, Yusoff MM, Shaaban ER, Chong KF (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440–8448

    Article  CAS  Google Scholar 

  23. Habeeb OA, Ramesh K, Ali GAM, Yunus RM (2017) Low-cost and eco-friendly activated carbon from modified palm kernel shell for hydrogen sulfide removal from wastewater: adsorption and kinetic studies. Desalin Water Treat 84:205–214

    Article  CAS  Google Scholar 

  24. Kirubakaran AJ, Shailendra Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy Rev 13(9):2430–2440

    Article  CAS  Google Scholar 

  25. Brian CH, Steele AH (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352

    Article  Google Scholar 

  26. Yang M-Q, Wang J, Wu H, Ho GW (2018) Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 14:1703323

    Google Scholar 

  27. Trasatti S (1999) Water electrolysis: who first? J Electroanal Chem 476:90–91

    Article  CAS  Google Scholar 

  28. Jiao L, Zhou YX, Jiang HL (2016) Metal-organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem Rev 7(3):1690–1695

    CAS  Google Scholar 

  29. Ewan B, Allen R (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrogen Energy 30(8):809–819

    Article  CAS  Google Scholar 

  30. Cheng Y, Jiang SP (2015) Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes. Prog Nat Sci Mater Int 25(6):545–553

    Article  CAS  Google Scholar 

  31. Ganguly P, Harb M, Cao Z, Cavallo L, Breen A, Dervin S, Dionysiou DD, Pillai SC (2019) 2D nanomaterials for photocatalytic hydrogen production. ACS Energy Lett 4:1687–1709

    Article  CAS  Google Scholar 

  32. Han L, Dong S, Wang E (2016) Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv Mater 28(42):9266–9291

    Article  CAS  Google Scholar 

  33. Anantharaj SE, Rao S, Sakthikumar K, Karthick K, Mishra S, Kundu Subrata (2016) Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catalysis 6(12):8069–8097

    Article  CAS  Google Scholar 

  34. Khan MA, Zhao H, Zou W, Chen Z, Cao W, Fang J, Xu J, Zhang L, Zhang J (2018) Recent progresses in electrocatalysts for water electrolysis. Electrochem Energy Rev 1(4):483–530

    Article  CAS  Google Scholar 

  35. Shi Y, Zhang B (2016) Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev 45(6):1529–1541

    Article  CAS  Google Scholar 

  36. Lee J-S, Tai Kim S, Cao R, Choi N-S, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: Li–Air versus Zn–Air. Adv Energy Mater 1(1):34–50

    Article  CAS  Google Scholar 

  37. Drouet S, Creus J, Collière V, Amiens C, García-Antón J, Sala X, Philippot K (2017) A porous Ru nanomaterial as an efficient electrocatalyst for the hydrogen evolution reaction under acidic and neutral conditions. Chem Commun 53(85):11713–11716

    Article  CAS  Google Scholar 

  38. Chen Z, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF (2011) Core-shell MoO3-MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano Lett 11(10):4168–4175

    Article  CAS  Google Scholar 

  39. Zheng X, Xu J, Yan K, Wang H, Wang Z, Yang S (2014) Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem Mater 26(7):2344–2353

    Article  CAS  Google Scholar 

  40. Xue N, Diao P (2017) Composite of few-layered MoS2 grown on carbon black: tuning the ratio of terminal to total sulfur in MoS2 for hydrogen evolution reaction. J Phys Chem C 121(27):14413–14425

    Article  CAS  Google Scholar 

  41. Hemamala I, Karunadasa EM, Sun Yujie, Majda Marcin, Long Jeffrey R, Chang Christopher J (2012) A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335(6069):698–702

    Article  CAS  Google Scholar 

  42. Benck JD, Hellstern TR, Kibsgaard J, Chakthranont P, Jaramillo TF (2014) Catalyzing the hydrogen evolution reaction (HER) with molybdenum sulfide nanomaterials. ACS Catalysis 4(11):3957–3971

    Article  CAS  Google Scholar 

  43. Wu Y, Liu X, Han D, Song X, Shi L, Song Y, Niu S, Xie Y, Cai J, Wu S, Kang J, Zhou J, Chen Z, Zheng X, Xiao X, Wang G (2018) Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat Commun 9(1):1425

    Article  CAS  Google Scholar 

  44. Zhu D, Liu J, Wang L, Du Y, Zheng Y, Davey K, Qiao S-Z (2019) A 2D metal–organic framework/Ni(OH)2 heterostructure for an enhanced oxygen evolution reaction. Nanoscale 11(8):3599–3605

    Article  CAS  Google Scholar 

  45. Abdalla S, Al-Marzouki F, Obaid A (2017) High-efficient and low-cost catalyst for hydrogen evolution reaction: nickel phosphide nano-spheres. J Renew Sustain Energy 9(2):023104

    Article  CAS  Google Scholar 

  46. Zhang R, Wang X, Yu S, Wen T, Zhu X, Yang F, Sun X, Wang X, Hu W (2017) Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv Mater 29(9):1605502

    Article  CAS  Google Scholar 

  47. Cai Z, Wu A, Yan H, Xiao Y, Chen C, Tian C, Wang L, Wang R, Fu H (2018) Hierarchical whisker-on-sheet NiCoP with adjustable surface structure for efficient hydrogen evolution reaction. Nanoscale 10(16):7619–7629

    Article  CAS  Google Scholar 

  48. Du C, Yang L, Yang F, Cheng G, Luo W (2017) Nest-like NiCoP for highly efficient overall water splitting. ACS Catalysis 7(6):4131–4137

    Article  CAS  Google Scholar 

  49. Che Q, Bai N, Li Q, Chen X, Tan Y, Xu X (2018) One-step electrodeposition of a hierarchically structured S-doped NiCo film as a highly-efficient electrocatalyst for the hydrogen evolution reaction. Nanoscale 10(32):15238–15248

    Article  CAS  Google Scholar 

  50. J. O. Bockris AKNRaMG-A (2000) Modern electrochemistry 2A. Fundamentals of electrodics. Kluwer Academic, New York

    Google Scholar 

  51. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46(2):337–365

    Article  CAS  Google Scholar 

  52. Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, Trasatti S (2014) Defining the transfer coefficient in electrochemistry: an assessment (IUPAC technical report). Pure Appl Chem 86(2):245–258

    Article  CAS  Google Scholar 

  53. Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrogen Energy 40(34):11094–11111

    Article  CAS  Google Scholar 

  54. Zheng Y, Jiao Y, Jaroniec M, Qiao SZ (2015) Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed 54(1):52–65

    Article  CAS  Google Scholar 

  55. Zheng Y, Jiao Y, Vasileff A, Qiao S-Z (2018) The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angew Chem Int Ed 57(26):7568–7579

    Article  CAS  Google Scholar 

  56. Zhang Y-Y, Zhang X, Wu Z-Y, Zhang B-B, Zhang Y, Jiang W-J, Yang Y-G, Kong Q-H, Hu J-S (2019) Fe/P dual doping boosts the activity and durability of CoS2 polycrystalline nanowires for hydrogen evolution. J Mater Chem A 7(10):5195–5200

    Article  CAS  Google Scholar 

  57. Kibsgaard J, Tsai C, Chan K, Benck JD, Nørskov JK, Abild-Pedersen F, Jaramillo TF (2015) Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy Environ Sci 8(10):3022–3029

    Article  CAS  Google Scholar 

  58. Li T, Jin H, Liang Z, Huang L, Lu Y, Yu H, Hu Z, Wu J, Xia BY, Feng G, Zhou J (2018) Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method. Nanoscale 10(15):6844–6849

    Article  CAS  Google Scholar 

  59. Mir RA, Pandey OP (2020) An ecofriendly route to synthesize C–Mo2C and C/N–Mo2C utilizing waste polyethene for efficient hydrogen evolution reaction (HER) activity and high performance capacitors. Sustain Energy Fuels 4:655–669

    Google Scholar 

  60. Zhang Z, Yang S, Li H, Zan Y, Li X, Zhu Y, Dou M, Wang F (2019) Sustainable carbonaceous materials derived from biomass as metal-free electrocatalysts. Adv Mater 31(13):e1805718

    Article  CAS  Google Scholar 

  61. Corma A, de la Torre O, Renz M, Villandier N (2011) Production of high-quality diesel from biomass waste products. Angew Chem Int Ed 50(10):2375–2378

    Article  CAS  Google Scholar 

  62. Christopher O, Tuck EP, Horváth István T, Sheldon Roger A, Poliakoff Martyn (2012) Valorization of biomass: deriving more value from waste. Science 337(10):695–699

    Google Scholar 

  63. Liu X, Zhang M, Yu D, Li T, Wan M, Zhu H, Du M, Yao J (2016) Functional materials from nature: honeycomb-like carbon nanosheets derived from silk cocoon as excellent electrocatalysts for hydrogen evolution reaction. Electrochim Acta 215:223–230

    Article  CAS  Google Scholar 

  64. Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y, Du A, Jaroniec M, Qiao SZ (2014) Hydrogen evolution by a metal-free electrocatalyst. Nat Commun 5:3783

    Article  Google Scholar 

  65. Yao Zheng YJ, Li LH, X T, C Ying, Jaroniec M, Qiao SZ (2014) Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8(5):5290–5296

    Article  CAS  Google Scholar 

  66. Dai L, Xue Y, Qu L, Choi HJ, Baek JB (2015) Metal-free catalysts for oxygen reduction reaction. Chem Rev 115(11):4823–4892

    Article  CAS  Google Scholar 

  67. Prabu N, Saravanan RSA, Kesavan T, Maduraiveeran G, Sasidharan M (2019) An efficient palm waste derived hierarchical porous carbon for electrocatalytic hydrogen evolution reaction. Carbon 152:188–197

    Article  CAS  Google Scholar 

  68. Yan Q, Yang X, Wei T, Zhou C, Wu W, Zeng L, Zhu R, Cheng K, Ye KK, Zhu K, Yan J, Cao D, Wang G (2020) Porous beta-Mo2C nanoparticle clusters supported on walnut shell powders derived carbon matrix for hydrogen evolution reaction. J Colloid Interface Sci 563:104–111

    Article  CAS  Google Scholar 

  69. Kumar A, Chaudhary DK, Parvin S, Bhattacharyya S (2018) High performance duckweed-derived carbon support to anchor NiFe electrocatalysts for efficient solar energy driven water splitting. J Mater Chem A 6(39):18948–18959

    Article  CAS  Google Scholar 

  70. Ng JWD, García-Melchor M, Bajdich M, Chakthranont P, Kirk C, Vojvodic A, Jaramillo TF (2016) Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat Energy 1:16053

    Article  CAS  Google Scholar 

  71. Shi Q, Fu S, Zhu C, Song J, Du D, Lin Y (2019) Metal–organic frameworks-based catalysts for electrochemical oxygen evolution. Mater Horizons 6:684–702

    Google Scholar 

  72. Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJ (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew Chem Int Ed 53(1):102–121

    Article  CAS  Google Scholar 

  73. Frydendal R, Paoli EA, Knudsen BP, Wickman B, Malacrida P, Stephens IEL, Chorkendorff I (2014) Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1(12):2075–2081

    Article  CAS  Google Scholar 

  74. Kotz R, Lewerenz HJ, Stucki S (1983) XPS studies of oxygen evolution on Ru and RuO2 anodes. J Electrochem Soc 130:825–829

    Article  Google Scholar 

  75. Lyu F, Wang Q, Choi SM, Yin Y (2019) Noble-metal-free electrocatalysts for oxygen evolution. Small 15(1):1804201

    Article  CAS  Google Scholar 

  76. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10:780

    Article  CAS  Google Scholar 

  77. Zhang L, Xiao J, Wang H, Shao M (2017) Carbon-based electrocatalysts for hydrogen and oxygen evolution reactions. ACS Catalysis 7(11):7855–7865

    Article  CAS  Google Scholar 

  78. Cheng Y, Liao F, Shen W, Liu L, Jiang B, Li Y, Shao M (2017) Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc–air batteries. Nanoscale 9(47):18977–18982

    Article  CAS  Google Scholar 

  79. Song F, Bai L, Moysiadou A, Lee S, Hu C, Liardet L, Hu X (2018) Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J Am Chem Soc 140(25):7748–7759

    Article  CAS  Google Scholar 

  80. Xue Y, Ren Z, Xie Y, Du S, Wu J, Meng H, Fu H (2017) CoSex nanocrystalline-dotted CoCo layered double hydroxide nanosheets: a synergetic engineering process for enhanced electrocatalytic water oxidation. Nanoscale 9(42):16256–16263

    Article  CAS  Google Scholar 

  81. Zhang R, Tang C, Kong R, Du G, Asiri AM, Chen L, Sun X (2017) Al-doped CoP nanoarray: a durable water-splitting electrocatalyst with superhigh activity. Nanoscale 9(14):4793–4800

    Article  CAS  Google Scholar 

  82. Devi MM, Ojha KN, Ganguli AK, Jha M (2018) Transformation of waste tin-plated steel to iron nanosheets and their application in generation of oxygen. Int J Environ Sci Technol 16(7):3669–3678

    Article  CAS  Google Scholar 

  83. Jothi VR, Bose R, Rajan H, Jung C, Yi SC (2018) Harvesting electronic waste for the development of highly efficient eco-design electrodes for electrocatalytic water splitting. Adv Energy Mater 8(34):1802615

    Article  CAS  Google Scholar 

  84. Babar P, Lokhande A, Karade V, Pawar B, Gang MG, Pawar S, Kim JH (2019) Towards highly efficient and low-cost oxygen evolution reaction electrocatalysts: an effective method of electronic waste management by utilizing waste Cu cable wires. J Colloid Interface Sci 537:43–49

    Article  CAS  Google Scholar 

  85. Natarajan S, Anantharaj S, Tayade RJ, Bajaj HC, Kundu S (2017) Recovered spinel MnCo2O4 from spent lithium-ion batteries for enhanced electrocatalytic oxygen evolution in alkaline medium. Dalton Trans 46(41):14382–14392

    Article  CAS  Google Scholar 

  86. Aboelazm EA, Ali GAM, Chong KF (2018) Cobalt oxide supercapacitor electrode recovered from spent lithium-ion battery. Chem Adv Mater 3:67–74

    Google Scholar 

  87. Aboelazm EAA, Ali GAM, Algarni H, Yin H, Zhong YL, Chong KF (2018) Magnetic electrodeposition of the hierarchical cobalt oxide nanostructure from spent lithium-ion batteries: its application as a supercapacitor electrode. J Phys Chem C 122(23):12200–12206

    Article  CAS  Google Scholar 

  88. Li J, He X, Zeng X (2017) Designing and examining e-waste recycling process: methodology and case studies. Environ Technol 38(6):652–660

    Article  CAS  Google Scholar 

  89. Chen N, Qi J, Du X, Wang Y, Zhang W, Wang Y, Lu Y, Wang S (2016) Recycled LiCoO2 in spent lithium-ion battery as an oxygen evolution electrocatalyst. RSC Adv 6(105):103541–103545

    Article  CAS  Google Scholar 

  90. Yang Y, Yang H, Cao H, Wang Z, Liu C, Sun Y, Zhao H, Zhang Y, Sun Z (2019) Direct preparation of efficient catalyst for oxygen evolution reaction and high-purity Li2CO3 from spent Li Ni0.5 Mn0.3Co0.2O2 batteries. J Cleaner Prod 236:117576

    Google Scholar 

  91. Pegoretti VCB, Dixini PVM, Magnago L, Rocha AKS, Lelis MFF, Freitas MBJG (2019) High-temperature (HT) LiCoO2 recycled from spent lithium ion batteries as catalyst for oxygen evolution reaction. Mater Res Bull 110:97–101

    Article  CAS  Google Scholar 

  92. Wanwan Mei XY, Li L, Tong Y, Lei Y, Li P, Zheng Z (2020) Rational electrochemical recycling of spent LiFePO4 and LiCoO2 batteries to Fe2O3/CoPi photoanode for water oxidation. ACS Sustain Chem Eng 8(9):3606–3616

    Article  CAS  Google Scholar 

  93. Amiinu IS, Zhang J, Kou Z, Liu X, Asare OK, Zhou H, Cheng K, Zhang H, Mai L, Pan M, Mu S (2016) Self-organized 3D porous graphene dual-doped with biomass-sponsored nitrogen and sulfur for oxygen reduction and evolution. ACS Appl Mater Interfaces 8(43):29408–29418

    Article  CAS  Google Scholar 

  94. Guan C, Liu X, Elshahawy AM, Zhang H, Wu H, Pennycook SJ, Wang J (2017) Metal–organic framework derived hollow CoS2 nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horizons 2(6):342–348

    Article  CAS  Google Scholar 

  95. Ji L, Wang J, Teng X, Meyer TJ, Chen Z (2019) CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catalysis 10(1):412–419

    Article  CAS  Google Scholar 

  96. Deng S, Zhang K, Xie D, Zhang Y, Zhang Y, Wang Y, Wu J, Wang X, Fan HJ, Xia X, Tu J (2019) High-index-faceted Ni3S2 branch arrays as bifunctional electrocatalysts for efficient water splitting. Nano-Micro Lett 11:12

    Google Scholar 

  97. Tiwari JN, Dang NK, Sultan S, Thangavel P, Jeong HY, Kim KS (2020) Multi-heteroatom-doped carbon from waste-yeast biomass for sustained water splitting. Nat Sustain 3:556–563

    Google Scholar 

  98. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355(6321):eaad4998

    Google Scholar 

  99. Morozan A, Jousselme B, Palacin S (2011) Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ Sci 4(4):1238–1254

    Article  CAS  Google Scholar 

  100. Mahmood A, Guo W, Tabassum H, Zou R (2016) Metal-organic framework-based nanomaterials for electrocatalysis. Adv Energy Mater 6(17):1600423

    Article  CAS  Google Scholar 

  101. Yeager E (1986) Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J Mol Catal 38:5–25

    Google Scholar 

  102. Zhang J (2008) PEM fuel cell electrocatalysts and catalyst layers. Springer Verlag, London

    Book  Google Scholar 

  103. Song Z, Cheng N, Lushington A, Sun X (2016) Recent progress on MOF-derived nanomaterials as advanced electrocatalysts in fuel cells. Catalysts 6(8):116

    Article  CAS  Google Scholar 

  104. Zhang Y, Deng L, Hu H, Qiao Y, Yuan H, Chen D, Chang M, Wei H (2020) Pomelo peel-derived, N-doped biochar microspheres as an efficient and durable metal-free ORR catalyst in microbial fuel cells. Sustain Energy Fuels 4:1642–1653

    Google Scholar 

  105. Sui S, Wang X, Zhou X, Su Y, Riffat S, Liu C-j (2017) A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J Mater Chem A 5(5):1808–1825

    Article  CAS  Google Scholar 

  106. Ren Q, Wang H, Lu X-F, Tong Y-X, Li G-R (2018) Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv Sci 5(3):1700515

    Article  CAS  Google Scholar 

  107. Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932):1302–1305

    Article  CAS  Google Scholar 

  108. Dai S, Chou J-P, Wang K-W, Hsu Y-Y, Hu A, Pan X, Chen T-Y (2019) Platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with promising performance for oxygen reduction reaction. Nat Commun 10(1):440

    Article  CAS  Google Scholar 

  109. Huang C, Li C, Shi G (2012) Graphene based catalysts. Energy Environ Sci 5(10):8848–8868

    Article  CAS  Google Scholar 

  110. Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326

    Article  CAS  Google Scholar 

  111. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764

    Article  CAS  Google Scholar 

  112. Qu K, Zheng Y, Dai S, Qiao SZ (2015) Polydopamine–graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. Nanoscale 7(29):12598–12605

    Article  CAS  Google Scholar 

  113. Deng L, Yuan H, Cai X, Ruan Y, Zhou S, Chen Y, Yuan Y (2016) Honeycomb-like hierarchical carbon derived from livestock sewage sludge as oxygen reduction reaction catalysts in microbial fuel cells. Int J Hydrogen Energy 41(47):22328–22336

    Article  CAS  Google Scholar 

  114. Liu Y, Ruan J, Sang S, Zhou Z, Wu Q (2016) Iron and nitrogen co-doped carbon derived from soybeans as efficient electro-catalysts for the oxygen reduction reaction. Electrochim Acta 215:388–397

    Article  CAS  Google Scholar 

  115. Li C, Sun F, Lin Y (2018) Refining cocoon to prepare (N, S, and Fe) ternary-doped porous carbon aerogel as efficient catalyst for the oxygen reduction reaction in alkaline medium. J Power Sources 384:48–57

    Article  CAS  Google Scholar 

  116. Guo C, Hu R, Liao W, Li Z, Sun L, Shi D, Li Y, Chen C (2017) Protein-enriched fish “biowaste” converted to three-dimensional porous carbon nano-network for advanced oxygen reduction electrocatalysis. Electrochim Acta 236:228–238

    Article  CAS  Google Scholar 

  117. Kaur P, Verma G, Sekhon SS (2019) Biomass derived hierarchical porous carbon materials as oxygen reduction reaction electrocatalysts in fuel cells. Prog Mater Sci 102:1–71

    Article  CAS  Google Scholar 

  118. Lihua Zhou PF, Cai X, Zhou S, Yuan Y (2016) Naturally derived carbon nanofibers as sustainable electrocatalysts for microbial energy harvesting: a new application of spider silk. Appl Catal B 188:31–38

    Article  CAS  Google Scholar 

  119. Li S, Xu R, Wang H, Brett DJ, Ji S, Pollet BG, Wang R (2017) Ultra-high surface area andmesoporous N-doped carbon derived from sheep bones with high electrocatalytic performance toward the oxygen reduction reaction. J Solid State Electrochem 21:2947–2954

    Article  CAS  Google Scholar 

  120. Yongxi Zan ZZ, Liu H, Dou M, Wang F (2017) Nitrogen and phosphorus co-doped hierarchically porous carbons derived from cattle bones as efficient metal-free electrocatalysts for the oxygen reduction reaction. J Mater Chem A 5:24329–24334

    Article  Google Scholar 

  121. Chaudhari KN, Song MY, Yu JS (2014) Transforming hair into heteroatom-doped carbon with high surface area. Small 10(13):2625–2636

    Article  CAS  Google Scholar 

  122. Yuan W, Feng Y, Xie A, Zhang X, Huang F, Li S, Zhang X, Shen Y (2016) Nitrogen-doped nanoporous carbon derived from waste pomelo peel as a metal-free electrocatalyst for the oxygen reduction reaction. Nanoscale 8(16):8704–8711

    Article  CAS  Google Scholar 

  123. Ma M, You S, Wang W, Liu G, Qi D, Chen X, Qu J, Ren N (2016) Biomass-derived porous Fe3C/tungsten carbide/graphitic carbon nanocomposite for efficient electrocatalysis of oxygen reduction. ACS Appl Mater Interfaces 8(47):32307–32316

    Article  CAS  Google Scholar 

  124. Wang Y, Zhu M, Wang G, Dai B, Yu F, Tian Z, Guo X (2017) Enhanced oxygen reduction reaction by in situ anchoring Fe(2)N nanoparticles on nitrogen-doped pomelo peel-derived carbon. Nanomaterials (Basel) 7(11)

    Google Scholar 

  125. Li M, Zhang H, Xiao T, Wang S, Zhang B, Chen D, Su M, Tang J (2018) Low-cost biochar derived from corncob as oxygen reduction catalyst in air cathode microbial fuel cells. Electrochim Acta 283(1):780–788

    Article  CAS  Google Scholar 

  126. Huang Z-F, Wang J, Peng Y, Jung C-Y, Fisher A, Wang X (2017) Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv Energy Mater 7(23):1700544

    Article  CAS  Google Scholar 

  127. Lu G, Li Z, Fan W, Wang M, Yang S, Li J, Chang Z, Sun H, Liang S, Liu Z (2019) Sponge-like N-doped carbon materials with Co-based nanoparticles derived from biomass as highly efficient electrocatalysts for the oxygen reduction reaction in alkaline media. RSC Adv 9(9):4843–4848

    Article  CAS  Google Scholar 

  128. Liu Y, Su M, Li D, Li S, Li X, Zhao J, Liu F (2020) Soybean straw biomass-derived Fe–N co-doped porous carbon as an efficient electrocatalyst for oxygen reduction in both alkaline and acidic media. RSC Adv 10(12):6763–6771

    Article  CAS  Google Scholar 

  129. Qiao Liu YD, Zhao Q, Pan F, Zhang B, Zhang J (2014) A direct synthesis of nitrogen-doped carbon nanosheets with high surface area and excellent oxygen reduction performance. Langmuir 30(27):8238–8245

    Article  CAS  Google Scholar 

  130. Xie S, Huang S, Wei W, Yang X, Liu Y, Lu X, Tong Y (2015) Chitosan waste-derived Co and N Co-doped carbon electrocatalyst for efficient oxygen reduction reaction. ChemElectroChem 2(11):1806–1812

    Article  CAS  Google Scholar 

  131. Li Y, Lu J (2017) Metal-air batteries: will they be the future electrochemical energy storage device of choice? ACS Energy Lett 2(6):1370–1377

    Article  CAS  Google Scholar 

  132. Thalji MR, Ali GAM, Algarni H, Chong KF (2019) Al3+ ion intercalation pseudocapacitance study of W18O49 nanostructure. J Power Sources 438:227028

    Article  CAS  Google Scholar 

  133. Ali GAM, Wahba OAG, Hassan AM, Fouad OA, Chong KF (2015) Calcium-based nanosized mixed metal oxides for supercapacitor application. Ceram Int 41(6):8230–8234

    Article  CAS  Google Scholar 

  134. Ali GAM, Fouad OA, Makhlouf SA, Yusoff MM, Chong KF (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem 18(9):2505–2512

    Article  CAS  Google Scholar 

  135. Ali GAM, Makhlouf SA, Yusoff MM, Chong KF (2015) Structural and electrochemical characteristics of graphene nanosheets as supercapacitor electrodes. Rev Adv Mater Sci 40(1):35–43

    Google Scholar 

  136. Fu J, Cano ZP, Park MG, Yu A, Fowler M, Chen Z (2017) Electrically rechargeable Zinc-air batteries: progress, challenges, and perspectives. Adv Mater 29(7):1604685

    Google Scholar 

  137. Lars Öjefors LC (1978) An iron—air vehicle battery. J Power Sources 2(3):287–296

    Article  Google Scholar 

  138. Zhang J, Zhou Q, Tang Y, Zhang L, Li Y (2019) Zinc-air batteries: are they ready for prime time? Chem Rev 10(39):8924–8929

    CAS  Google Scholar 

  139. Wang M, Lei X, Hu L, Zhang P, Hu H, Fang J (2017) High-performance waste biomass-derived microporous carbon electrocatalyst with a towel-like surface for alkaline metal/air batteries. Electrochim Acta 250:384–392

    Article  CAS  Google Scholar 

  140. Lei X, Wang M, Lai Y, Hu L, Wang H, Fang Z, Li J, Fang J (2017) Nitrogen-doped micropore-dominant carbon derived from waste pine cone as a promising metal-free electrocatalyst for aqueous zinc/air batteries. J Power Sources 365:76–82

    Article  CAS  Google Scholar 

  141. Ma Z, Wang K, Qiu Y, Liu X, Cao C, Feng Y, Hu P (2018) Nitrogen and sulfur co-doped porous carbon derived from bio-waste as a promising electrocatalyst for zinc-air battery. Energy 143:43–55

    Article  CAS  Google Scholar 

  142. Choudhary R, Patra S, Madhuri R, Sharma PK (2017) Cow dung derived PdNPs@WO3 porous carbon nanodiscs as trifunctional catalysts for design of zinc-air batteries and overall water splitting. ACS Sustain Chem Eng 5(11):9735–9748

    Article  CAS  Google Scholar 

  143. Yang L, Zeng X, Wang D, Cao D (2018) Biomass-derived FeNi alloy and nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-air battery. Energy Storage Mater 12:277–283

    Article  Google Scholar 

  144. Wei J, Zhao S, Ji L, Zhou T, Miao Y, Scott K, Li D, Yang J, Wu X (2018) Reuse of Ni-Co-Mn oxides from spent Li-ion batteries to prepare bifunctional air electrodes. Resour Conserv Recycl 129:135–142

    Article  Google Scholar 

  145. Smil V (2006) Energy at the crossroad, organisation for economic co-operation and development. Paris 12

    Google Scholar 

  146. Anders Hagfeldt GB, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663

    Article  CAS  Google Scholar 

  147. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  148. Chapin DM, Fuller CS, Pearson GL (1954) A new silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys 25(5):676–677

    Article  CAS  Google Scholar 

  149. Eser RWBaE (1997) Polycrystalline thin film solar cells: present status and future potential. Annu Rev Mater Res 27:625–653

    Google Scholar 

  150. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32(3):510–519

    Article  CAS  Google Scholar 

  151. Brain O’Regan MG (1991) Alow- cost, high-effeciency solarcell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  152. Carey GH, Abdelhady AL, Ning Z, Thon SM, Bakr OM, Sargent EH (2015) Colloidal quantum dot solar cells. Chem Rev 115(23):12732–12763

    Article  CAS  Google Scholar 

  153. Akihiro Kojima KT, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  CAS  Google Scholar 

  154. Ito S, Chen P, Comte P, Nazeeruddin MK, Liska P, Péchy P, Grätzel M (2007) Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog Photovoltaics Res Appl 15(7):603–612

    Article  CAS  Google Scholar 

  155. Murakami TN, Grätzel M (2008) Counter electrodes for DSC: application of functional materials as catalysts. Inorg Chim Acta 361(3):572–580

    Article  CAS  Google Scholar 

  156. Wu J, Li Y, Tang Q, Yue G, Lin J, Huang M, Meng L (2014) Bifacial dye-sensitized solar cells: a strategy to enhance overall efficiency based on transparent polyaniline electrode. Sci Rep 4:4028

    Article  CAS  Google Scholar 

  157. Thomas S, Deepak TG, Anjusree GS, Arun TA, Nair SV, Nair AS (2014) A review on counter electrode materials in dye-sensitized solar cells. J Mater Chem A 2(13):4474–4490

    Article  CAS  Google Scholar 

  158. Olsen E, Hagen G, Eric Lindquist S (2000) Dissolution of platinum in methoxy propionitrile containing LiI/I2. Sol Energy Mater Sol Cells 63(3):267–273

    Article  CAS  Google Scholar 

  159. Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod BFE, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin MK, Grätzel M (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242

    Article  CAS  Google Scholar 

  160. Takurou N, Murakami SI, Qing Wang Md, Nazeeruddin Khaja, Bessho Takeru, Cesar Ilkay, Liska Paul, Humphry-Baker Robin, Comte Pascal, Péchy Péter, Grätzel Michael (2006) Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J Electrochem Soc 153:2255–2261

    Article  CAS  Google Scholar 

  161. Wu C-S, Chang T-W, Teng H, Lee Y-L (2016) High performance carbon black counter electrodes for dye-sensitized solar cells. Energy 115:513–518

    Article  CAS  Google Scholar 

  162. Xu X, Huang D, Cao K, Kang M, Zakeeruddin SM, Gratzel M (2013) Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells. Sci Rep 3:1489

    Article  CAS  Google Scholar 

  163. Lodermeyer F, Costa RD, Casillas R, Kohler FTU, Wasserscheid P, Prato M, Guldi DM (2015) Carbon nanohorn-based electrolyte for dye-sensitized solar cells. Energy Environ Sci 8(1):241–246

    Article  CAS  Google Scholar 

  164. Gong F, Xu X, Zhou G, Wang ZS (2013) Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells. Phys Chem Chem Phys 15(2):546–552

    Article  CAS  Google Scholar 

  165. Heo SY, Koh JK, Kim JK, Lee CS, Kim JH (2014) Three-dimensional conducting polymer films for Pt-free counter electrodes in quasi-solid-state dye-sensitized solar cells. Electrochim Acta 137:34–40

    Article  CAS  Google Scholar 

  166. Kung CW, Chen HW, Lin CY, Huang KC, Vittal R, Ho KC (2012) CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS Nano 6:7016–7025

    Article  CAS  Google Scholar 

  167. Chun-Ting Li Y-LT, Ho Kuo-Chuan (2016) Earth abundant silicon composites as the electrocatalytic counter electrodes for dye-sensitized solar cells. ACS Appl Mater Interfaces 8(11):7037–7046

    Article  CAS  Google Scholar 

  168. Shengjie Peng LT, Liang J, Mhaisalkar SG, Ramakrishna S (2012) Polypyrrole nanorod networks/carbon nanoparticles composite counter electrodes for high-efficiency dye-sensitized solar cells. ACS Appl Mater Interfaces 4(1):397–404

    Article  CAS  Google Scholar 

  169. Dong F, Guo Y, Xu P, Yin X, Li Y, He M (2017) Hydrothermal growth of MoS2/Co3S4 composites as efficient Pt-free counter electrodes for dye-sensitized solar cells. Sci China Mater 60(4):295–303

    Article  CAS  Google Scholar 

  170. Ahmed ASA, Xiang W, Gu A, Hu X, Saana IA, Zhao X (2018) Carbon black/silicon nitride nanocomposites as high-efficiency counter electrodes for dye-sensitized solar cells. New J Chem 42:11715–11723

    Google Scholar 

  171. Wu M, Ma T (2012) Platinum-free catalysts as counter electrodes in dye-sensitized solar cells. Chemsuschem 5(8):1343–1357

    Article  CAS  Google Scholar 

  172. Jiang QW, Li GR, Wang F, Gao XP (2010) Highly ordered mesoporous carbon arrays from natural wood materials as counter electrode for dye-sensitized solar cells. Electrochem Commun 12(7):924–927

    Article  CAS  Google Scholar 

  173. Wang C-L, Liao J-Y, Chung S-H, Manthiram A (2015) Carbonized eggshell membranes as a natural and abundant counter electrode for efficient dye-sensitized solar cells. Adv Energy Mater 5(6):1401524

    Article  CAS  Google Scholar 

  174. Cha SM, Nagaraju G, Sekhar SC, Bharat LK, Yu JS (2018) Fallen leaves derived honeycomb-like porous carbon as a metal-free and low-cost counter electrode for dye-sensitized solar cells with excellent tri-iodide reduction. J Colloid Interface Sci 513:843–851

    Article  CAS  Google Scholar 

  175. Xu S, Liu C, Wiezorek J (2018) 20 renewable biowastes derived carbon materials as green counter electrodes for dye-sensitized solar cells. Mater Chem Phys 204:294–304

    Article  CAS  Google Scholar 

  176. Wang C, Yun S, Xu H, Wang Z, Han F, Zhang Y, Si Y, Sun M (2020) Dual functional application of pomelo peel-derived bio-based carbon with controllable morphologies: an efficient catalyst for triiodide reduction and accelerant for anaerobic digestion. Ceram Int 46(3):3292–3303

    Article  CAS  Google Scholar 

  177. Shen Y (2017) Rice husk silica derived nanomaterials for sustainable applications. Renew Sustain Energy Rev 80:453–466

    Article  Google Scholar 

  178. Wang G, Wang D, Kuang S, Xing W, Zhuo S (2014) Hierarchical porous carbon derived from rice husk as a low-cost counter electrode of dye-sensitized solar cells. Renewable Energy 63:708–714

    Article  CAS  Google Scholar 

  179. Ahmad WB, Yang Z, Khan J, Jing W, Jiang F, Chu L, Liu N, Li L, Gao Y (2016) Extraction of nano-silicon with activated carbons simultaneously from rice husk and their synergistic catalytic effect in counter electrodes of dye-sensitized solar cells. Sci Rep 6:39314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaal S. A. Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, A.S.A., Amiinu, I.S., Zhao, X., Abdelmottaleb, M. (2021). Waste-Recovered Nanomaterials for Emerging Electrocatalytic Applications. In: Makhlouf, A.S.H., Ali, G.A.M. (eds) Waste Recycling Technologies for Nanomaterials Manufacturing. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-68031-2_10

Download citation

Publish with us

Policies and ethics