Skip to main content
Log in

A Modern Look at Spiropyrans: From Single Molecules to Smart Materials

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Photochromic compounds of the spiropyran family have two main isomers capable of inter-switching with UV or visible light. In the current review, we discuss recent advances in the synthesis, investigation of properties, and applications of spiropyran derivatives. Spiropyrans of the indoline series are in focus as the most promising representatives of multi-sensitive spirocyclic compounds, which can be switched by a number of external stimuli, including light, temperature, pH, presence of metal ions, and mechanical stress. Particular attention is paid to the structural features of molecules, their influence on photochromic properties, and the reactions taking place during isomerization, as the understanding of the structure–property relationships will rationalize the synthesis of compounds with predetermined characteristics. The main prospects for applications of spiropyrans in such fields as smart material production, molecular electronics and nanomachinery, sensing of environmental and biological molecules, and photopharmacology are also discussed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Scheme 5
Fig. 2
Scheme 6
Fig. 3
Fig. 4
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Fig. 5
Fig. 6

Adapted from Ref.

Scheme 12
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 13
Scheme 14
Scheme 15
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Scheme 21
Fig. 21
Scheme 22
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

(Copyright 2019 American Chemical Society)

Scheme 23
Fig. 28
Scheme 24

Similar content being viewed by others

Data availability

This work is a review article, readers will need to contact referenced authors to obtain additional information regarding the data presented.

References

  1. Bouas-Laurent H, Dürr H (2001) Organic photochromism (IUPAC Technical Report). Pure Appl Chem 73:639–665. https://doi.org/10.1351/pac200173040639

    Article  CAS  Google Scholar 

  2. Crano JC, Guglielmetti RJ (2002) Organic photochromic and thermochromic compounds, vol 1. Kluwer Academic Publishers, New York

    Book  Google Scholar 

  3. Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43:148–184. https://doi.org/10.1039/c3cs60181a

    Article  CAS  PubMed  Google Scholar 

  4. Lukyanov BS, Lukyanova MB (2005) Spiropyrans: synthesis, properties, and application (review). Chem Heterocycl Compd 4:281–311. https://doi.org/10.1007/s10593-005-0148-x

    Article  Google Scholar 

  5. Burri P (1982) Indolospiropyrane compounds, US4339385A/en

  6. Wizinger R, Wenning H (1940) Uber intramolekulare Ionisation. Helv Chim Acta 43:247–271. https://doi.org/10.1002/hlca.19400230133

    Article  Google Scholar 

  7. Luk’yanov BS, Nivorozhkin LE, Minkin VI (1993) Photo- and thermochromic spirans. Chem Heterocycl Compd 29:52–154. https://doi.org/10.1007/BF00531656

    Article  Google Scholar 

  8. Kagawa N, Takabatake H, Masuda Y (2014) Synthesis of 3′-allylindoline spirobenzopyrans derived from 3-allyl-3H-indoles. Tetrahedron Lett 55:6427–6431. https://doi.org/10.1016/j.tetlet.2014.09.121

    Article  CAS  Google Scholar 

  9. Kleizienė N, Amankavičienė V, Berg U, Schicktanz C, Schlothauer K, Šačkus A (2006) Cyclization of nitrospirobenzopyrans to bridged benzoxazepino[3,2-a]indoles. Monatsh Chem 137:1109–1117. https://doi.org/10.1007/s00706-005-0504-7

    Article  CAS  Google Scholar 

  10. Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M, Razavi B, Sahandi-Zangabad K (2020) Encryption and optical authentication of confidential cellulosic papers by ecofriendly multi-color photoluminescent inks. Carbohydr Polym 245:116507. https://doi.org/10.1016/j.carbpol.2020.116507

    Article  CAS  PubMed  Google Scholar 

  11. Ryabukhin YI, Mezheritskii VV, Dorofeenko GN (1975) Synthesis of 4H–1,3-benzoxazin-4-onium salts and 4-H-1,3-benzoxazin-4-ones. Chem Heterocycl Comp 11:404–407. https://doi.org/10.1007/BF00502422

    Article  Google Scholar 

  12. Luk’yanov BS, Ryabukhin YuI, Dorofeenko GN, Nivorozhkin LE, Minkin VI (1978) Photochromic and thermochromic spirans. Chem Heterocycl Compd 14:122–127. https://doi.org/10.1007/BF00945321

    Article  Google Scholar 

  13. Voloshin NA, Chernyshev AV, Metelitsa AV, Raskita IM, Voloshina EN, Minkin VI (2005) Spiropyrans and spirooxazines. 3. Synthesis of photochromic 5′-(4,5-diphenyl-1,3-oxazol-2-yl)-spiro[indoline-2,3′-naphtho[2,3-b]pyran]. Russ Chem Bull 54:705–710. https://doi.org/10.1007/s11172-005-0308-2

    Article  CAS  Google Scholar 

  14. Chernyshev AV, Voloshin NA, Raskita IM, Metelitsa AV, Minkin VI (2006) Photo- and ionochromism of 5’-(4,5-diphenyl-1,3-oxazol-2-yl) substituted spiro[indoline-naphthopyrans]. J Photochem Photobiol A 184:289–297. https://doi.org/10.1016/j.jphotochem.2006.04.042

    Article  CAS  Google Scholar 

  15. Pargaonkar JG, Patil SK, Vajekar SN (2017) Greener route for the synthesis of photo- and thermochromic spiropyrans using a highly efficient, reusable, and biocompatible choline hydroxide in an aqueous medium. Synth Commun 48:208–215. https://doi.org/10.1080/00397911.2017.1395053

    Article  CAS  Google Scholar 

  16. Swinson H, Perry A (2020) Three-component spiropyran synthesis via tandem alkylation-condensation. Tetrahedron 76:131219. https://doi.org/10.1016/j.tet.2020.131219

    Article  CAS  Google Scholar 

  17. Pugachev AD, Kozlenko AS, Lukyanova MB, Lukyanov BS, Tkachev VV, Shilov GV, Demidov OP, Minkin VI, Aldoshin SM (2019) One-pot synthesis and structure study of a new indoline spiropyran with cationic substituent. Dokl Chem 488:252–256. https://doi.org/10.1134/S0012500819100021

    Article  CAS  Google Scholar 

  18. Laptev AV, Lukin AYu, Belikov NE, Zvezdin KV, Demina OV, Barachevsky VA, Varfolomeev SD, Khodonov AA, Shvets VI (2014) Synthesis and studies of photochromic properties of spirobenzopyran carboxy derivatives and their model compounds as potential markers. Russ Chem Bull 63:2026–2035. https://doi.org/10.1007/s11172-014-0695-3

    Article  CAS  Google Scholar 

  19. Laptev AV, Belikov NE, Lukin AYu, Strokach YuP, Barachevsky VA, Alfimov MV, Demina OV, Shvets VI, Skladnev DA, Khodonov AA (2008) Synthesis of spiropyran analogues of retinal and study of their interaction with bacterioopsin from Halobacterium salinarum. Russ J Bioorg Chem 34:276–284. https://doi.org/10.1134/S1068162008020179

    Article  CAS  Google Scholar 

  20. Nikolaeva OG, Metelitsa AV, Cheprasov AS, Karlutova OYu, Starikov AG, Dubonosov AD, Bren VA, Minkin VI (2016) Synthesis and studies of new photochromic spiropyrans containing a formylcoumarin fragment. Russ Chem Bull Int Ed 65:944–951. https://doi.org/10.1007/s11172-016-1396-x

    Article  CAS  Google Scholar 

  21. Luk’yanov BS, Nivorozhkin LE, Minkin VI (1993) Photo- and thermochromic spirans. Chem Heterocycl Compd 29:152–154. https://doi.org/10.1007/BF00531656

    Article  Google Scholar 

  22. Laptev AV, Lukin AY, Belikov NE, Shvets VI, Demina OV, Barachevskii VA, Khodonov AA (2009) RF Patent No. 2358977

  23. Demina OV, Levin PP, Belikov NE, Laptev AV, Lukin AYu, Barachevsky VA, Shvets VI, Varfolomeev SD, Khodonov AA (2013) Synthesis and photochromic reaction kinetics of unsaturated spiropyran derivatives. J Photochem Photobiol A 270:60–66. https://doi.org/10.1016/j.jphotochem.2013.06.023

    Article  CAS  Google Scholar 

  24. Zvezdin KV, Belikov NE, Laptev AV, Lukin AYu, Demina OV, Levin PP, Brichkin SB, Spirin MG, Razumov VF, Shvets VI, Khodonov AA (2012) New hybrid photochromic materials with switchable fluorescence. Nanotechnol Russia 7:308–317. https://doi.org/10.1134/S1995078012030172

    Article  Google Scholar 

  25. Galimov DI, Tuktarov AR, Sabirov DSh, Khuzin AA, Dzhemilev UM (2019) Reversible luminescence switching of a photochromic fullerene[60]-containing spiropyran. J Photochem Photobiol A 375:64–70. https://doi.org/10.1016/j.jphotochem.2019.02.017

    Article  CAS  Google Scholar 

  26. Solov’eva EV, Rostovtseva IA, Shepelenko KE, Voloshin NA, Chernyshev AV, Borodkin GS, Trofimova NS, Metelitsa AV, Minkin VI (2018) Synthesis and complex formation of rhodamine-substituted spirobenzopyranindolines. Russ J Gen Chem 88:968–972. https://doi.org/10.1134/S1070363218050225

    Article  Google Scholar 

  27. Solovyova EV, Rostovtseva IA, Shepelenko KE, Voloshin NA, Chernyshev AV, Borodkin GS, Metelitsa AV, Minkin VI (2017) Synthesis and complex formation of spirobenzopyranindolines containing rhodamine fragment. Russ J Gen Chem 87:1007–1014. https://doi.org/10.1134/S107036321705019X

    Article  CAS  Google Scholar 

  28. Laptev AV, Lukin AYu, Belikov NE, Barachevskii VA, Demina OV, Khodonov AA, Varfolomeev SD, Shvets VI (2013) Ethynyl-equipped spirobenzopyrans as promising photochromic markers for nucleic acid fragments. Mendeleev Commun 23:145–146. https://doi.org/10.1016/j.mencom.2013.05.008

    Article  CAS  Google Scholar 

  29. Lukyanov B, Vasilyuk G, Mukhanov E, Ageev L, Lukyanova M, Alexeenko Y, Besugliy S, Tkachev V (2009) Multifunctional spirocyclic systems. Int J Photoenergy 2009:689450. https://doi.org/10.1155/2009/689450

    Article  CAS  Google Scholar 

  30. Lukyanova MB, Tkachev VV, Lukyanov BS, Aldoshin SM, Utenyshev AN, Bezuglyi SO, Minkin VI, Kogan VA (2008) Photo-and thermochromic spiranes 31.* Structure and photochromic properties of functionalized benzoxazine spiropyrans. Chem Heterocycl Comp 44:1384–1390. https://doi.org/10.1007/s10593-009-0189-7

    Article  CAS  Google Scholar 

  31. Shiraishi Y, Tanaka K, Hirai T (2013) Colorimetric sensing of Cu(II) in aqueous media with a spiropyran derivative via a oxidative dehydrogenation mechanism. ACS Appl Mater Interfaces 5:3456–3463. https://doi.org/10.1021/am4005804

    Article  CAS  PubMed  Google Scholar 

  32. Komissarova OA, Lukyanov BS, Lukyanova MB, Ozhogin IV, Mukhanov EL, Korobov MS, Rostovtseva IA, Minkin VI (2017) New indoline spiropyrans containing azomethine fragment. Russ Chem Bull 66:2122–2125. https://doi.org/10.1007/s11172-017-1990-6

    Article  CAS  Google Scholar 

  33. Komissarova OA, Luk’yanov BS, Luk’yanova MB, Makarova NI, Rostovtseva IA, Ozhogin IV, Korobov MS (2018) New photochromic spiropyrans with ortho-hydroxyaldimine substituent. Dokl Chem 482:229–232. https://doi.org/10.1134/S001250081810004X

    Article  CAS  Google Scholar 

  34. Liubimov AV, Venidiktova OV, Valova TM, Shienok AI, Koltsova LS, Liubimova GV, Popov LD, Zaichenko NL, Barachevsky VA (2018) Photochromic and luminescence properties of a hybrid compound based on indoline spiropyran of the coumarin type and azomethinocoumarin. Photochem Photobiol Sci 17:1365–1375. https://doi.org/10.1039/C8PP00172C

    Article  CAS  PubMed  Google Scholar 

  35. Zhao W, Carreira EM (2005) Solid-phase synthesis of photochromic spiropyrans. Org Lett 7:1609–1612. https://doi.org/10.1021/ol050302b

    Article  CAS  PubMed  Google Scholar 

  36. Keum SR, Roh HJ, Choi YK, Lim SS, Kim SH, Koh K (2005) Complete 1H and 13C NMR spectral assignment of symmetric and asymmetric bis-spiropyran derivatives. Magn Reson Chem 43:873–876. https://doi.org/10.1002/mrc.1640

    Article  CAS  PubMed  Google Scholar 

  37. Ozhogin IV, Chernyavina VV, Lukyanov BS, Malay VI, Rostovtseva IA, Makarova NI, Tkachev VV, Lukyanova MB, Metelitsa AV, Aldoshin SM (2019) Synthesis and study of new photochromic spiropyrans modified with carboxylic and aldehyde substituents. J Mol Struct 1196:409–416. https://doi.org/10.1016/j.molstruc.2019.06.094

    Article  CAS  Google Scholar 

  38. Satoh T, Sumaru K, Takagi T, Takai K, Kanamori T (2011) Isomerization of spirobenzopyrans bearing electron-donating and electron-withdrawing groups in acidic aqueous solutions. Phys Chem Chem Phys 13:7322–7329. https://doi.org/10.1039/c0cp01989e

    Article  CAS  PubMed  Google Scholar 

  39. Boulmier A, Vacher A, Zang D, Yang S, Saad A, Marrot J, Oms O, Mialane P, Ledoux I, Ruhlmann L, Lorcy D, Dolbecq A (2018) Anderson-type polyoxometalates functionalized by tetrathiafulvalene groups: synthesis, electrochemical studies, and NLO properties. Inorg Chem 57:3742–3752. https://doi.org/10.1021/acs.inorgchem.7b02976

    Article  CAS  PubMed  Google Scholar 

  40. Dridi H, Boulmier A, Bolle P, Dolbecq A, Rebilly J-N, Banse F, Ruhlmann L, Serier-Brault H, Dessapt R, Mialane P, Oms O (2020) Directing the solid-state photochromic and luminescent behaviors of spiromolecules with Dawson and Anderson polyoxometalate units. J Mater Chem C 8:637–649. https://doi.org/10.1039/c9tc05906g

    Article  CAS  Google Scholar 

  41. Laptev AV, Lukin AYu, Belikov NE, Demina OV, Khodonov AA, Shvets VI (2014) New maleimide spirobenzopyran derivatives as photochromic labels for macromolecules with sulfhydryl groups. Mendeleev Commun 24:245–246. https://doi.org/10.1016/j.mencom.2014.06.020

    Article  CAS  Google Scholar 

  42. Sugahara A, Tanaka N, Okazawa A, Matsushita N, Kojima N (2014) Photochromic property of anionic spiropyran with sulfonate-substi tuted indoline moiety. Chem Lett 43:281–283. https://doi.org/10.1246/cl.130904

    Article  CAS  Google Scholar 

  43. Johns VK, Wang Z, Li X, Liao Y (2013) Physicochemical study of a metastable-state photoacid. J Phys Chem A 117:13101–13104. https://doi.org/10.1021/jp409111m

    Article  CAS  PubMed  Google Scholar 

  44. Florea L, Wagner K, Wagner P, Wallace GG, Benito-Lopez F, Officer DL, Diamond D (2014) Photo-chemopropulsion—light-stimulated movement of microdroplets. Adv Mater 26:7339–7345. https://doi.org/10.1002/adma.201403007

    Article  CAS  PubMed  Google Scholar 

  45. Seiler VK, Callebaut K, Robeyns K, Tumanov N, Wouters J, Champagne B, Leyssens T (2018) Acidochromic spiropyran–merocyanine stabilisation in the solid state. CrystEngComm 20:3318–3327. https://doi.org/10.1039/c8ce00291f

    Article  CAS  Google Scholar 

  46. May F, Peter M, Hütten A, Prodi L, Mattay J (2011) Synthesis and characterization of photoswitchable fluorescent SiO2 nanoparticles. Chem Eur J 18:814–821. https://doi.org/10.1002/chem.201102961

    Article  CAS  PubMed  Google Scholar 

  47. Shi Z, Peng P, Strohecker D, Liao Y (2011) Long-lived photoacid based upon a photochromic reaction. J Am Chem Soc 133:14699–14703. https://doi.org/10.1021/ja203851c

    Article  CAS  PubMed  Google Scholar 

  48. Ozhogin IV, Zolotukhin PV, Mukhanov EL, Rostovtseva IA, Makarova NI, Tkachev VV, Beseda DK, Metelitsa AV, Lukyanov BS (2021) Novel molecular hybrids of indoline spiropyrans and α-lipoic acid as potential photopharmacological agents: synthesis, structure, photochromic and biological properties. Bioorg Med Chem Lett 31:127709. https://doi.org/10.1016/j.bmcl.2020.127709

    Article  CAS  PubMed  Google Scholar 

  49. Malai VI, Ozhogin IV, Lukyanov BS, Mukhanov EL, Lukyanova MB, Makarova NI, Rostovtseva IA (2018) Novel spirocyclic condensation products of Gossypol and Fischer’s bases. Chem Nat Compd 54:1081–1084. https://doi.org/10.1007/s10600-018-2560-3

    Article  CAS  Google Scholar 

  50. Ozhogin IV, Tkachev VV, Mukhanov EL, Lukyanov BS, Chernyshev AV, Lukyanova MB, Aldoshin SM (2015) Studies of structure and photochromic properties of spiropyrans based on 4,6-diformyl-2-methylresorcinol. Russ Chem Bull 64:672–676. https://doi.org/10.1007/s11172-015-0917-3

    Article  CAS  Google Scholar 

  51. Lukyanov BS, Alekseenko YuS, Mukhanov EL, Lukyanova MB, Metelitsa AV, Khalanskij KN, Tkachev VV, Ryashin ON (2007) Spiropyrans containing the reactive substituents in the 2H-chromene moiety. Int J Photoenergy 2007:010583. https://doi.org/10.1155/2007/10583

    Article  CAS  Google Scholar 

  52. Ozhogin IV, Chernyshev AV, Butova VV, Lukyanov BS, Radchenko EA, Mukhanov EL, Soldatov AV (2020) Structure and photochromic properties of new spiropyrans of indoline series containing free carboxylic groups. J Synch Investig 14:534–539. https://doi.org/10.1134/S1027451020030362

    Article  CAS  Google Scholar 

  53. Perry A, Davis K, West L (2018) Synthesis of stereochemically-biased spiropyrans by microwave-promoted, one-pot alkylation–condensation. Org Biomol Chem 16:7245–7254. https://doi.org/10.1039/C8OB01996G

    Article  CAS  PubMed  Google Scholar 

  54. Schulz-Senft M, Gates PJ, Sönnichsen FD, Staubitz A (2017) Diversely halogenated spiropyrans—useful synthetic building blocks for a versatile class of molecular switches. Dyes Pigm 136:292–301. https://doi.org/10.1016/j.dyepig.2016.08.039

    Article  CAS  Google Scholar 

  55. Ozhogin IV, Tkachev VV, Luk’yanov BS, Mukhanov EL, Chernyshev AV, Komissarova OA, Minkin VI, Aldoshin SM (2016) Synthesis and study of photochromic asymmetric bis-spiropyran. Dokl Chem 471:378–383. https://doi.org/10.1134/S0012500816120090

    Article  CAS  Google Scholar 

  56. Mukhanov EL, Alekseenko YS, Lukyanov BS, Dorogan IV, Bezuglyi SO (2010) New photochromic nonsymmetric bis-spiropyran of the 2,3-dihydro-4-oxonaphtho[2,1-e][1,3]oxazine series. High Energy Chem 44:220–223. https://doi.org/10.1134/S0018143910030112

    Article  CAS  Google Scholar 

  57. Alekseenko YuS, Lukyanov BS, Utenyshev AN, Mukhanov EL, Kletskii ME, Tkachev VV, Kravchenko NN, Minkin VI, Aldoshin SM (2006) Photo-and thermochromic spiranes. 24. Novel photochromic spiropyrans from 2,4-dihydroxyisophthalaldehyde. Chem Heterocycl Compd 42:803–812. https://doi.org/10.1007/s10593-006-0165-4

    Article  CAS  Google Scholar 

  58. Ozhogin IV, Mukhanov EL, Chernyshev AV, Pugachev AD, Lukyanov BS, Metelitsa AV (2020) Synthesis and study of new photochromic unsymmetrical bis-spiropyrans with nonequivalent heteroarene fragments conjugated through the common 2H,8H-pyrano[2,3-f]chromene moiety. J Mol Str 1221:128808. https://doi.org/10.1016/j.molstruc.2020.128808

    Article  CAS  Google Scholar 

  59. Nikolaeva OG, Karlutova OY, Cheprasov AS, Metelitsa AV, Dorogan IV, Dubonosov AD, Bren’ VA (2015) Synthesis of bis-spiropyrans based on 6,8-diformyl-5,7-dihydroxy-4-methylcoumarin and photochromic properties thereof. Chem Heterocycl Comp 51:229–233. https://doi.org/10.1007/s10593-015-1689-2

    Article  CAS  Google Scholar 

  60. Chen P, Wang Y, Zhang Y-M, Zhang SX-A (2016) Design, synthesis and property study of bispiropyran switchable molecule based on acridone. Acta Chim Sin 74:669–675. https://doi.org/10.6023/A16040162

    Article  CAS  Google Scholar 

  61. Samsoniya ShA, Trapaidze MV, Nikoleishvili NN, Japaridze KG, Maisuradze JP, Kazmaier U (2011) New condensed indoline bis-spiropyrans. Chem Heterocycl Comp 47:1098–1104. https://doi.org/10.1007/s10593-011-0880-3

    Article  CAS  Google Scholar 

  62. Mardaleishvili IR, Lyubimova GV, Lyubimov AV, Koltsova LS, Shienok AI, Levin PP, Tatikolov AS, Zaichenko NL (2019) Reverse photochromism of nitrosubstituted bisspiropyran based on benzopyrroloindole. High Energy Chem 53:13–21. https://doi.org/10.1134/S0018143919010089

    Article  CAS  Google Scholar 

  63. Lee S, Ji S, Kang Y (2012) Synthesis and characterizations of bis-spiropyran derivatives. Bull Korean Chem Soc 33:3740–3744. https://doi.org/10.5012/bkcs.2012.33.11.3740

    Article  CAS  Google Scholar 

  64. Kundu PK, Lerner A, Kučanda K, Leitus G, Klajn R (2014) Cyclic kinetics during thermal equilibration of an axially chiral bis-spiropyran. J Am Chem Soc 136:11276–11279. https://doi.org/10.1021/ja505948q

    Article  CAS  PubMed  Google Scholar 

  65. Nourmohammadian F, Abdi AA (2016) Development of molecular photoswitch with very fast photoresponse based on asymmetrical bis-azospiropyran. Spectrochim Acta A Mol Biomol Spectrosc 153:53–62. https://doi.org/10.1016/j.saa.2015.07.110

    Article  CAS  PubMed  Google Scholar 

  66. Qi Q, Li C, Liu X, Jiang S, Xu Z, Lee R, Zhu M, Xu B, Tian W (2017) Solid-state photoinduced luminescence switch for advanced anticounterfeiting and super-resolution imaging applications. J Am Chem Soc 139:16036–16039. https://doi.org/10.1021/jacs.7b07738

    Article  CAS  PubMed  Google Scholar 

  67. Wang L, Xiong W, Tang H, Cao D (2019) A multistimuli-responsive fluorescent switch in the solution and solid states based on spiro[fluorene-9,9′-xanthene]-spiropyran. J Mater Chem C 7:9102–9111. https://doi.org/10.1039/C9TC02129A

    Article  CAS  Google Scholar 

  68. Ma G, Zhou Q, Zhang X, Xu Y, Liu H (2014) Crown ethers with spiropyran units incorporated in the ring frameworks for pH-triggered ion recognition at the air–water interface. New J Chem 38:552–560. https://doi.org/10.1039/C3NJ01238G

    Article  CAS  Google Scholar 

  69. Khalanskiy KN, Alekseenko YuS, Lukyanov BS, Borodkin GS, Bezuglyi SO (2012) Photo- and thermochromic spirans 36.* Synthesis, structure and photochromic properties of 7’,7"-{1,4-phenylenedi(methylene)-bis(5-chloro-1,3,3-trimethyl-1,3-dihydrospiro-[indole-2,3’-pyrano[3,2-f]quinolinium])} diiodide. Chem Heterocycl Comp 48:1090–1097. https://doi.org/10.1007/s10593-012-1114-z

    Article  CAS  Google Scholar 

  70. Li H, Ding J, Chen S, Beyer C, Liu S-X, Wagenknecht H-A, Hauser A, Decurtins S (2013) Synthesis and redox and photophysical properties of benzodifuran-spiropyran ensembles. Chem Eur J 19:6459–6466. https://doi.org/10.1002/chem.201204043

    Article  CAS  PubMed  Google Scholar 

  71. Dissanayake DS, McCandless GT, Stefan MC, Biewer MC (2017) Systematic variation of thiophene substituents in photochromic spiropyrans. Photochem Photobiol Sci 16:1057–1062. https://doi.org/10.1039/C7PP00057J

    Article  CAS  PubMed  Google Scholar 

  72. Parrot A, Izzet G, Chamoreau L-M, Proust A, Oms O, Dolbecq A, Hakouk K, El Bekkachi H, Deniard P, Dessapt R, Mialane P (2013) Photochromic properties of polyoxotungstates with grafted spiropyran molecules. Inorg Chem 52:11156–11163. https://doi.org/10.1021/ic401380a

    Article  CAS  PubMed  Google Scholar 

  73. Burns CT, Choi SY, Dietz ML, Firestone MA (2008) Acidichromic spiropyran-functionalized mesoporous silica: towards stimuli-responsive metal ion separations media. Sep Sci Technol 43:2503–2519. https://doi.org/10.1080/01496390802122311

    Article  CAS  Google Scholar 

  74. Lee J, Choi EJ, Kim I, Lee M, Satheeshkumar C, Song C (2017) Tuning sensory properties of triazole-conjugated spiropyrans: metal-ion selectivity and paper-based colorimetric detection of cyanide. Sensors 17:1816. https://doi.org/10.3390/s17081816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ivashenko O, van Herpt JT, Rudolf P, Feringa BL, Browne WR (2013) Oxidative electrochemical aryl C-C coupling of spiropyrans. Chem Commun 49:6737–6739. https://doi.org/10.1039/C3CC42396D

    Article  CAS  Google Scholar 

  76. Ivashenko O, van Herpt JT, Feringa BL, Rudolf P, Browne WR (2013) Electrochemical write and read functionality through oxidative dimerization of spiropyran self-assembled monolayers on gold. J Phys Chem C 117:18567–18577. https://doi.org/10.1021/jp406458a

    Article  CAS  Google Scholar 

  77. Kortekaas L, Ivashenko O, van Herpt JT, Browne WR (2016) A remarkable multitasking double spiropyran: bidirectional visible-light switching of polymer-coated surfaces with dual redox and proton gating. J Am Chem Soc 138:1301–1312. https://doi.org/10.1021/jacs.5b11604

    Article  CAS  PubMed  Google Scholar 

  78. Natali M, Giordani S (2012) Interaction studies between photochromic spiropyrans and transition metal cations: the curious case of copper. Org Biomol Chem 10:1162–1171. https://doi.org/10.1039/C1OB06375H

    Article  CAS  PubMed  Google Scholar 

  79. Yu Q, Su X, Zhang T, Zhang Y-M, Li M, Liu Y, Zhang SX-A (2018) Non-invasive fluorescence switch in polymer films based on spiropyran-photoacid modified TPE. J Mater Chem C 6:2113–2122. https://doi.org/10.1039/C7TC05142E

    Article  CAS  Google Scholar 

  80. Xiong Y, Rivera-Fuentes P, Sezgin E, Jentzsch AV, Eggeling C, Anderson HL (2016) Photoswitchable spiropyran dyads for biological imaging. Org Lett 18:3666–3669. https://doi.org/10.1021/acs.orglett.6b01717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhu J-F, Yuan H, Chan W-H, Lee AWM (2010) A FRET fluorescent chemosensor SPAQ for Zn2+ based on a dyad bearing spiropyran and 8-aminoquinoline unit. Tetrahedron Lett 51(27):3550–3554. https://doi.org/10.1016/j.tetlet.2010.04.127

    Article  CAS  Google Scholar 

  82. Doddi S, Narayanaswamy K, Ramakrishna B, Singh SP, Bangal PR (2016) Synthesis and spectroscopic investigation of diketopyrrolopyrrole—spiropyran dyad for fluorescent switch application. J Fluoresc 26:1939–1949. https://doi.org/10.1007/s10895-016-1886-0

    Article  CAS  PubMed  Google Scholar 

  83. Park IS, Jung Y-S, Lee K-J, Kim J-M (2010) Photoswitching and sensor applications of a spiropyran–polythiophene conjugate. Chem Commun 46:2859–2861. https://doi.org/10.1039/B926211C

    Article  CAS  Google Scholar 

  84. Perry A, Green SJ, Horsell DW, Hornett SM, Wood ME (2015) A pyrene-appended spiropyran for selective photo-switchable binding of Zn(II): UV–visible and fluorescence spectroscopy studies of binding and non-covalent attachment to graphene, graphene oxide and carbon nanotubes. Tetrahedron 71:6776–6783. https://doi.org/10.1016/j.tet.2015.07.035

    Article  CAS  Google Scholar 

  85. Kawanishi Y, Seki K, Tamaki T, Sakuragi M, Suzuki Y (1997) Tuning reverse ring closure in the photochromic and thermochromic transformation of 1′,3′,3′-trimethyl-6-nitrospiro[2H-1-benzopyran-2,2′-indoline] analogues by ionic moieties. J Photochem Photobiol A 109:237–242. https://doi.org/10.1016/S1010-6030(97)00141-X

    Article  CAS  Google Scholar 

  86. Yagi S, Maeda K, Nakazumi H (1999) Photochromic properties of cationic merocyanine dyes. Thermal stability of the spiropyran form produced by irradiation with visible light. J Mater Chem 9:2991–2997. https://doi.org/10.1039/A905098A

    Article  CAS  Google Scholar 

  87. Hammarson M, Nilsson JR, Li S, Lincoln P, Andréasson J (2014) DNA-binding properties of amidine-substituted spiropyran photoswitches. Chemistry 20:15855–15862. https://doi.org/10.1002/chem.201405113

    Article  CAS  PubMed  Google Scholar 

  88. Sanina NA, Aldoshin SM, Shilov GV, Kurganova EV, Yurieva EA, Voloshin NA, Minkin VI, Nadtochenko VA, Morgunov RB (2008) Synthesis and photochemical and magnetic properties of Cr, Mn, Fe, and Co complexes based on the 1-{(1´,3´,3´-trimethyl-spiro[2H-1-benzopyran-2,2´-indolin]-8-yl)methyl}pyridinium cation. Russ Chem Bull 57:1451–1460. https://doi.org/10.1007/s11172-008-0188-3

    Article  CAS  Google Scholar 

  89. Voloshin NA, Bezugliy SO, Solov’eva EV, Metelitsa AV, Minkin VI (2008) Photo- and thermochromic spiranes. 31.* Photochromic cationic spiropyrans with a pyridinium fragment in the aliphatic side chain*2. Chem Heterocycl Comp 44:1229–1237. https://doi.org/10.1007/s10593-009-0175-0

    Article  CAS  Google Scholar 

  90. Zimmermann T, Brede O (2003) Ring transformations of heterocyclic compounds. XXIII. The UV irradiation product of photochromic 2,4,6-triaryl-1-(spiro[2H-l-benzopyran-2,2′-indoline]-6-yl)pyridinium salts - A phenolate betaine or a pyridinium substituted merocyanine dye? J Heterocycl Chem 40:611–616. https://doi.org/10.1002/jhet.5570400409

    Article  CAS  Google Scholar 

  91. Bénard S, Yu P (2000) New spiropyrans showing crystalline-state photochromism. Adv Mater 12:48–50. https://doi.org/10.1002/(SICI)1521-4095(200001)12:1%3c48::AID-ADMA48%3e3.0.CO;2-G

    Article  Google Scholar 

  92. Aldoshin SM, Nikonova LA, Shilov GV, Bikanina EA, Artemova NK, Smirnov VA (2006) The influence of an N-substituent in the indoline fragment of pyrano-pyridine spiropyran salts on their crystalline structure and photochromic properties. J Mol Str 794:103–109. https://doi.org/10.1016/j.molstruc.2006.01.041

    Article  CAS  Google Scholar 

  93. Yurieva EA, Aldoshin SM, Nikonova LA, Shilov GV, Nadtochenko VA (2011) 1-Benzyl-3,3,5′,6′-tetramethylspiro[indoline-2,2′-[2H]pyrano[3,2-b]-pyridinium] iodide, its hydrate, and a neutral precursor of the salts: synthesis, crystal structure, photochromic transformations in solutions and in crystals. Russ Chem Bull 60:1401–1408. https://doi.org/10.1007/s11172-011-0210-z

    Article  CAS  Google Scholar 

  94. Tkachev VV, Aldoshin SM, Sanina NA, Lukyanov BS, Minkin VI, Utenyshev AN, Khalanskiy KN, Alekseenko YuS (2007) Photo-and thermochromic spiranes. 29. New photochromic indolinospiropyrans containing a quinoline fragment. Chem Heterocycl Compd 43:576–586. https://doi.org/10.1007/s10593-007-0092-z

    Article  CAS  Google Scholar 

  95. Brieke C, Heckel A (2013) Spiropyran photoswitches in the context of DNA: synthesis and photochromic properties. Chem Eur J 19:15726–15734. https://doi.org/10.1002/chem.201302640

    Article  CAS  PubMed  Google Scholar 

  96. Stafforst T, Hilvert D (2009) Kinetic characterization of spiropyrans in aqueous media. Chem Commun 3:287–288. https://doi.org/10.1039/B818050D

    Article  Google Scholar 

  97. Tkachev VV, Lukyanova MB, Lukyanov BS, Pugachev AD, Aldoshi SM, Minkin VI (2016) Investigation of a new product of a condensation reation between 1,2,3,3-tetramethylindolenilium perchlorate and 2,6-diformyl-4-methyl-phenol. J Struct Chem 57:1270–1271. https://doi.org/10.1134/S0022476616060299

    Article  CAS  Google Scholar 

  98. Luk’yanova MB, Tkachev VV, Pugachev AD, Luk’yanov BS, Shilov GV, Minkin VI, Aldoshin SM (2018) New salt spiropyran of indoline series with fluorine substituent. Dokl Chem 480:81–84. https://doi.org/10.1134/S0012500818050014

    Article  Google Scholar 

  99. Pugachev AD, Lukyanova MB, Tkachev VV, Lukyanov BS, Makarova NI, Shilov GV, Rostovtseva IA, Lapshina LS, Minkin VI, Aldoshin SM (2019) New photochromic salt spiropyrans of indoline series. Dokl Chem 484:58–63. https://doi.org/10.1134/S0012500819020113

    Article  CAS  Google Scholar 

  100. Pugachev AD, Lukyanova MB, Lukyanov BS, Ozhogin IV, Kozlenko AS, Rostovtseva IA, Makarova NI, Tkachev VV, Aksenov NA (2019) New photochromic indoline spiropyrans containing cationic substituent in the 2H-chromene moiety. J Mol Str 1178:590–598. https://doi.org/10.1016/j.molstruc.2018.10.062

    Article  CAS  Google Scholar 

  101. Pugachev AD, Ozhogin IV, Lukyanova MB, Lukyanov BS, Rostovtseva IA, Dorogan IV, Makarova NI, Tkachev VV, Metelitsa AV, Aldoshin SM (2020) Visible to near-IR molecular switches based on photochromic indoline spiropyrans with a conjugated cationic fragment. Spectrochim Acta A 230:118041. https://doi.org/10.1016/j.saa.2020.118041

    Article  CAS  Google Scholar 

  102. Kozlenko AS, Makarova NI, Ozhogin IV, Pugachev AD, Lukyanova MB, Rostovtseva IA, Borodkin GS, Stankevich NV, Metelitsa AV, Lukyanov BS (2021) New indoline spiropyrans with highly stable merocyanine forms. Mendeleev Commun 31:403–406. https://doi.org/10.1016/j.mencom.2021.04.040

    Article  CAS  Google Scholar 

  103. Pugachev AD, Lukyanova MB, Lukyanov BS, Ozhogin IV, Kozlenko AS, Tkachev VV, Chepurnoi PB, Shilov GV, Minkin VI, Aldosin SM (2020) Replacement of the hetarene moiety of molecule in the synthesis of indoline spiropyran with cationic fragment. Dokl Chem 492:76–83. https://doi.org/10.1134/S0012500820350013

    Article  CAS  Google Scholar 

  104. Yue Y, Huo F, Lee S, Yin C, Yoon J, Chao J, Zhang Y, Cheng F (2016) A dual colorimetric/fluorescence system for determining pH based on the nucleophilic addition reaction of an O-hydroxymerocyanine dye. Chemistry 22:1239–1243. https://doi.org/10.1002/chem.201504395

    Article  CAS  PubMed  Google Scholar 

  105. Karton-Lifshin N, Segal E, Omer L, Portnoy M, Satchi-Fainaro R, Shabat D (2011) A unique paradigm for a turn-ON near-infrared cyanine-based probe: noninvasive intravital optical imaging of hydrogen peroxide. J Am Chem Soc 133:10960–10965. https://doi.org/10.1021/ja203145v

    Article  CAS  PubMed  Google Scholar 

  106. Pugachev AD, Ozhogin IV, Makarova NI, Rostovtseva IA, Lukyanova MB, Kozlenko AS, Borodkin GS, Tkachev VV, El-Sewify IM, Dorogan IV, Metelitsa AV, Aldoshin SM, Lukyanov BS (2022) Novel polychromogenic fluorine-substituted spiropyrans demonstrating either uni- or bidirectional photochromism as multipurpose molecular switches. Dyes Pigm 199:110043. https://doi.org/10.1016/j.dyepig.2021.110043

    Article  CAS  Google Scholar 

  107. Gao H, Guo T, Chen Y, Kong Y, Peng Z (2016) Reversible negative photochromic sulfo-substituted spiropyrans. J Mol Str 1123:426–432. https://doi.org/10.1016/j.molstruc.2016.07.050

    Article  CAS  Google Scholar 

  108. Schnurbus M, Kabat M, Jarek E, Krzan M, Warszynski P, Braunschweig B (2020) Spiropyran sulfonates for photo- and pH-responsive air-water interfaces and aqueous foam. Langmuir 36:6871–6879. https://doi.org/10.1021/acs.langmuir.9b03387

    Article  CAS  PubMed  Google Scholar 

  109. Takagi K (1996) Ionic spiropyran compound and photochromic material conjugated it with clay, Patent EP0738728A2

  110. Moldenhauer D, Gröhn F (2017) Water-soluble spiropyrans with inverse photochromism and their photoresponsive electrostatic self-assembly. Chem Eur J 23:3966–3978. https://doi.org/10.1002/chem.201605621

    Article  CAS  PubMed  Google Scholar 

  111. Kortekaas L, Browne WR (2019) The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem Soc Rev 48:3406–3424. https://doi.org/10.1039/C9CS00203K

    Article  CAS  PubMed  Google Scholar 

  112. Fischer E, Hirshberg Y (1952) Formation of coloured forms of spirans by low-temperature irradiaton. J Chem Soc (Res). https://doi.org/10.1039/jr9520004518

    Article  Google Scholar 

  113. Heiligman-Rim R, Hirshberg Y, Fischer E (1962) Photochromism in spiropyrans. Part V. 1 On the mechanism of phototransformation. J Phys Chem 66:2470–2477. https://doi.org/10.1021/j100818a036

    Article  CAS  Google Scholar 

  114. Sklar AL (1937) Theory of color of organic compounds. J Chem Phys 5:669–681. https://doi.org/10.1063/1.1750099

    Article  CAS  Google Scholar 

  115. Lewis GN, Calvin M (1939) The color of organic substances. Chem Rev 25:273–328. https://doi.org/10.1021/cr60081a004

    Article  CAS  Google Scholar 

  116. Rogers RA, Rodier AR, Stanley JA, Douglas NA, Li X, Brittain WJ (2014) A study of the spiropyran–merocyanine system using ion mobility-mass spectrometry: experimental support for the cisoid conformation. Chem Commun 50:3424–3426. https://doi.org/10.1039/C3CC47697A

    Article  CAS  Google Scholar 

  117. Naumov P, Yu P, Sakurai K (2008) Electronic tera-order stabilization of photoinduced metastable species: structure of the photochromic product of spiropyran determined with in situ single crystal X-ray photodiffraction. J Phys Chem A 112:5810–5814. https://doi.org/10.1021/jp711922k

    Article  CAS  PubMed  Google Scholar 

  118. Fleming C, Li S, Grøtli M, Andréasson J (2018) Shining new light on the spiropyran photoswitch: a photocage decides between cis–trans or spiro-merocyanine isomerization. J Am Chem Soc 140:14069–14072. https://doi.org/10.1021/jacs.8b09523

    Article  CAS  PubMed  Google Scholar 

  119. Hobley J, Malatesta V, Millini R, Montanari L, Neil Parker OW (1999) Proton exchange and isomerisation reactions of photochromic and reverse photochromic spiro-pyrans and their merocyanine forms. Phys Chem Chem Phys 1:3259–3267. https://doi.org/10.1039/A902379H

    Article  CAS  Google Scholar 

  120. Nuernberger P, Ruetzel S, Brixner T (2015) Multidimensional electronic spectroscopy of photochemical reactions. Angew Chem Int Ed 54:11368–11386. https://doi.org/10.1002/anie.201502974

    Article  CAS  Google Scholar 

  121. Toppet S, Quintens W, Smets G (1975) NMR study of the inversion at carbon 2 of some 1′3′3′-trimethylindolino disubstituted spirobenzopyranes. Tetrahedron 31:1957–1958. https://doi.org/10.1016/0040-4020(75)87058-X

    Article  CAS  Google Scholar 

  122. Metelitsa A, Chernyshev A, Voloshin N, Solov’eva E, Rostovtseva I, Dorogan I, Gaeva E, Guseva A (2021) Semipermanent merocyanines of spirocyclic compounds: photochromic “balance.” Dyes Pigm 186:109070. https://doi.org/10.1016/j.dyepig.2020.109070

    Article  CAS  Google Scholar 

  123. Metelitsa A, Chernyshev A, Voloshin N, Demidov O, Solov’eva E, Rostovtseva I, Gaeva E (2021) Photo-controlled bipolar absorption switches based on 5-dimethylamino substituted indoline spiropyrans with semipermanent merocyanines. New J Chem 45:13529–13538. https://doi.org/10.1039/d1nj02371c

    Article  CAS  Google Scholar 

  124. Kinashi K, Miyamae Y, Nakamura R, Sakai W, Tsutsumi N, Yamane H, Hatsukano G, Ozaki M, Jimbo K, Okabe T (2015) A spiropyran-based X-ray sensitive fiber. Chem Commun 51:11170–11173. https://doi.org/10.1039/C5CC03977K

    Article  CAS  Google Scholar 

  125. Hirshberg Y (1957) Formation of reversible colored modifications at low temperatures by bombardment with electrons. J Chem Phys 27:758–763. https://doi.org/10.1063/1.1743827

    Article  CAS  Google Scholar 

  126. Joubert-Doriol L, Lasorne B, Lauvergnat D, Meyer H-D, Gatti F (2014) A generalised vibronic-coupling Hamiltonian model for benzopyran. J Chem Phys 140:044301. https://doi.org/10.1063/1.4861226

    Article  CAS  PubMed  Google Scholar 

  127. Gonon B, Lasorne B, Karras G, Joubert-Doriol L, Lauvergnat D, Billard F, Lavorel B, Faucher O, Guérin S, Hertz E, Gatti F (2019) A generalized vibronic-coupling Hamiltonian for molecules without symmetry: application to the photoisomerization of benzopyran. J Chem Phys 150:124109. https://doi.org/10.1063/1.5085059

    Article  CAS  PubMed  Google Scholar 

  128. Saab M, Joubert-Doriol L, Lasorne B, Guérin S, Gatti F (2014) A quantum dynamics study of the benzopyran ring opening guided by laser pulses. Chem Phys 442:93–102. https://doi.org/10.1016/j.chemphys.2014.01.016

    Article  CAS  Google Scholar 

  129. Chibisov AK, Görner H (1997) Singlet versus triplet photoprocesses in indodicarbocyanine dyes and spiropyran-derived merocyanines. J Photochem Photobiol A 105:261–267. https://doi.org/10.1016/S1010-6030(96)04604-7

    Article  CAS  Google Scholar 

  130. Sheng Y, Leszczynski J, Garcia AA, Rosario R, Gust D, Springer J (2004) Comprehensive theoretical study of the conversion reactions of spiropyrans: substituent and solvent effects. J Phys Chem B 108:16233–16243. https://doi.org/10.1021/jp0488867

    Article  CAS  Google Scholar 

  131. Breslin VM, Barbour NA, Dang D-K, Lopez SA, Garcia-Garibay MA (2018) Nanosecond laser flash photolysis of a 6-nitroindolinospiropyran in solution and in nanocrystalline suspension under single excitation conditions. Photochem Photobiol Sci 17:741–749. https://doi.org/10.1039/C8PP00095F

    Article  CAS  PubMed  Google Scholar 

  132. Dorogan IV, Minkin VI (2016) Theoretical modeling of electrocyclic 2H-pyran and 2H–1,4-oxazine ring opening reactions in photo- and thermochromic spiropyrans and spirooxazines. Chem Heterocycl Compd 52:730–735. https://doi.org/10.1007/s10593-016-1956-x

    Article  CAS  Google Scholar 

  133. Roohi H, Rostami T (2020) Mechanism of the photo triggered ring-opening reaction of spiropyran derivatives (SP-X1-7; X1–7 = H, NO2, CF3, CN, OH, OMe and NMe2) in the gas phase and various solvent media: a GD3-TD-DFT approach. Chemistry 392:112410. https://doi.org/10.1016/j.jphotochem.2020.112410

    Article  CAS  Google Scholar 

  134. Sanchez-Lozano M, Estévez CM, Hermida-Ramón J, Serrano-Andres L (2011) Ultrafast ring-opening/closing and deactivation channels for a model spiropyran-merocyanine system. J Phys Chem A 115:9128–9138. https://doi.org/10.1021/jp2062095

    Article  CAS  PubMed  Google Scholar 

  135. Prager S, Burghardt I, Dreuw A (2014) Ultrafast Cspiro–O dissociation via a conical intersection drives spiropyran to merocyanine photoswitching. J Phys Chem A 118:1339–1349. https://doi.org/10.1021/jp4088942

    Article  CAS  PubMed  Google Scholar 

  136. Futami Y, Chin MLS, Kudoh S, Takayanagi M, Nakata M (2003) Conformations of nitro-substituted spiropyran and merocyanine studied by low-temperature matrix-isolation infrared spectroscopy and density functional theory calculation. Chem Phys Lett 370:460–468. https://doi.org/10.1016/S0009-2614(03)00136-2

    Article  CAS  Google Scholar 

  137. Aldoshin SM, Bozhenko KV, Utenyshev AN (2013) Quantum chemical study of the Cspiro–O bond dissociation in spiropyran molecules. Russ Chem Bull 62:1740–1743. https://doi.org/10.1007/s11172-013-0250-7

    Article  CAS  Google Scholar 

  138. Wang PX, Bai FQ, Zhang ZX, Wang YP, Wang J, Zhang HX (2017) The theoretical study of substituent and charge effects in the conformational transformation process of molecular machine unit spiropyran. Org Electron Phys Mater Appl 45:33–41. https://doi.org/10.1016/j.orgel.2017.02.031

    Article  CAS  Google Scholar 

  139. Abdel-Mottaleb SA, Ali SN (2016) A new approach for studying bond rupture/closure of a spiro benzopyran photochromic material: reactivity descriptors derived from frontier orbitals and DFT computed electrostatic potential energy surface maps. Int J Photoenergy 2016:6765805. https://doi.org/10.1155/2016/6765805

    Article  CAS  Google Scholar 

  140. Liu F, Morokuma K (2013) Multiple pathways for the primary step of the spiropyran photochromic reaction : a CASPT2//CASSCF study. J Am Chem Soc 135:10693–10702. https://doi.org/10.1021/ja402868b

    Article  CAS  PubMed  Google Scholar 

  141. Liu F, Kurashige Y, Yanai T, Morokuma K (2013) Multireference ab initio density matrix renormalization group (DMRG)-CASSCF and DMRG-CASPT2 study on the photochromic ring opening of spiropyran. J Chem Theory Comput 9:4462–4469. https://doi.org/10.1021/ct400707k

    Article  CAS  PubMed  Google Scholar 

  142. Savarese M, Raucci U, Netti PA, Adamo C, Rega N, Ciofini I (2016) A qualitative model to identify non-radiative decay channels: the spiropyran as case study. Theor Chem Acc 135:1–7. https://doi.org/10.1007/s00214-016-1966-x

    Article  CAS  Google Scholar 

  143. Zhai G, Shao S, Wu S, Lei Y, Dou Y (2014) Detailed molecular dynamics of the photochromic reaction of spiropyran: a semiclassical dynamics study. Int J Photoenergy 2014:541791. https://doi.org/10.1155/2014/541791

    Article  CAS  Google Scholar 

  144. Bittmann SF, Dsouza R, Siddiqui KM, Hayes SA, Rossos A, Corthey G, Kochman M, Prokhorenko VI, Murphy RS, Schwoerer H, Miller RJD (2019) Ultrafast ring-opening and solvent-dependent product relaxation of photochromic spironaphthopyran. Phys Chem Chem Phys 21:18119–18127. https://doi.org/10.1039/C9CP02950H

    Article  CAS  PubMed  Google Scholar 

  145. Kim D, Zhang Z, Xu K (2017) Spectrally resolved super-resolution microscopy unveils multipath reaction pathways of single spiropyran molecules. J Am Chem Soc 139:9447–9450. https://doi.org/10.1021/jacs.7b04602

    Article  CAS  PubMed  Google Scholar 

  146. Aldoshin SM (1990) Spiropyrans: structural features and photochemical properties. Russ Chem Rev 59:663–684. https://doi.org/10.1070/RC1990v059n07ABEH003549

    Article  Google Scholar 

  147. Nunes CM, Pereira NA, Fausto R (2022) Photochromism of a spiropyran in low-temperature matrices: unprecedented bidirectional switching between a merocyanine and an allene intermediate. J Phys Chem A 126:2222–2233. https://doi.org/10.1021/acs.jpca.2c01105

    Article  CAS  PubMed  Google Scholar 

  148. Sheng Y, Leszczynski J (2014) Thermal racemization of spiropyrans: implication of substituent and solvent effects revealed by computational study. Struct Chem 25:667–677. https://doi.org/10.1007/s11224-013-0374-2

    Article  CAS  Google Scholar 

  149. Buback J, Nuernberger P, Kullmann M, Langhojer F, Schmidt R, Würthner F, Brixner T (2011) Ring-closure and isomerization capabilities of spiropyran-derived merocyanine isomers. J Phys Chem A 115:3924–3935. https://doi.org/10.1021/jp108322u

    Article  CAS  PubMed  Google Scholar 

  150. Mendive-Tapia D, Kortekaas L, Steen JD, Perrier A, Lasorne B, Browne WR, Jacquemin D (2016) Accidental degeneracy in the spiropyran radical cation: charge transfer between two orthogonal rings inducing ultra-efficient reactivity. Phys Chem Chem Phys 18:31244–31253. https://doi.org/10.1039/C6CP06907J

    Article  CAS  PubMed  Google Scholar 

  151. Minkin VI, Metelitsa AV, Dorogan IV, Lukyanov BS, Besugliy SO, Micheau J (2005) Spectroscopic and theoretical evidence for the elusive intermediate of the photoinitiated and thermal rearrangements of photochromic spiropyrans. J Phys Chem A 109:9605–9616. https://doi.org/10.1021/jp050552+

    Article  CAS  PubMed  Google Scholar 

  152. Menzonatto TG, Lopes JF (2022) The role of intramolecular interactions on the stability of the conformers of a spiropyran derivative. Chem Phys 562:111654. https://doi.org/10.1016/j.chemphys.2022.111654

    Article  CAS  Google Scholar 

  153. Matczyszyn K, Olesiak-Banska J, Nakatani K, Yu P, Murugan NA, Zaleśny R, Roztoczyńska A, Bednarska J, Bartkowiak W, Kongsted J, Ågren H, Samoć M (2015) One- and two-photon absorption of a spiropyran-merocyanine system: experimental and theoretical studies. J Phys Chem B 119:1515–1522. https://doi.org/10.1021/jp5071715

    Article  CAS  PubMed  Google Scholar 

  154. Ivashenko O, van Herpt JT, Feringa BL, Rudolf P, Browne WR (2013) UV/Vis and NIR light-responsive spiropyran self-assembled monolayers. Langmuir 29:4290–4297. https://doi.org/10.1021/la400192c

    Article  CAS  PubMed  Google Scholar 

  155. Ruetzel S, Diekmann M, Nuernberger P, Walter C, Engels B, Brixner T (2014) Photoisomerization among ring-open merocyanines. I. Reaction dynamics and wave-packet oscillations induced by tunable femtosecond pulses. J Chem Phys 140:22. https://doi.org/10.1063/1.4881258

    Article  CAS  Google Scholar 

  156. Song X, Zhou J, Li Y, Tang Y (1995) Correlations between solvatochromism, Lewis acid-base equilibrium and photochromism of an indoline spiropyran. J Photochem Photobiol A 92:99–103. https://doi.org/10.1016/1010-6030(95)04164-5

    Article  CAS  Google Scholar 

  157. Cottone G, Noto R, La Manna G (2008) Density functional theory study of the trans-trans-cis (TTC)→trans-trans-trans (TTT) isomerization of a photochromic spiropyran merocyanine. Molecules 13:1246–1252. https://doi.org/10.3390/molecules13061246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zanoni M, Coleman S, Fraser KJ, Byrne R, Wagner K, Gambhir S, Officer DL, Wallace GG, Diamond D (2012) Physicochemical study of spiropyran–terthiophene derivatives: photochemistry and thermodynamics. Phys Chem Chem Phys 14:9112–9120. https://doi.org/10.1039/C2CP41137G

    Article  CAS  PubMed  Google Scholar 

  159. Frolova LA, Rezvanova AA, Lukyanov BS, Sanina NA, Troshin PA, Aldoshin SM (2015) Design of rewritable and read-only non-volatile optical memory elements using photochromic spiropyran-based salts as light-sensitive materials. J Mater Chem C 3:11675–11680. https://doi.org/10.1039/C5TC02100F

    Article  CAS  Google Scholar 

  160. Voloshin NA, Chernyshev AV, Solov’eva EV, Rostovtseva IA, Metelitsa AV, Borodkin GS, Kogan VA, Minkin VI (2014) Spiropyrans and spirooxazines 10. Synthesis of photochromic 5′-(1,3-benzoxazol-2-yl)-substituted spiro[indoline-naphthopyrans]. Russ Chem Bull 63:1373–1377. https://doi.org/10.1007/s11172-014-0605-8

    Article  CAS  Google Scholar 

  161. Balmond EI, Tautges BK, Faulkner AL, Or VW, Hodur BM, Shaw JT, Louie AY (2016) Comparative evaluation of substituent effect on the photochromic properties of spiropyrans and spirooxazines. J Org Chem 81:8744–8758. https://doi.org/10.1021/acs.joc.6b01193

    Article  CAS  PubMed  Google Scholar 

  162. Garcia J, Addison JB, Liu SZ, Lu S, Faulkner AL, Hodur BM, Balmond EI, Or VW, Yun JH, Trevino K, Shen B, Shaw JT, Frank NL, Louie AY (2019) Antioxidant sensing by spiropyrans: substituent effects and NMR spectroscopic studies. J Phys Chem B 123:6799–6809. https://doi.org/10.1021/acs.jpcb.9b03424

    Article  CAS  PubMed  Google Scholar 

  163. Brügner O, Reichenbach T, Sommer M, Walter M (2017) Substituent correlations characterized by hammett constants in the spiropyran-merocyanine transition. J Phys Chem A 121:2683–2687. https://doi.org/10.1021/acs.jpca.7b01248

    Article  CAS  PubMed  Google Scholar 

  164. Görner H (2001) Photochromism of nitrospiropyrans: effects of structure, solvent and temperature. Phys Chem Chem Phys 3:416–423. https://doi.org/10.1039/B007708I

    Article  Google Scholar 

  165. Chernyshev AV, Guda AA, Cannizzo A, Soloveva EV, Voloshin NA, Rusalev Y, Shapovalov VV, Smolentsev G, Soldatov AV, Metelitsa AV (2019) Operando XAS and UV–vis characterization of the photodynamic spiropyran-zinc complexes. J Phys Chem B 123:1324–1331. https://doi.org/10.1021/acs.jpcb.8b11010

    Article  CAS  PubMed  Google Scholar 

  166. Barbee MH, Kouznetsova T, Barrett SL, Gossweiler GR, Lin Y, Rastogi SK, Brittain WJ, Craig SL (2018) Substituent effects and mechanism in a mechanochemical reaction. J Am Chem Soc 140:12746–12750. https://doi.org/10.1021/jacs.8b09263

    Article  CAS  PubMed  Google Scholar 

  167. Solov’eva EV, Chernyshev AV, Voloshin NA, Metelitsa AV, Minkin VI (2013) Photo- and thermochromic spirans. 38*. New (1-alkyl-4,5-diphenyl)imidazolyl-substituted spirobenzopyrans. Chem Heterocycl Comp 48:1533–1538. https://doi.org/10.1007/s10593-013-1169-5

    Article  CAS  Google Scholar 

  168. Levin PP, Tatikolov AS, Laptev AV, Lukin AYu, Belikov NE, Demina OV, Khodonov AA, Shvets VI, Varfolomeev SD (2012) The investigation of the intermediates of spiropyran retinal analogs by laser flash photolysis techniques with different excitation wavelengths. J Photochem Photobiol A 231:41–44. https://doi.org/10.1016/j.jphotochem.2011.12.024

    Article  CAS  Google Scholar 

  169. Dagilienė M, Martynaitis V, Vengris M, Redeckas K, Voiciuk V, Holzer W, Šačkus A (2013) Synthesis of 1′,3,3′,4-tetrahydrospiro[chromene-2,2′-indoles] as a new class of ultrafast light-driven molecular switch. Tetrahedron 69:9309–9315. https://doi.org/10.1016/j.tet.2013.08.020

    Article  CAS  Google Scholar 

  170. Chernyshev AV, Voloshin NA, Rostovtseva IA, Demidov OP, Shepelenko KE, Solov’eva EV, Gaeva EB, Metelitsa AV (2020) Benzothiazolyl substituted spiropyrans with ion-driven photochromic transformation. Dyes Pigm 178:108337. https://doi.org/10.1016/j.dyepig.2020.108337

    Article  CAS  Google Scholar 

  171. Voloshin NA, Bezuglyi SO, Metelitsa AV, Solov’evaShepelenkoMinkin EVKEVI (2012) Photo- and thermochromic spirans. 35.* Synthesis and photochromic properties of spiro[indoline-2,3′-pyrano[3,2-f]quinolines] and their cationic derivatives. Chem Heterocycl Comp 48:525–531. https://doi.org/10.1007/s10593-012-1025-z

    Article  CAS  Google Scholar 

  172. Tyurin RV, Lukyanov BS, Chernyshev AV, Malay VI, Kozlenko AS, Tkacheva NS, Burov ON, Lukyanova MB (2016) Effect of bulky substituents on the photochromic properties of indoline spiropyrans containing an annelated aromatic or heteroaromatic fragment. Dokl Chem 470:268–273. https://doi.org/10.1134/S0012500816090081

    Article  CAS  Google Scholar 

  173. Zhou T, Lia Z, Wang J (2019) Spiropyran-based photoswitchable dimethylaminopyridine. New J Chem 43:8869–8872. https://doi.org/10.1039/C9NJ01727E

    Article  CAS  Google Scholar 

  174. Aakeröy CB, Hurley EP, Desper J, Natali M, Douglawi A, Giordani S (2010) The balance between closed and open forms of spiropyrans in the solid state. CrystEngComm 12:1027–1033. https://doi.org/10.1039/B914566D

    Article  Google Scholar 

  175. Lukyanova MB, Tkachev VV, Lukyanov BS, Pugachev AD, Ozhogin IV, Komissarova OA, Aldoshin SM, Minkin VI (2018) Structure investigation of new condensation products of 1,2,3,3-tetramethylindolenium with metoxysubstituted diformylphenols. J Struct Chem 59:565–570. https://doi.org/10.1134/S0022476618030095

    Article  CAS  Google Scholar 

  176. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr Sect B 72:171–179. https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  177. Chernyshev AV, Dorogan IV, Voloshin NA, Metelitsa AV, Minkin VI (2014) Spectroscopic, photochromic and kinetic properties of 5’-benzothiazolyl derivatives of spiroindolinenaphthopyrans: an experimental and theoretical study. Dyes Pigm 111:108–115. https://doi.org/10.1016/j.dyepig.2014.05.032

    Article  CAS  Google Scholar 

  178. Mukhanov EL, Alekseenko YuS, Dorogan IV, Tkachev VV, Lukyanov BS, Aldoshin SM, Bezuglyi SO, Minkin VI, Utenyshev AN, Ryashchin ON (2010) Photochromic and thermochromic spiranes 33. Synthesis of a new indolinonaphthoxazino- bisspiropyran and investigation of its photochromic characteristics. Chem Heterocycl Comp 46:279–290. https://doi.org/10.1007/s10593-010-0503-4

    Article  CAS  Google Scholar 

  179. Kortekaas L, Steen JD, Duijnstee DR, Jacquemin D, Browne WR (2020) Noncommutative switching of double spiropyrans. J Phys Chem A 124:6458–6467. https://doi.org/10.1021/acs.jpca.0c02286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mukhanov EL, Dorogan IV, Chernyshev AV, Bezuglyi SO, Ozhogin IV, Lukyanova MB, Lukyanov BS (2013) Theoretical and experimental study of new photochromic bis-spiropyrans with hydroxyethyl and carboxyethyl substituents. Int J Photoenergy 2013:752949. https://doi.org/10.1155/2013/752949

    Article  CAS  Google Scholar 

  181. Liu D, Yu B, Su X, Wang X, Zhang Y-M, Li M, Zhang SX-A (2019) Photo-/baso-chromisms and the application of a dual-addressable molecular switch. Asian J Chem 14:2838–2845. https://doi.org/10.1002/asia.201900600

    Article  CAS  Google Scholar 

  182. Funasako Y, Miyazaki H, Sasaki T, Goshima K, Inokuchi M (2020) Synthesis, photochromic properties, and crystal structures of salts containing a pyridinium-fused spiropyran: positive and negative photochromism in the solution and solid state. J Phys Chem B 124:7251–7257. https://doi.org/10.1021/acs.jpcb.0c04994

    Article  CAS  PubMed  Google Scholar 

  183. Funasako Y, Okada H, Inokuchi M (2019) Photochromic ionic liquids containing cationic spiropyran derivatives. ChemPhotoChem 3:28–30. https://doi.org/10.1002/cptc.201800197

    Article  CAS  Google Scholar 

  184. Menet C, Serier-Brault H, Oms O, Dolbecq A, Marrot J, Saad A, Mialane P, Jobic S, Deniarda P, Dessapt R (2015) Influence of electronic vs. steric factors on the solid-state photochromic performances of new polyoxometalate/spirooxazine and spiropyran hybrid materials. RSC Adv 5:79635–79643. https://doi.org/10.1039/C5RA15860E

    Article  CAS  Google Scholar 

  185. Bénard S, Rivière E, Yu P, Nakatani K, Delouis JF (2001) A photochromic molecule-based magnet. Chem Mater 13:159–162. https://doi.org/10.1021/cm001163p

    Article  CAS  Google Scholar 

  186. Pugachev AD, Ozhogin IV, Lukyanova MB, Lukyanov BS, Kozlenko AS, Rostovtseva IA, Makarova NI, Tkachev VV, Aldoshin SM, Metelitsa AV (2021) Synthesis, structure and photochromic properties of indoline spiropyrans with electron-withdrawing substituents. J Mol Str 1229:129615. https://doi.org/10.1016/j.molstruc.2020.129615

    Article  CAS  Google Scholar 

  187. Aldoshin SM, Nikonova LA, Smirnov VA, Shilov GV, Nagaeva NK (2005) Structure and photochromic properties of single crystals of spiropyran salts. J Mol Str 750:158–165. https://doi.org/10.1016/j.molstruc.2005.04.030

    Article  CAS  Google Scholar 

  188. Lukyanov BS, Metelitsa AV, Voloshin NA, Alexeenko YuS, Lukyanova MB, Vasilyuk GT, Maskevich SA, Mukhanov EL (2005) Solid state photochromism of spiropyrans. Int J Photoenergy 7:404697. https://doi.org/10.1155/S1110662X05000036

    Article  Google Scholar 

  189. Lukyanov BS, Metelitsa AV, Lukyanova MB, Mukhanov EL, Borisenko NI, Alekseenko YS, Bezugliy SO (2005) Photochromism of the spiropyran thin solid films. Mol Cryst Liq Cryst 431:351–356. https://doi.org/10.1080/15421400590946730

    Article  CAS  Google Scholar 

  190. Nickel F, Bernien M, Kraffert K, Krüger D, Arruda LM, Kipgen L, Kuch W (2017) Reversible switching of spiropyran molecules in direct contact with a Bi(111) single crystal surface. Adv Funct Mater 27:1702280. https://doi.org/10.1002/adfm.201702280

    Article  CAS  Google Scholar 

  191. Harada J, Kawazo Y, Ogawa K (2010) Photochromism of spiropyrans and spirooxazines in the solid state: low temperature enhances photocoloration. Chem Commun 46:2593–2595. https://doi.org/10.1039/B925514A

    Article  CAS  Google Scholar 

  192. Suzuki M, Asahi T, Masuhara H (2002) Photochromic reactions of crystalline spiropyrans and spirooxazines induced by intense femtosecond laser excitation. Phys Chem Chem Phys 4:185–192. https://doi.org/10.1039/B108108J

    Article  CAS  Google Scholar 

  193. Asahi T, Suzuki M, Masuhara H (2002) Cooperative photochemical reaction in molecular crystal induced by intense femtosecond laser excitation: photochromism of spironaphthooxazine. J Phys Chem A 106:2335–2340. https://doi.org/10.1021/jp0129838

    Article  CAS  Google Scholar 

  194. Funasako Y, Ason M, Takebayashi J, Inokuchi M (2019) Solid-state photochromism of salts of cationic spiropyran with various anions: a correlation between reaction cavity volumes and reactivity. Cryst Growth Des 19:7308–7314. https://doi.org/10.1021/acs.cgd.9b01185

    Article  CAS  Google Scholar 

  195. Yang Y, He J, He Z, Jiang G (2021) Enhancement of solid-state reversible photochromism by incorporation of rigid steric hindrance groups. Adv Optical Mater 9:2001584. https://doi.org/10.1002/adom.202001584

    Article  CAS  Google Scholar 

  196. Sekine A, Tanaka M, Uekusa H, Yasuda N (2018) In situ control of photochromic behavior through dual photo-isomerization using cobaloxime complexes with a spiropyran derivative and 2-cyanoethyl ligands. CrystEngComm 20:6061–6069. https://doi.org/10.1039/C8CE00982A

    Article  CAS  Google Scholar 

  197. Zhang L, Deng Y, Tang Y, Xie C, Wu Z (2021) Solid-state spiropyrans exhibiting photochromic properties based on molecular flexibility. Mater Chem Front 5:3119–3124. https://doi.org/10.1039/D0QM01086C

    Article  CAS  Google Scholar 

  198. Wu Z, Wang Q, Li P, Fanga B, Yin M (2021) Photochromism of neutral spiropyran in the crystalline state at room temperature. J Mater Chem C 9:6290–6296. https://doi.org/10.1039/D1TC00974E

    Article  CAS  Google Scholar 

  199. Seiler VK, Tumanov N, Robeyns K, Wouters J, Champagne B, Leyssens T (2017) A structural analysis of spiropyran and spirooxazine compounds and their polymorphs. Crystals 7:84. https://doi.org/10.3390/cryst7030084

    Article  CAS  Google Scholar 

  200. Dunne A, Delaney C, McKeon A, Nesterenko P, Paull B, Benito-Lopez F, Diamond D, Florea L (2018) Micro-capillary coatings based on spiropyran polymeric brushes for metal ion binding, detection, and release in continuous flow. Sensors 18:1083. https://doi.org/10.3390/s18041083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Schwartz HA, Olthof S, Schaniel D, Meerholz K, Ruschewitz U (2017) Solution-like behavior of photoswitchable spiropyrans embedded in metal-organic frameworks. Inorg Chem 56:13100–13110. https://doi.org/10.1021/acs.inorgchem.7b01908

    Article  CAS  PubMed  Google Scholar 

  202. Martin CR, Park KC, Leith GA, Yu J, Mathur A, Wilson GR, Gange GB, Barth EL, Ly RT, Manley OM, Forrester KL, Karakalos SG (2022) Stimuli-modulated metal oxidation states in photochromic MOFs. J Am Chem Soc 144:4457–4468. https://doi.org/10.1021/jacs.1c11984

    Article  CAS  PubMed  Google Scholar 

  203. Truong VX, Ehrmann K, Seifermann M, Levkin PA, Barner-Kowollik C (2022) Wavelength orthogonal photodynamic networks. Chem Eur J 28:e202104466. https://doi.org/10.1002/chem.202104466

    Article  CAS  PubMed  Google Scholar 

  204. Grady ME, Birrenkott CM, May PA, White SR, Moore JS, Sottos NR (2020) Localization of spiropyran activation. Langmuir 36:5847–5854. https://doi.org/10.1021/acs.langmuir.0c00568

    Article  CAS  PubMed  Google Scholar 

  205. Bazzan I, Bolle P, Oms O, Salmi H, Aubry-Barroca N, Dolbecq A, Serier-Brault H, Dessapt R, Roger P, Mialane P (2017) The design of new photochromic polymers incorporating covalently or ionically linked spiropyran/polyoxometalate hybrids. J Mater Chem C 5:6343–6351. https://doi.org/10.1039/C7TC01296A

    Article  CAS  Google Scholar 

  206. Attia MS, Khalil MH, Abdel-Mottaleb MSA, Lukyanova MB, Alekseenko YuA, Lukyanov B (2006) Effect of complexation with lanthanide metal ions on the photochromism of (1,3,3-trimethyl-5′-hydroxy-6′-formyl- indoline-spiro2,2′-[2H]chromene) in different media. Int J Photoenergy 2006:042846. https://doi.org/10.1155/IJP/2006/42846

    Article  CAS  Google Scholar 

  207. Balasubramanian G, Schulte J, Müller-Plathe F, Böhm MC (2012) Structural and thermochemical properties of a photoresponsive spiropyran and merocyanine pair: basis set and solvent dependence in density functional predictions. Chem Phys Lett 554:60–66. https://doi.org/10.1016/j.cplett.2012.10.014

    Article  CAS  Google Scholar 

  208. Eilmes A (2013) Spiropyran to merocyanine conversion: explicit versus implicit solvent modeling. J Phys Chem A 117:2629–2635. https://doi.org/10.1021/jp3117209

    Article  CAS  PubMed  Google Scholar 

  209. Tian W, Tian J (2014) An insight into the solvent effect on photo-, solvato-chromism of spiropyran through the perspective of intermolecular interactions. Dyes Pigm 105:66–74. https://doi.org/10.1016/j.dyepig.2014.01.020

    Article  CAS  Google Scholar 

  210. Liu G, Li Y, Cui C, Wang M, Gao H, Gao J, Wang J (2022) Solvatochromic spiropyran—a facile method for visualized, sensitive and selective response of lead (Pb2+) ions in aqueous solution. J Photochem Photobiol A 424:113658. https://doi.org/10.1016/j.jphotochem.2021.113658

    Article  CAS  Google Scholar 

  211. Florea L, McKeon A, Diamond D, Benito-Lopez F (2013) Spiropyran polymeric microcapillary coatings for photodetection of solvent polarity. Langmuir 29:2790–2797. https://doi.org/10.1021/la304985p

    Article  CAS  PubMed  Google Scholar 

  212. Gagliardi M, Pignatelli F, Mattoli V (2017) Time- and solvent-dependent self-assembly of photochromic crystallites. J Phys Chem C 121:24245–24251. https://doi.org/10.1021/acs.jpcc.7b06388

    Article  CAS  Google Scholar 

  213. Gao M, Lian C, Xing R, Wang J, Wang X, Tian Z (2020) The photo-/thermo-chromism of spiropyran in alkanes as a temperature abuse indicator in the cold chain of vaccines. New J Chem 44:15350–15353. https://doi.org/10.1039/D0NJ02975K

    Article  CAS  Google Scholar 

  214. Gerkman MA, Yuan S, Duan P, Taufan J, Schmidt-Rohra K, Han GGD (2019) Phase transition of spiropyrans: impact of isomerization dynamics at high temperatures. Chem Commun 55:5813–5816. https://doi.org/10.1039/C9CC02141H

    Article  CAS  Google Scholar 

  215. Ahmed SA, Okasha RM, Khairou KS, Afifi TH, Mohamed A-AH, Abd-El-Aziz AS (2017) Design of thermochromic polynorbornene bearing spiropyran chromophore moieties: synthesis, thermal behavior and dielectric barrier discharge plasma treatment. Polymers 9:630. https://doi.org/10.3390/polym9110630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Shiraishi Y, Itoh M, Hirai T (2010) Thermal isomerization of spiropyran to merocyanine in aqueous media and its application to colorimetric temperature indication. Phys Chem Chem Phys 12:13737–13745. https://doi.org/10.1039/C0CP00140F

    Article  CAS  PubMed  Google Scholar 

  217. Iqbal A, Iqbal G, Umar MN, Rashid H, Khan SW (2022) Synthesis of novel silica encapsulated spiropyran-based thermochromic materials. R Soc Open Sci 9:211385. https://doi.org/10.1098/rsos.211385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Julià-López A, Hernando J, Ruiz-Molina D, González-Monje P, Sedó J, Roscini C (2016) Temperature-controlled switchable photochromism in solid materials. Angew Chem Int Ed 128:15268–15272. https://doi.org/10.1002/ange.201608408

    Article  Google Scholar 

  219. Metelitsa AV, Chernyshev AV, Voloshin NA, Solov’eva EV, Dorogan IV (2022) Chromogenic properties of heterocyclic compounds: barochromic effect of indoline spiropyrans in the gas phase. J Photochem Photobiol A 430:113982. https://doi.org/10.1016/j.jphotochem.2022.113982

    Article  CAS  Google Scholar 

  220. Renge I (2000) Pressure shift mechanisms of spectral holes in the optical spectra of dyes in polymer host matrices. J Phys Chem A 104:3869–3877. https://doi.org/10.1021/jp9931206

    Article  CAS  Google Scholar 

  221. Poisson L, Raffael KD, Soep B, Mestdagh J-M, Buntinx G (2006) Gas-phase dynamics of spiropyran and spirooxazine molecules. J Am Chem Soc 128:3169–3178. https://doi.org/10.1021/ja055079s

    Article  CAS  PubMed  Google Scholar 

  222. Markworth PB, Adamson BD, Coughlan NJA, Goerigk L, Bieske EJ (2015) Photoisomerization action spectroscopy: flicking the protonated merocyanine–spiropyran switch in the gas phase. Phys Chem Chem Phys 17:25676–25688. https://doi.org/10.1039/C5CP01567G

    Article  CAS  PubMed  Google Scholar 

  223. Pugachev AD, Mukhanov EL, Ozhogin IV, Kozlenko AS, Metelitsa AV, Lukyanov BS (2021) Isomerization and changes of the properties of spiropyrans by mechanical stress: advances and outlook. Chem Heterocycl Comp 57:122–130. https://doi.org/10.1007/s10593-021-02881-y

    Article  CAS  Google Scholar 

  224. Funasako Y, Takaki A, Inokuchi M, Mochida T (2016) Photo-, thermo-, and piezochromic nafion film incorporating cationic spiropyran. Chem Lett 45:1397–1399. https://doi.org/10.1246/cl.160757

    Article  CAS  Google Scholar 

  225. Rencheck ML, Mackey BT, Hu Y-Y, Chang C-C, Sangid MD, Davis CS (2022) Identifying internal stresses during mechanophore activation. Adv Eng Mater 24:2101080. https://doi.org/10.1002/adem.202101080

    Article  Google Scholar 

  226. Ramirez ALB, Kean ZS, Orlicki JA, Champhekar M, Elsakr SM, Krause WE, Craig SL (2013) Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat Chem 5:757–761. https://doi.org/10.1038/nchem.1720

    Article  CAS  PubMed  Google Scholar 

  227. Yoon S, Choi JH, Sung BJ, Bang J, Kim TA (2022) Mechanochromic and thermally reprocessable thermosets for autonomic damage reporting and self-healing coatings. NPG Asia Mater 14:61. https://doi.org/10.1038/s41427-022-00406-3

    Article  CAS  Google Scholar 

  228. Wojtyk JTC, Wasey A, Xiao N-N, Kazmaier PM, Hoz S, Yu C, Lemieux RP, Buncel E (2007) Elucidating the mechanisms of acidochromic spiropyran-merocyanine interconversion. J Phys Chem A 111:2511–2516. https://doi.org/10.1021/jp068575r

    Article  CAS  PubMed  Google Scholar 

  229. Kortekaas L, Chen J, Jacquemin D, Browne WR (2018) Proton-stabilized photochemically reversible E/Z isomerization of spiropyrans. J Phys Chem B 122:6423–6430. https://doi.org/10.1021/acs.jpcb.8b03528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kovalenko O, Reguero M (2020) Why thermal isomerization of the chromic switch spiropyran-merocyanine is enhance in polar protic solvents A computational study of the reaction mechanism. Phys Scr 95:055402. https://doi.org/10.1088/1402-4896/ab5ff2

    Article  CAS  Google Scholar 

  231. Hammarson M, Nilsson JR, Li S, Beke-Somfai T, Andréasson J (2013) Characterization of the thermal and photoinduced reactions of photochromic spiropyrans in aqueous solution. J Phys Chem B 117:13561–13571. https://doi.org/10.1021/jp408781p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Cui L, Zhang H, Zhang G, Zhou Y, Fan L, Shi L, Zhang C, Shuang S, Dong C (2018) Substituent effect on the acid-induced isomerization of spiropyran compounds. Spectrochim Acta A Mol Biomol Spectrosc 202:13–17. https://doi.org/10.1016/j.saa.2018.04.076

    Article  CAS  PubMed  Google Scholar 

  233. Nam Y-S, Yoo I, Yarimaga O, Park IS, Park D-H, Song S, Kim J-M, Lee CW (2014) Photochromic spiropyran-embedded PDMS for highly sensitive and tunable optochemical gas sensing. Chem Commun 50:4251–4254. https://doi.org/10.1039/C4CC00567H

    Article  CAS  Google Scholar 

  234. Rad JK, Ghomi AR, Karimipour K, Mahdavian AR (2020) Progressive readout platform based on photoswitchable polyacrylic nanofibers containing spiropyran in photopatterning with instant responsivity to acid-base vapors. Macromolecules 53:1613–1622. https://doi.org/10.1021/acs.macromol.9b02603

    Article  CAS  Google Scholar 

  235. Wan S, Zheng Y, Shen J, Yang W, Yin M (2014) “On–off–on” switchable sensor: a fluorescent spiropyran responds to extreme pH conditions and its bioimaging applications. ACS Appl Mater Interfaces 6:19515–19519. https://doi.org/10.1021/am506641t

    Article  CAS  PubMed  Google Scholar 

  236. Liao Y (2017) Design and applications of metastable-state photoacids. Acc Chem Res 50:1956–1964. https://doi.org/10.1021/acs.accounts.7b00190

    Article  CAS  PubMed  Google Scholar 

  237. Halbritter T, Kaiser C, Wachtveitl J, Heckel A (2017) Pyridine-spiropyran derivative as a persistent, reversible photoacid in water. J Org Chem 82:8040–8047. https://doi.org/10.1021/acs.joc.7b01268

    Article  CAS  PubMed  Google Scholar 

  238. Abeyrathna N, Liao Y (2017) Photoactivity, reversibility, and stability of a merocyanine-type photoacid in polymer films. J Photochem Photobiol A 332:196–199. https://doi.org/10.1016/j.jphotochem.2016.08.025

    Article  CAS  Google Scholar 

  239. Kaiser C, Halbritter T, Heckel A, Wachtveitl J (2021) Proton-transfer dynamics of photoacidic merocyanines in aqueous solution. Chem Eur J 27:9160–9173. https://doi.org/10.1002/chem.202100168

    Article  CAS  PubMed  Google Scholar 

  240. Kagel H, Bier FF, Frohme M, Glökler JF (2019) A novel optical method to reversibly control enzymatic activity based on photoacids. Sci Rep 9:14372. https://doi.org/10.1038/s41598-019-50867-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Gajst O, Pinto da Silva L, Esteves da Silva JCG, Huppert D (2019) Enhanced excited-state proton transfer via a mixed methanol-water molecular bridge of 1-naphthol-3,6-disulfonate in methanol-water mixtures. J Phys Chem A 123:48–58. https://doi.org/10.1021/acs.jpca.8b10374

    Article  CAS  PubMed  Google Scholar 

  242. Abeyrathna N, Liao Y (2017) Stability of merocyanine-type photoacids in aqueous solutions. J Phys Org Chem 30:e3664. https://doi.org/10.1002/poc.3664

    Article  CAS  Google Scholar 

  243. Berton C, Busiello DM, Zamuner S, Scopelliti R, Fadaei-Tirani F, Severin K, Pezzato C (2021) Light-switchable buffers. Angew Chem Int Ed 60:21737–21740. https://doi.org/10.1002/anie.202109250

    Article  CAS  Google Scholar 

  244. Shi Q, Chen C-F (2017) Switchable complexation between (O-Methyl)6–2,6-helic[6]arene and protonated pyridinium salts controlled by acid/base and photoacid. Org Lett 19:3175–3178. https://doi.org/10.1021/acs.orglett.7b01296

    Article  CAS  PubMed  Google Scholar 

  245. Liu J, Tang W, Sheng L, Du Z, Zhang T, Su X, Zhang SX-A (2019) Effects of substituents on metastable-state photoacids: design, synthesis, and evaluation of their photochemical properties. Asian J Chem 14:438–445. https://doi.org/10.1002/asia.201801687

    Article  CAS  Google Scholar 

  246. Yang L, Caire da Silva L, Thérien-Aubin H, Bannwarth MB, Landfester K (2019) A reversible proton generator with on/off thermoswitch. Macromol Rapid Commun 40:1800713. https://doi.org/10.1002/marc.201800713

    Article  CAS  Google Scholar 

  247. Tatum LA, Foy JT, Aprahamian I (2014) Waste management of chemically activated switches: using a photoacid to eliminate accumulation of side products. J Am Chem Soc 136:17438–17441. https://doi.org/10.1021/ja511135k

    Article  CAS  PubMed  Google Scholar 

  248. Patel PK, Arias JE, Gongora RS, Hernandez FE, Moncomble A, Aloïsec S, Chumbimuni-Torres KY (2018) Visible light-triggered fluorescence and pH modulation using metastable-state photoacids and BODIPY. Phys Chem Chem Phys 20:26804–26808. https://doi.org/10.1039/C8CP03977A

    Article  CAS  PubMed  Google Scholar 

  249. Vallet J, Micheau J-C, Coudret C (2016) Switching a pH indicator by a reversible photoacid: a quantitative analysis of a new two-component photochromic system. Dyes Pigm 125:179–184. https://doi.org/10.1016/j.dyepig.2015.10.025

    Article  CAS  Google Scholar 

  250. Kusumoto S, Nakagawa T, Yokoyama Y (2016) All-optical fine-tuning of absorption band of diarylethene with photochromic acid-generating spiropyran. Adv Opt Mater 4:1350–1353. https://doi.org/10.1002/adom.201600228

    Article  CAS  Google Scholar 

  251. Alghazwat O, Elgattar A, Khalil T, Wang Z, Liao Y (2019) Red-light responsive metastable-state photoacid. Dyes Pigm 171:107719. https://doi.org/10.1016/j.dyepig.2019.107719

    Article  CAS  Google Scholar 

  252. Xuan J, Tian J (2019) Heating promoted fluorescent recognition of Cu2+ with high selectivity and sensitivity based on spiropyran derivative. Anal Chim Acta 1061:161–168. https://doi.org/10.1016/j.aca.2019.02.028

    Article  CAS  PubMed  Google Scholar 

  253. Seiler VK, Robeyns K, Tumanov N, Cinčić D, Wouters J, Champagne B, Leyssens T (2019) A coloring tool for spiropyrans: solid state metal–organic complexation versus salification. CrystEngComm 21:4925–4933. https://doi.org/10.1039/C9CE00805E

    Article  CAS  Google Scholar 

  254. Machitani K, Nakamuraa M, Sakamotoa H, Ohata N, Masudab H, Kimura K (2008) Structural characterization for metal-ion complexation and isomerization of crowned bis(spirobenzopyran)s. J Photochem Photobiol A 200:96–100. https://doi.org/10.1016/j.jphotochem.2008.02.019

    Article  CAS  Google Scholar 

  255. Stubing DB, Henga S, Abell AD (2016) Crowned spiropyran fluoroionophores with a carboxyl moiety for the selective detection of lithium ions. Org Biomol Chem 14:3752–3757. https://doi.org/10.1039/C6OB00468G

    Article  CAS  PubMed  Google Scholar 

  256. Abdullah A, Roxburgh CJ, Sammes PG (2008) Photochromic crowned spirobenzopyrans: quantitative metal-ion chelation by UV, competitive selective ion-extraction and metal-ion transportation demonstration studies. Dyes Pigm 76:319–326. https://doi.org/10.1016/j.dyepig.2006.09.002

    Article  CAS  Google Scholar 

  257. Lukyanova MB, Kogan VA, Lukyanov BS (2007) A new spiropyran with a cation receptor. Chem Heterocycl Comp 43:1477–1478. https://doi.org/10.1007/s10593-007-0227-2

    Article  CAS  Google Scholar 

  258. Kang J, Li E, Cui L, Shao Q, Yin C, Cheng F (2021) Lithium ion specific fluorescent reversible extraction-release based on spiropyran isomerization combining crown ether coordination and its bioimaging. Sens Actuators B Chem 327:128941. https://doi.org/10.1016/j.snb.2020.128941

    Article  CAS  Google Scholar 

  259. Chernyshev AV, Metelitsa AV, Rostovtseva IA, Voloshin NA, Soloveva EV, Gaeva EB, Minkin VI (2018) Chromogenic systems based on 8-(1,3-benzoxazol-2-yl) substituted spirobenzopyrans undergoing ion modulated photochromic rearrangements. J Photochem Photobiol A 360:174–180. https://doi.org/10.1016/j.jphotochem.2018.04.031

    Article  CAS  Google Scholar 

  260. Rostovtseva IA, Chernyshev AV, Tkachev VV, Dorogan IV, Voloshin NA, Solov’eva EV, Metelitsa AV, Gaeva EB, Aldoshin SM, Minkin VI (2017) Experimental and theoretical insight into the complexation behavior of spironaphthopyrans bearing o-positioning benzazole moiety. J Mol Str 1145:55–64. https://doi.org/10.1016/j.molstruc.2017.05.089

    Article  CAS  Google Scholar 

  261. Chernyshev AV, Voloshin NA, Metelitsa AV, Tkachev VV, Aldoshin SM, Solov’eva E, Rostovtseva IA, Minkin VI (2013) Metal complexes of new photochromic chelator: structure, stability and photodissociation. J Photochem Photobiol A 265:1–9. https://doi.org/10.1016/j.jphotochem.2013.05.001

    Article  CAS  Google Scholar 

  262. Abdel-Mottaleb MSA, Saif M, Attia MS, Abo-Alya MM, Mobarez SN (2018) Lanthanide complexes of spiropyran photoswitch and sensor: spectroscopic investigations and computational modeling. Photochem Photobiol Sci 17:221–230. https://doi.org/10.1039/C7PP00226B

    Article  CAS  PubMed  Google Scholar 

  263. Baldrighi M, Locatelli G, Desper J, Aakeröy CB, Giordani S (2016) Probing metal ion complexation of ligands with multiple metal binding sites: the case of spiropyrans. Chem Eur J 22:13976–13984. https://doi.org/10.1002/chem.201602608

    Article  CAS  PubMed  Google Scholar 

  264. Wang L, Yao Y, Wang J, Dong C, Han H (2019) Selective sensing Ca2+ with a spiropyran-based fluorometric probe. Luminiscence 34:707–714. https://doi.org/10.1002/bio.3656

    Article  CAS  Google Scholar 

  265. Miguez FB, Menzonatto TG, Netto JFZ, Silva IMS, Verano-Braga T, Fedoce J, Lopes DS, F.B. (2020) Photo-dynamic and fluorescent zinc complex based on spiropyran ligand. J Mol Str 1211:128105. https://doi.org/10.1016/j.molstruc.2020.128105

    Article  CAS  Google Scholar 

  266. Sylvia GM, Mak AM, Heng S, Bachhuka A, Ebendorff-Heidepriem H, Abell AD (2018) A rationally designed spiropyran-based chemosensor for magnesium. Chemosensors 6:17. https://doi.org/10.3390/chemosensors6020017

    Article  CAS  Google Scholar 

  267. Machado RCL, Alexis F, De Sousa FB (2019) Nanostructured and photochromic material for environmental detection of metal ions. Molecules 24:4243. https://doi.org/10.3390/molecules24234243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Zhang R, Hu L, Xu Z, Song Y, Li H, Zhang X, Gao X, Wang M, Xian C (2020) A highly selective probe for fluorescence turn-on detection of Fe3+ ion based on a novel spiropyran derivative. J Mol Str 1204:127481. https://doi.org/10.1016/j.molstruc.2019.127481

    Article  CAS  Google Scholar 

  269. Rivera-Fuentes P, Wrobel AT, Zastrow ML, Khan M, Georgiou J, Luyben TT, Roder JC, Okamoto K, Lippard SJ (2015) A far-red emitting probe for unambiguous detection of mobile zinc in acidic vesicles and deep tissue. Chem Sci 6:1944–1948. https://doi.org/10.1039/C4SC03388D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Goswami S, Aich K, Das S, Das AK, Sarkar D, Panja S, Mondal TK, Mukhopadhyay S (2013) A red fluorescence ‘off–on’ molecular switch for selective detection of Al3+, Fe3+ and Cr3+: experimental and theoretical studies along with living cell imaging. Chem Commun 49:10739–10741. https://doi.org/10.1039/C3CC46860G

    Article  CAS  Google Scholar 

  271. Nourmohammadian F, Ghahari M, Gholami MD (2015) Spectral properties of a bis-azospiropyran complexed with europium. J Appl Spectrosc 82:561–566. https://doi.org/10.1007/s10812-015-0145-5

    Article  CAS  Google Scholar 

  272. Yagi S, Nakamura S, Watanabe D, Nakazumi H (2009) Colorimetric sensing of metal ions by bis(spiropyran) podands: towards naked-eye detection of alkaline earth metal ions. Dyes Pigm 80:98–105. https://doi.org/10.1016/j.dyepig.2008.05.012

    Article  CAS  Google Scholar 

  273. Natali M, Aakeröy C, Desperb J, Giordani S (2010) The role of metal ions and counterions in the switching behavior of a carboxylic acid functionalized spiropyran. Dalton Trans 39:8269–8277. https://doi.org/10.1039/C0DT00242A

    Article  CAS  PubMed  Google Scholar 

  274. Wojtyk JTC, Kazmaier PM, Buncel E (2001) Modulation of the spiropyran−merocyanine reversion via metal-ion selective complexation: trapping of the “transient” cis-merocyanine. Chem Mater 13:2547–2551. https://doi.org/10.1021/cm010038q

    Article  CAS  Google Scholar 

  275. Ho F-C, Huang Y-J, Weng C-C, Wu C-H, Li Y-K, Wu JI, Lin H-C (2020) Efficient FRET approaches toward copper(II) and cyanide detections via host-guest interactions of photo-switchable [2]pseudo-rotaxane polymers containing naphthalimide and merocyanine moieties. ACS Appl Mater Interfaces 12:53257–53273. https://doi.org/10.1021/acsami.0c15049

    Article  CAS  PubMed  Google Scholar 

  276. Gao M, Shen B, Zhou J, Kapre R, Louie AY, Shaw JT (2020) Synthesis and comparative evaluation of photoswitchable magnetic resonance imaging contrast agents. ACS Omega 5:14759–14766. https://doi.org/10.1021/acsomega.0c01534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Cardano F, Del Canto E, Giordani S (2019) Spiropyrans for light-controlled drug delivery. Dalton Trans 48:15537–15544. https://doi.org/10.1039/C9DT02092F

    Article  CAS  PubMed  Google Scholar 

  278. Selvanathan P, Dorcet V, Roisnel T, Bernot K, Huang G, Le Guennic B, Norel L, Rigaut S (2018) trans to cis photo-isomerization in merocyanine dysprosium and yttrium complexes. Dalton Trans 47:4139–4148. https://doi.org/10.1039/C8DT00299A

    Article  CAS  PubMed  Google Scholar 

  279. Zhao H, Huai J, Weng C, Han H (2022) A new spiropyran compound for selective naked-eye detection of copper ions in aqueous media and on test paper strips. J Mol Str 1263:133146. https://doi.org/10.1016/j.molstruc.2022.133146

    Article  CAS  Google Scholar 

  280. Arjmanda F, Mohamadnia Z (2022) Fabrication of a light-responsive polymer nanocomposite containing spiropyran as a sensor for reversible recognition of metal ions. Polym Chem 13:937–945. https://doi.org/10.1039/D1PY01620B

    Article  Google Scholar 

  281. Heng S, Mak AM, Kostecki R, Zhang X, Pei J, Stubing DB, Ebendorff-Heidepriem H, Abell AD (2017) Photoswitchable calcium sensor: ‘On’–‘Off’ sensing in cells or with microstructured optical fibers. Sensor Actuat B-Chem 252:965–972. https://doi.org/10.1016/j.snb.2017.06.051

    Article  CAS  Google Scholar 

  282. Shiraishi Y, Adachi K, Itoh M, Hirai T (2009) Spiropyran as a selective, sensitive, and reproducible cyanide anion receptor. Org Lett 11:3482–3485. https://doi.org/10.1021/ol901399a

    Article  CAS  PubMed  Google Scholar 

  283. Prakash K, Sahoo PR, Kumar S (2016) A substituted spiropyran for highly sensitive and selective colorimetric detection of cyanide ions. Sensor Actuat B-Chem 237:856–864. https://doi.org/10.1016/j.snb.2016.06.170

    Article  CAS  Google Scholar 

  284. Samanta S, Halder S, Manna U, Das G (2019) Specific detection of hypochlorite: a cyanine based turn-on fluorescent sensor. J Chem Sci 131:36. https://doi.org/10.1007/s12039-019-1612-y

    Article  CAS  Google Scholar 

  285. Zhou Z, Hu H, Xia L, Li G, Xiao X (2022) A bisspiropyran fluorescent probe for the selective and rapid detection of cyanide anion in liqueurs. New J Chem 46:7992–7998. https://doi.org/10.1039/D1NJ05773A

    Article  CAS  Google Scholar 

  286. Sanjabi S, Rad JK, Mahdavian AR (2022) Spiropyran and spironaphthoxazine based opto-chemical probes for instant ion detection with high selectivity and sensitivity to trace amounts of cyanide. J Photochem Photobiol A 424:113626. https://doi.org/10.1016/j.jphotochem.2021.113626

    Article  CAS  Google Scholar 

  287. Xue Y, Tian J, Tian W, Zhang K, Xuan J, Zhang X (2021) Spiropyran based recognitions of amines: UV–Vis spectra and mechanisms. Spectrochim Acta A Mol Biomol Spectrosc 250:119385. https://doi.org/10.1016/j.saa.2020.119385

    Article  CAS  PubMed  Google Scholar 

  288. Yang L, Li Y, Song H, Zhang H, Yang N, Peng Q, He G (2020) A highly sensitive probe based on spiropyran for colorimetric and fluorescent detection of thiophenol in aqueous media. Dyes Pigm 175:108154. https://doi.org/10.1016/j.dyepig.2019.108154

    Article  CAS  Google Scholar 

  289. Xiao X, Yang G, Chen A, Zheng Z, Zhang C, Zhang Y, Liao L (2022) Multi-responsive chromatic hydrogel exhibiting reversible shape deformations. Dyes Pigm 204:110364. https://doi.org/10.1016/j.dyepig.2022.110364

    Article  CAS  Google Scholar 

  290. Qi Q, Qian J, Ma S, Xu B, Zhang SX-A, Tian W (2015) Reversible multistimuli-response fluorescent switch based on tetraphenylethene-spiropyran molecules. Chem Eur J 21:1149–1155. https://doi.org/10.1002/chem.201405426

    Article  CAS  PubMed  Google Scholar 

  291. Wu L, Chen R, Luo Z, Wang P (2020) Solid-state photochromism and acidochromism multifunctional materials constructed by tetraphenylethene and spiropyran. J Mater Sci 55:12826–12835. https://doi.org/10.1007/s10853-020-04930-x

    Article  CAS  Google Scholar 

  292. Su X, Ji Y, Pan W, Chen S, Zhang Y-M, Lin T, Liu L, Li M, Liu Y, Zhang SX-A (2018) Pyrene spiropyran dyad: solvato-, acido- and mechanofluorochromic properties and its application in acid sensing and reversible fluorescent display. J Mater Chem C 6:6940–6948. https://doi.org/10.1039/C8TC02208A

    Article  CAS  Google Scholar 

  293. Benniston AC, Harriman A, Howell SL, Li P, Lydon DP (2007) Opening a spiropyran ring by way of an exciplex intermediate. J Org Chem 72:888–897. https://doi.org/10.1021/jo062124l

    Article  CAS  PubMed  Google Scholar 

  294. Remón P, Hammarson M, Li S, Kahnt A, Pischel U, Andréasson J (2011) Molecular implementation of sequential and reversible logic through photochromic energy transfer switching. Chem Eur J 17:6492–6500. https://doi.org/10.1002/chem.201100027

    Article  CAS  PubMed  Google Scholar 

  295. Chai X, Han H-H, Sedgwick AC, Li N, Zang Y, James TD, Zhang J, Hu X-L, Yu Y, Li Y, Wang Y, Li J, He X-P, Tian H (2020) Photochromic fluorescent probe strategy for the super-resolution imaging of biologically important biomarkers. J Am Chem Soc 142:18005–18013. https://doi.org/10.1021/jacs.0c05379

    Article  CAS  PubMed  Google Scholar 

  296. Florea L, Diamond D, Benito-Lopez F (2012) Photo-responsive polymeric structures based on spiropyran. Macromol Mater Eng 297:1148–1159. https://doi.org/10.1002/mame.201200306

    Article  CAS  Google Scholar 

  297. Meng X, Chen C, Qi G, Li X, Wang K, Zou B, Ma Y (2017) From two, to three, to multi-color switches: developing AIEgen-based mechanochromic materials. ChemNanoMat 3:569–574. https://doi.org/10.1002/cnma.201700120

    Article  CAS  Google Scholar 

  298. Wan S, Ma Z, Chen C, Li F, Wang F, Jia X, Yang W, Yin M (2015) A supramolecule-triggered mechanochromic switch of cyclodextrin-jacketed rhodamine and spiropyran derivatives. Adv Funct Mater 26:353–364. https://doi.org/10.1002/adfm.201504048

    Article  CAS  Google Scholar 

  299. Meng X, Qi G, Li X, Wang Z, Wang K, Zou B, Ma Y (2016) Spiropyran-based multi-colored switching tuned by pressure and mechanical grinding. J Mater Chem C 4:7584–7588. https://doi.org/10.1039/c6tc02578a

    Article  CAS  Google Scholar 

  300. Sylvia G, Heng S, Abell AD (2016) Fluorescence enhancement of photoswitchable metal ion sensors. SPIE BioPhoton Austral 10013:100131X. https://doi.org/10.1117/12.2244656

    Article  Google Scholar 

  301. Sylvia GM, Heng S, Bachhuka A, Ebendorff-Heidepriem H, Abell AD (2018) A spiropyran with enhanced fluorescence: a bright, photostable and red-emitting calcium sensor. Tetrahedron 74:1240–1244. https://doi.org/10.1016/j.tet.2017.11.020

    Article  CAS  Google Scholar 

  302. Kubinyi M, Varga O, Baranyai P, Kállay M, Mizsei R, Tárkányi G, Vidóczy T (2011) Metal complexes of the merocyanine form of nitrobenzospyran: structure, optical spectra, stability. J Mol Struct 1000:77–84. https://doi.org/10.1016/j.molstruc.2011.05.055

    Article  CAS  Google Scholar 

  303. Wu Y, Yin C, Zhang W, Chao J, Huo F (2021) A red-emitting fluorescent probe imaging release of calcium ions from lysosome induced by chloroquine based on a photochromic crowned spirobenzopyran. Dyes Pigm 193:109467. https://doi.org/10.1016/j.dyepig.2021.109467

    Article  CAS  Google Scholar 

  304. Zhao M, Dong L, Liu Z, Yang S, Wu W, Lin J (2018) In vivo fluorescence imaging of hepatocellular carcinoma using a novel GPC3-specific aptamer probe. Quant Imaging Med Surg 8:151–160. https://doi.org/10.21037/qims.2018.01.09

    Article  PubMed  PubMed Central  Google Scholar 

  305. Fries KH, Driskell JD, Sheppard GR, Locklin J (2011) Fabrication of spiropyran-containing thin film sensors used for the simultaneous identification of multiple metal ions. Langmuir 27:12253–12260. https://doi.org/10.1021/la202344w

    Article  CAS  PubMed  Google Scholar 

  306. Fries KH, Sheppard GR, Bilbreya JA, Locklin J (2014) Tuning chelating groups and comonomers in spiropyran-containing copolymer thin films for color-specific metal ion binding. Polym Chem 5:2094–2102. https://doi.org/10.1039/C3PY01296D

    Article  CAS  Google Scholar 

  307. Barbee MH, Mondal K, Deng JZ, Bharambe V, Neumann TV, Adams JJ, Boechler N, Dickey MD, Craig SL (2018) Mechanochromic stretchable electronics. ACS Appl Mater Interfaces 10:29918–29924. https://doi.org/10.1021/acsami.8b09130

    Article  CAS  PubMed  Google Scholar 

  308. Zhu M-Q, Chen T, Zhang G-F, Li C, Gong W-L, Chena Z-Q, Aldred MP (2014) Spiropyran-based biodegradable polymer all-optical transistors integrate the switching and modulation of visible light frequency. Chem Commun 50:2664–2666. https://doi.org/10.1039/C3CC49016E

    Article  CAS  Google Scholar 

  309. Fan J, Bao B, Wang Z, Xu R, Wang W, Yu D (2020) High tri-stimulus response photochromic cotton fabrics based on spiropyran dye by thiol-ene click chemistry. Cellulose 27:493–510. https://doi.org/10.1007/s10570-019-02786-2

    Article  CAS  Google Scholar 

  310. Bao B, Bai S, Fan J, Su J, Wang W, Yu D (2019) A novel and durable photochromic cotton-based fabric prepared via thiol-ene click chemistry. Dyes Pigm 171:171778. https://doi.org/10.1016/j.dyepig.2019.107778

    Article  CAS  Google Scholar 

  311. He Z, Bao B, Fan J, Wang W, Yu D (2020) Photochromic cotton fabric based on microcapsule technology with anti-fouling properties. Colloids Surf A Physicochem Eng Asp 594:124661. https://doi.org/10.1016/j.colsurfa.2020.124661

    Article  CAS  Google Scholar 

  312. Schmidt SB, Kempe F, Brügner O, Walter M, Sommer M (2017) Alkyl-substituted spiropyrans: electronic effects, model compounds and synthesis of aliphatic main-chain copolymers. Polym Chem 8:5407–5414. https://doi.org/10.1039/C7PY00987A

    Article  CAS  Google Scholar 

  313. Jiang F, Chen S, Cao Z, Wang G (2016) A photo, temperature, and pH responsive spiropyran-functionalized polymer: synthesis, self-assembly and controlled release. Polymer 83:85–91. https://doi.org/10.1016/j.polymer.2015.12.027

    Article  CAS  Google Scholar 

  314. Seok WC, Son SH, An TK, Kim SH, Lee SW (2016) Photo-enhanced polymer memory device based on polyimide containing spiropyran. Electron Mater Lett 12:537–544. https://doi.org/10.1007/s13391-016-4019-7

    Article  CAS  Google Scholar 

  315. Hauser L, Knall A-C, Roth M, Trimmel G, Edler M, Griesser T, Kern W (2012) Reversible photochromism of polynorbornenes bearing spiropyran side groups. Monatsh Chem 143:1551–1558. https://doi.org/10.1007/s00706-012-0827-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Ventura C, Thornton P, Giordanic S, Heise A (2014) Synthesis and photochemical properties of spiropyran graft and star polymers obtained by ‘click’ chemistry. Polym Chem 5:6318–6324. https://doi.org/10.1039/C4PY00778F

    Article  CAS  Google Scholar 

  317. Keum S, Ahn S, Roh S, Ma S (2010) The synthesis and spectroscopic properties of novel, photochromic indolinobenzospiropyran-based homopolymers prepared via ring-opening metathesis polymerization. Dyes Pigm 86:74–80. https://doi.org/10.1016/j.dyepig.2009.12.002

    Article  CAS  Google Scholar 

  318. Ziółkowski B, Florea L, Theobald J, Benito-Lopez F, Diamond D (2013) Self-protonating spiropyran-co-NIPAM-co-acrylic acid hydrogel photoactuators. Soft Matter 9:8754–8760. https://doi.org/10.1039/c3sm51386f

    Article  CAS  Google Scholar 

  319. Khalil T, Alharbi A, Baum C, Liao Y (2018) Facile synthesis and photoactivity of merocyanine-photoacid polymers. Macromol Rapid Commun 39:1800319. https://doi.org/10.1002/marc.201800319

    Article  CAS  Google Scholar 

  320. Karimipour K, Rad JK, Ghomi AR, Salehi H, Mahdavian AR (2020) Hydrochromic and photoswitchable polyacrylic nanofibers containing spiropyran in eco-friendly ink-free rewriteable sheets with responsivity to humidity. Dyes Pigm 175:108185. https://doi.org/10.1016/j.dyepig.2020.108185

    Article  CAS  Google Scholar 

  321. Razavi B, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M (2020) Light-, temperature-, and pH-responsive micellar assemblies of spiropyran-initiated amphiphilic block copolymers: kinetics of photochromism, responsiveness, and smart drug delivery. Mater Sci Eng C 109:110524. https://doi.org/10.1016/j.msec.2019.110524

    Article  CAS  Google Scholar 

  322. Bardavid Y, Goykhman I, Nozaki D, Cuniberti G, Yitzchaik S (2011) Dipole assisted photogated switch in spiropyran grafted polyaniline nanowires. J Phys Chem C 115:3123–3128. https://doi.org/10.1021/jp110665j

    Article  CAS  Google Scholar 

  323. Ahmadi S, Nasiri M, Miandoab AP (2020) Synthesis and characterization of a pH and photoresponsive copolymer of acrylamide and spiropyran. Polym Adv Technol 31:2545–2551. https://doi.org/10.1002/pat.4981

    Article  CAS  Google Scholar 

  324. Abdollahi A, Roghani-Mamaqani H, Razavi B (2019) Stimuli-chromism of photoswitches in smart polymers: recent advances and applications as chemosensors. Prog Polym Sci 98:101149. https://doi.org/10.1016/j.progpolymsci.2019.101149

    Article  CAS  Google Scholar 

  325. Cao Z (2020) Highly stretchable tough elastomers crosslinked by spiropyran mechanophores for strain-induced colorimetric sensing. Macromol Chem Phys 221:2000190. https://doi.org/10.1002/macp.202000190

    Article  CAS  Google Scholar 

  326. Giordano G, Gagliardi M, Huan Y, Carlotti M, Mariani A, Menciassi A, Sinibaldi E, Mazzolai B (2021) Toward mechanochromic soft material-based visual feedback for electronics-free surgical effectors. Adv Sci 8:2100418. https://doi.org/10.1002/advs.202100418

    Article  Google Scholar 

  327. Xia Z, Alphonse VD, Trigg DB, Harrigan TP, Paulson JM, Luong QT, Lloyd EP, Barbee MH, Craig SL (2019) “Seeing” strain in soft materials. Molecules 24:542. https://doi.org/10.3390/molecules24030542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Gossweiler GR, Brown CL, Hewage GB, Sapiro-Gheiler E, Trautman WJ, Welshofer GW, Craig SL (2015) Mechanochemically active soft robots. ACS Appl Mater Interfaces 7:22431–22435. https://doi.org/10.1021/acsami.5b06440

    Article  CAS  PubMed  Google Scholar 

  329. Jeong YJ, Yoo EJ, Kim LH, Park S, Jang J, Kim SH, Lee SW, Park CE (2016) Light-responsive spiropyran based polymer thin films for use in organic field-effect transistor memories. J Mater Chem C 4:5398–5406. https://doi.org/10.1039/C6TC00798H

    Article  CAS  Google Scholar 

  330. Grogan C, Florea L, Koprivica S, Scarmagnani S, O’Neill L, Lyng F, Pedreschi F, Benito-Lopez F, Raiteri R (2016) Microcantilever arrays functionalised with spiropyran photoactive moieties as systems to measure photo-induced surface stress changes. Sens Actuators B Chem 237:479–486. https://doi.org/10.1016/j.snb.2016.06.108

    Article  CAS  Google Scholar 

  331. Grogan C, Amarandei G, Lawless S, Pedreschi F, Lyng F, Benito-Lopez F, Raiteri R, Florea L (2020) Silicon microcantilever sensors to detect the reversible conformational change of a molecular switch. Spiropyan Sens 20:854. https://doi.org/10.3390/s20030854

    Article  CAS  Google Scholar 

  332. Peterson GI, Larsen MB, Ganter MA, Storti DW, Boydston AJ (2015) 3D-printed mechanochromic materials. ACS Appl Mater Interfaces 7:577–583. https://doi.org/10.1021/am506745m

    Article  CAS  PubMed  Google Scholar 

  333. Regehly M, Garmshausen Y, Reuter M, König NF, Israel E, Kelly DP, Chou C-Y, Koch K, Asfari B, Hecht S (2020) Xolography for linear volumetric 3D printing. Nature 588:620–624. https://doi.org/10.1038/s41586-020-3029-7

    Article  CAS  PubMed  Google Scholar 

  334. Raisch M, Genovese D, Zaccheroni N, Schmidt SB, Focarete ML, Sommer M, Gualandi C (2018) Highly sensitive, anisotropic, and reversible stress/strain-sensors from mechanochromic nanofiber composites. Adv Mater 30:1802813. https://doi.org/10.1002/adma.201802813

    Article  CAS  Google Scholar 

  335. Wang X, He Y, Leng J (2022) Smart shape memory polyurethane with photochromism and mechanochromism properties. Macromol Mater Eng 307:2100778. https://doi.org/10.1002/mame.202100778

    Article  CAS  Google Scholar 

  336. Yang Y, Chen Y, Li Y, Wang Z, Zhao H (2022) Acid-, mechano- and photochromic molecular switches based on a spiropyran derivative for rewritable papers. Mater Chem Front 6:916–923. https://doi.org/10.1039/D1QM01637G

    Article  CAS  Google Scholar 

  337. Abdollahi A, Herizchi A, Roghani-Mamaqani H, Alidaei-Sharif H (2020) Interaction of photoswitchable nanoparticles with cellulosic materials for anticounterfeiting and authentication security documents. Carbohydr Polym 230:115603. https://doi.org/10.1016/j.carbpol.2019.115603

    Article  CAS  PubMed  Google Scholar 

  338. Lin Z, Pan H, Tian Y, Tang J, Zhang C, Zhang P, Yang H, Chen J (2022) Photo-pH dual stimuli-responsive multicolor fluorescent polymeric nanoparticles for multicolor security ink, optical data encryption and zebrafish imaging. Dyes Pigm 205:110588. https://doi.org/10.1016/j.dyepig.2022.110588

    Article  CAS  Google Scholar 

  339. Yang Y, Wang Z, Wu H, Li Y, Chen Y, Hu L, Wu W (2022) Dual-stimuli response of spiropyran derivative modified by long-chains: high-contrast photochromism and mechanochromism. Mater Chem Front 6:1948–1955. https://doi.org/10.1039/D2QM00304J

    Article  CAS  Google Scholar 

  340. Azimi R, Abdollahi A, Roghani-Mamaqani H, Salami-Kalajahi M (2021) Dual-mode security anticounterfeiting and encoding by electrospinning of highly photoluminescent spiropyran nanofibers. J Mater Chem C 9:9571–9583. https://doi.org/10.1039/d1tc01931g

    Article  CAS  Google Scholar 

  341. Shen X, Akbarzadeh A, Hu Q, Shi C, Jin Y, Ge M (2022) Novel photo-responsive composite fibers fabricated by facile wet-spinning process for UV detection and high-level encryption. J Lumin 251:119179. https://doi.org/10.1016/j.jlumin.2022.119179

    Article  CAS  Google Scholar 

  342. Ma J, Tian J, Liu Z, Shi D, Zhang X, Zhang G, Zhang D (2019) Multi-stimuli-responsive field-effect transistor with conjugated polymer entailing spiropyran in the side chains. CCS Chem 1:632–641. https://doi.org/10.31635/ccschem.019.20190056

    Article  Google Scholar 

  343. Tuktarov AR, Salikhov RB, Khuzin AA, Popod’ko NR, Safargalin IN, Mullagaliev IN, Dzhemilev UM (2019) Photocontrolled organic field effect transistors based on the fullerene C60 and spiropyran hybrid molecule. RSC Adv 9:7505–7508. https://doi.org/10.1039/C9RA00939F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Brohmann M, Wieland S, Angstenberger S, Herrmann NJ, Lüttgens J, Fazzi D, Zaumseil J (2020) Guiding charge transport in semiconducting carbon nanotube networks by local optical switching. ACS Appl Mater Interfaces 12:28392–28403. https://doi.org/10.1021/acsami.0c05640

    Article  CAS  PubMed  Google Scholar 

  345. Sanina NA, Grachev VP, Dmitriev AI, Morgunov RB, Koplak OV, Yur’eva EA, Anokhin DV, Ivanov DA, Aldoshin SM (2013) Synthesis and properties of polyvinylpyrrolidone films containing the photomagnetic chromium (tris)oxalate complex. Russ Chem Bull 62:554–559. https://doi.org/10.1007/s11172-013-0077-2

    Article  CAS  Google Scholar 

  346. Triolo C, Patanè S, Mazzeo M, Gambino S, Gigli G, Allegrini M (2014) Pure optical nano-writing on light-switchable spiropyrans/merocyanine thin film. Opt Express 22:283–288. https://doi.org/10.1364/OE.22.000283

    Article  CAS  PubMed  Google Scholar 

  347. Kida N, Hikita M, Kashima I, Okubo M, Itoi M, Enomoto M, Kato K, Takata M, Kojima N (2009) Control of charge transfer phase transition and ferromagnetism by photoisomerization of spiropyran for an organic−inorganic hybrid system, (SP)[FeIIFeIII(dto)3] (SP = spiropyran, dto = C2O2S2). J Am Chem Soc 131:212–220. https://doi.org/10.1021/ja806879a

    Article  CAS  PubMed  Google Scholar 

  348. Aldoshin SM, Sanina NA (2016) Photochromic magnetic materials based on transition metal oxalate complexes. Russ Chem Rev 85:1185–1197. https://doi.org/10.1070/RCR4652

    Article  CAS  Google Scholar 

  349. Tanaka N, Okazawa A, Sugahara A, Kojima N (2015) Development of a photoresponsive organic-inorganic hybrid magnet: layered cobalt hydroxides intercalated with spiropyran anions. Bull Chem Soc Jpn 88:1150–1155. https://doi.org/10.1246/bcsj.20150129

    Article  CAS  Google Scholar 

  350. Li Z, Zhou Y, Peng L, Yan D, Wei M (2017) A switchable electrochromism and electrochemiluminescence bifunctional sensor based on the electro-triggered isomerization of spiropyran/layered double hydroxides. Chem Commun 53:8862–8865. https://doi.org/10.1039/C7CC04421F

    Article  CAS  Google Scholar 

  351. Yamamoto T, Yurieva EA, Tsuda K, Hosomi T, Aldoshin SM, Einaga Y (2017) Gigantic photomagnetic effect at room temperature in spiropyran-protected FePt nanoparticles. Phys Status Solidi RRL 11:1700161. https://doi.org/10.1002/pssr.201700161

    Article  CAS  Google Scholar 

  352. Selvanathan P, Huang G, Guizouarn T, Roisnel T, Fernandez-Garcia G, Totti F, Le Guennic B, Calvez G, Bernot K, Norel L, Rigaut S (2016) Highly axial magnetic anisotropy in a N3O5 Dysprosium(III) coordination environment generated by a merocyanine ligand. Chem Eur J 22:15222–15226. https://doi.org/10.1002/chem.201603439

    Article  CAS  PubMed  Google Scholar 

  353. Nagashima S, Murata M, Nishihara H (2006) A ferrocenylspiropyran that functions as a molecular photomemory with controllable depth. Angew Chim 45:4298–4301. https://doi.org/10.1002/anie.200600535

    Article  CAS  Google Scholar 

  354. Hakouk K, Oms O, Dolbecq A, Marrot J, Saad A, Mialane P, El Bekkachi H, Jobic S, Deniard P, Dessapt R (2014) New photoresponsive charge-transfer spiropyran/polyoxometalate assemblies with highly tunable optical properties. J Mater Chem C 2:1628–1641. https://doi.org/10.1039/C3TC31992J

    Article  CAS  Google Scholar 

  355. Compain J-D, Deniard P, Dessapt R, Dolbecq A, Oms O, Sécheresse F, Marrot J, Mialane P (2010) Functionalized polyoxometalates with intrinsic photochromic properties and their association with spiropyran cations. Chem Commun 46:7733–7735. https://doi.org/10.1039/C0CC02533J

    Article  CAS  Google Scholar 

  356. Saad A, Oms O, Dolbecq A, Menet C, Dessapt R, Serier-Brault H, Allard E, Baczko K, Mialane P (2015) A high fatigue resistant, photoswitchable fluorescent spiropyran–polyoxometalate–BODIPY single-molecule. Chem Commun 51:16088–16091. https://doi.org/10.1039/C5CC06217A

    Article  CAS  Google Scholar 

  357. Liang H-Q, Guo Y, Shi Y, Peng X, Liang B, Chen B (2020) A light-responsive metal-organic framework hybrid membrane with high On/Off photoswitchable proton conductivity. Angew Chem Int Ed 59:7732–7737. https://doi.org/10.1002/anie.202002389

    Article  CAS  Google Scholar 

  358. Kanj AB, Chandresh A, Gerwien A, Grosjean S, Bräse S, Wang Y, Dube H, Heinke L (2020) Proton-conduction photomodulation in spiropyran-functionalized MOFs with large on–off ratio. Chem Sci 11:1404–1410. https://doi.org/10.1039/C9SC04926F

    Article  CAS  Google Scholar 

  359. Williams DE, Martin CR, Dolgopolova EA, Swifton A, Godfrey DC, Ejegbavwo OA, Pellechia PJ, Smith MD, Shustova NB (2018) Flipping the switch: fast photoisomerization in a confined environment. J Am Chem Soc 140:7611–7622. https://doi.org/10.1021/jacs.8b02994

    Article  CAS  PubMed  Google Scholar 

  360. Ma S, Ting H, Ma Y, Zheng L, Zhang M, Xiao L, Chen Z (2015) Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers. AIP Adv 5:057154. https://doi.org/10.1063/1.4921880

    Article  CAS  Google Scholar 

  361. Castán J-MA, Mwalukuku VM, Riquelme AJ, Liotier J, Huaulmé Q, Anta JA, Maldivi P, Demadrille R (2022) Photochromic spiro-indoline naphthoxazines and naphthopyrans in dye-sensitized solar cells. Mater Chem Front Adv 20:20. https://doi.org/10.1039/D2QM00375A

    Article  Google Scholar 

  362. Takeshita T, Umeda T, Hara M (2017) Fabrication of a dye-sensitized solar cell containing a noncarboxylated spiropyran-derived photomerocyanine with cyclodextrin. J Photochem Photobiol A 33:87–91. https://doi.org/10.1016/j.jphotochem.2016.10.017

    Article  CAS  Google Scholar 

  363. Feringa BL (2017) The art of building small: from molecular switches to motors (nobel lecture). Angew Chem Int Ed 56:11060–11078. https://doi.org/10.1002/anie.201702979

    Article  CAS  Google Scholar 

  364. Sauvage J-P (2017) From chemical topology to molecular machines (nobel lecture). Angew Chem Int Ed 56:11080–11093. https://doi.org/10.1002/anie.201702992

    Article  CAS  Google Scholar 

  365. Stoddart JF (2017) Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines (nobel lecture). Angew Chem Int Ed 56:11094–11125. https://doi.org/10.1002/anie.201703216

    Article  CAS  Google Scholar 

  366. Hernández-Melo D, Tiburcio J (2015) Coupled molecular motions driven by light or chemical inputs: spiropyran to merocyanine isomerisation followed by pseudorotaxane formation. Chem Commun 25:17564–17567. https://doi.org/10.1039/C5CC07056B

    Article  CAS  Google Scholar 

  367. Zhou W, Zhang H, Li H, Zhang Y, Wang Q-C, Qu D-H (2013) A bis-spiropyran-containing multi-state [2]rotaxane with fluorescence output. Tetrahedron 69:5319–5325. https://doi.org/10.1016/j.tet.2013.04.119

    Article  CAS  Google Scholar 

  368. Nhien PQ, Cuc TTK, Khang TM, Wu C-H, Hue BTB, Wu JI, Mansel BW, Chen H-L, Lin H-C (2020) Highly efficient förster resonance energy transfer modulations of dual-aiegens between a tetraphenylethylene donor and a merocyanine acceptor in photo-switchable [2]rotaxanes and reversible photo-patterning applications. ACS Appl Mater Interfaces 12:47921–47938. https://doi.org/10.1021/acsami.0c12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Bhattacharyya S, Maity M, Chowdhury A, Saha ML, Panja SK, Stang PJ, Mukherjee PS (2020) Coordination-assisted reversible photoswitching of spiropyran-based platinum macrocycles. Inorg Chem 59:2083–2091. https://doi.org/10.1021/acs.inorgchem.9b03572

    Article  CAS  PubMed  Google Scholar 

  370. Malinčík J, Kohout M, Svoboda J, Stulov S, Pociecha D, Böhmová Z, Novotná V (2022) Photochromic spiropyran-based liquid crystals. J Mol Liq 346:117842. https://doi.org/10.1016/j.molliq.2021.117842

    Article  CAS  Google Scholar 

  371. Tangso KJ, Fong W-K, Darwish T, Kirby N, Boyd BJ, Hanley TL (2013) Novel spiropyran amphiphiles and their application as light-responsive liquid crystalline components. J Phys Chem B 117:10203–10210. https://doi.org/10.1021/jp403840m

    Article  CAS  PubMed  Google Scholar 

  372. Tan B-H, Yoshio M, Kato T (2008) Induction of columnar and smectic phases for spiropyran derivatives: effects of acidichromism and photochromism. Asian J Chem 3:534–541. https://doi.org/10.1002/asia.200700225

    Article  CAS  Google Scholar 

  373. Liu M, Creemer CN, Reardona TJ, Parquette JR (2021) Light-driven dissipative self-assembly of a peptide hydrogel. Chem Commun 57:13776–13779. https://doi.org/10.1039/D1CC04971B

    Article  CAS  Google Scholar 

  374. Li C, Iscen A, Palmer LC, Schatz GC, Stupp SI (2020) Light-driven expansion of spiropyran hydrogels. J Am Chem Soc 142:8447–8453. https://doi.org/10.1021/jacs.0c02201

    Article  CAS  PubMed  Google Scholar 

  375. Sakai H, Ebana H, Sakai K, Tsuchiya K, Ohkubo T, Abe M (2007) Photo-isomerization of spiropyran-modified cationic surfactants. J Colloid Interface Sci 316:1027–1030. https://doi.org/10.1016/j.jcis.2007.08.042

    Article  CAS  PubMed  Google Scholar 

  376. Zhang J, Zhang Y, Chen F, Zhang W, Zhao H (2015) Self-assembly of photoswitchable diblock copolymers: salt-induced micellization and the influence of UV irradiation. Phys Chem Chem Phys 20:12215–12221. https://doi.org/10.1039/C5CP01560J

    Article  CAS  Google Scholar 

  377. Wu Z, Pan K, Lü B, Ma L, Yang W, Yin M (2016) Tunable morphology of spiropyran assemblies: from nanospheres to nanorods. Asian J Chem 11:3102–3106. https://doi.org/10.1002/asia.201601114

    Article  CAS  Google Scholar 

  378. Zhu M-Q, Zhang G-F, Hu Z, Aldred MP, Li C, Gong W-L, Chen T, Huang Z-L, Liu S (2014) Reversible fluorescence switching of spiropyran-conjugated biodegradable nanoparticles for super-resolution fluorescence imaging. Macromolecules 47:1543–1552. https://doi.org/10.1021/ma5001157

    Article  CAS  Google Scholar 

  379. Rad JK, Mahdavian AR, Khoei S, Janati A (2016) FRET-based acrylic nanoparticles with dual-color photoswitchable properties in DU145 human prostate cancer cell line labeling. Polymer 2:263–269. https://doi.org/10.1016/j.polymer.2016.06.042

    Article  CAS  Google Scholar 

  380. Maskevich SA, Vasilyuk GT, Askirka VF, Strekal’ ND, Luk’yanov BS, Starikov AG, Starikova AA, Luk’yanova MB, Pugachev AD, Minkin VI (2018) Photochromic properties and surface enhanced raman scattering spectra of indoline spiropyran in silver-based nanocomposite films. Opt Spectrosc 124:814–820. https://doi.org/10.1134/S0030400X18060164

    Article  CAS  Google Scholar 

  381. Shiraishi Y, Shirakawa E, Tanaka K, Sakamoto H, Ichikawa S, Hirai T (2014) Spiropyran-modified gold nanoparticles: reversible size control of aggregates by UV and visible light irradiations. ACS Appl Mater Interfaces 6:7554–7562. https://doi.org/10.1021/am5009002

    Article  CAS  PubMed  Google Scholar 

  382. Lai J, Zhang Y, Pasquale N, Lee KB (2014) An upconversion nanoparticle with orthogonal emissions using dual NIR excitations for controlled two-way photoswitching. Angew Chem Int Ed 53:14419–14423. https://doi.org/10.1002/anie.201408219

    Article  CAS  Google Scholar 

  383. Zhang H, Chen Z, He Y, Yang S, Wei J (2021) Spiropyran-modified upconversion nanoparticles for tunable fluorescent printing. ACS Appl Nano Mater 4:4340–4345. https://doi.org/10.1021/acsanm.1c00601

    Article  CAS  Google Scholar 

  384. Elsässer C, Vüllings A, Karcher M, Fumagalli P (2009) Photochromism of spiropyran−cyclodextrin inclusion complexes on Au(111). J Phys Chem C 113:19193–19198. https://doi.org/10.1021/jp810474v

    Article  CAS  Google Scholar 

  385. Seiler VK, Tumanov N, Robeyns K, Champagne B, Wouters J, Leyssens T (2020) Merocyanines in a halogen-bonded network involving inorganic building blocks. Cryst Growth Des 20:608–616. https://doi.org/10.1021/acs.cgd.9b00903

    Article  CAS  Google Scholar 

  386. Samanta D, Galaktionova D, Gemen J, Shimon LJW, Diskin-Posner Y, Avram L, Král P, Klajn R (2018) Reversible chromism of spiropyran in the cavity of a flexible coordination cage. Nat Commun 9:641. https://doi.org/10.1038/s41467-017-02715-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Kohl-Landgraf J, Braun M, Özçoban C, Gonçalves DPN, Heckel A, Wachtveitl J (2012) Ultrafast dynamics of a spiropyran in water. J Am Chem Soc 134:14070–14077. https://doi.org/10.1021/ja304395k

    Article  CAS  PubMed  Google Scholar 

  388. Xue R, Zhang X, Tian J (2018) Synthesis of water-soluble spiropyran-modified poly(acrylic acid) micelles and their optical behaviors. J Photopolym Sci Technol 31:739–746. https://doi.org/10.2494/photopolymer.31.739

    Article  CAS  Google Scholar 

  389. Zou X, Xiao X, Zhang S, Zhong J, Hou Y, Liao L (2018) A photo-switchable and thermal-enhanced fluorescent hydrogel prepared from N-isopropylacrylamide with water-soluble spiropyran derivative. J Biomater Sci Polym Ed 29:1579–1594. https://doi.org/10.1080/09205063.2018.1475942

    Article  CAS  PubMed  Google Scholar 

  390. Guo T, Wu J, Gao H, Chen Y (2017) Covalent functionalization of multi-walled carbon nanotubes with spiropyran for high solubility both in water and in non-aqueous solvents. Inorg Chem Commun 83:31–35. https://doi.org/10.1016/j.inoche.2017.06.002

    Article  CAS  Google Scholar 

  391. Moldenhauer D, Werner JPF, Strassert CA, Gröhn F (2019) Light-responsive size of self-assembled spiropyran-lysozyme nanoparticles with enzymatic function. Biomacromol 20:979–991. https://doi.org/10.1021/acs.biomac.8b01605

    Article  CAS  Google Scholar 

  392. Li G, Wang H, Zhu Z, Fan J-B, Tian Y, Meng J, Wang S (2019) Photo-irresponsive molecule-amplified cell release on photoresponsive nanostructured surfaces. ACS Appl Mater Interfaces 11:29681–29688. https://doi.org/10.1021/acsami.9b11957

    Article  CAS  PubMed  Google Scholar 

  393. Putri RM, Fredy JW, Cornelissen JJ, Koay MS, Katsonis N (2016) Labelling bacterial nanocages with photo-switchable fluorophores. ChemPhysChem 17:1815–1818. https://doi.org/10.1002/cphc.201600013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Chen L, Wu J, Schmuck C, Tian H (2014) A switchable peptide sensor for real-time lysosomal tracking. Chem Commun 50:6443–6446. https://doi.org/10.1039/C4CC00670D

    Article  CAS  Google Scholar 

  395. Li J, Li X, Jia J, Chen X, Lv Y, Guo Y, Li J (2019) A ratiometric near-infrared fluorescence strategy based on spiropyran in situ switching for tracking dynamic changes of live-cell lysosomal pH. Dyes Pigm 116:433–442. https://doi.org/10.1016/j.dyepig.2019.03.060

    Article  CAS  Google Scholar 

  396. Lv G, Sun A, Wei P, Zhang N, Lana H, Yi T (2016) A spiropyran-based fluorescent probe for the specific detection of β-amyloid peptide oligomers in Alzheimer’s disease. Chem Commun 52:8865–8868. https://doi.org/10.1039/C6CC02741E

    Article  CAS  Google Scholar 

  397. Shao N, Jin J, Wang H, Zheng J, Yang R, Chan W, Abliz Z (2010) Design of bis-spiropyran ligands as dipolar molecule receptors and application to in vivo glutathione fluorescent probes. J Am Chem Soc 132:725–736. https://doi.org/10.1021/ja908215t

    Article  CAS  PubMed  Google Scholar 

  398. Heng S, Zhang X, Pei J, Abell AD (2017) A rationally designed reversible ‘turn-off’ sensor for glutathione. Biosensors 7:36. https://doi.org/10.3390/bios7030036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Shcherbatykh AA, Chernov’yantsVoloshinChernyshev MSNAAV (2022) Spiropyran 5,6′-dichloro-1,3,3-trimethylspiro[indoline-2,2′-2H-pyrano[3,2-h]quinoline] application as a spectorphotometric and fluorescent probe for glutathione and cysteine sensing. Chem Pap 76:5541–5550. https://doi.org/10.1007/s11696-022-02259-0

    Article  CAS  Google Scholar 

  400. Zhang H, Nian Q, Dai H, Wan X, Xu Q (2022) A nanofiber-mat-based solid-phase sensor for sensitive ratiometric fluorescent sensing and fine visual colorimetric detection of tetracycline. Food Chem 395:133597. https://doi.org/10.1016/j.foodchem.2022.133597

    Article  CAS  PubMed  Google Scholar 

  401. Shinohara M, Xu W, Kim S, Fukaminato T, Niidome T, Kurihara S (2022) Photo-control of cellular uptake by the selective adsorption of spiropyran derivatives on albumin. Chem Lett 51:594–597. https://doi.org/10.1246/cl.220082

    Article  CAS  Google Scholar 

  402. Pei JV, Heng S, De Ieso ML, Sylvia G, Kourghi M, Nourmohammadi S, Abell AD, Yool AJ (2019) Development of a photoswitchable lithium-sensitive probe to analyze nonselective cation channel activity in migrating cancer cells. Mol Pharmacol 95:573–583. https://doi.org/10.1124/mol.118.115428

    Article  PubMed  Google Scholar 

  403. Heng S, McDevitt CA, Kostecki R, Morey JR, Eijkelkamp BA, Ebendorff-Heidepriem H, Monro TM, Abell AD (2016) Microstructured optical fiber-based biosensors: reversible and nanoliter-scale measurement of zinc ions. ACS Appl Mater Interfaces 8:12727–12732. https://doi.org/10.1021/acsami.6b03565

    Article  CAS  PubMed  Google Scholar 

  404. Heng S, Reineck P, Vidanapathirana AK, Pullen BJ, Drumm DW, Ritter LJ, Schwarz N, Bonder CS, Psaltis PJ, Thompson JG, Gibson BC, Nicholls SJ, Abell AD (2017) Rationally designed probe for reversible sensing of zinc and application in cells. ACS Omega 2:6201–6210. https://doi.org/10.1021/acsomega.7b00923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  405. Li T, He X, Yu P, Mao L (2015) A bioinspired light-controlled ionic switch based on nanopipettes. Electroanalysis 27:879–883. https://doi.org/10.1002/elan.201400661

    Article  CAS  Google Scholar 

  406. Lerch MM, Hansen MJ, van Dam GM, Szymanski W, Feringa BL (2016) Emerging targets in photopharmacology. Angew Chem Int Ed 55:10978–10999. https://doi.org/10.1002/anie.201601931

    Article  CAS  Google Scholar 

  407. Zeng S, Zhang H, Shen Z, Huang W (2021) Photopharmacology of proteolysis-targeting chimeras: a new frontier for drug discovery. Front Chem 9:639176. https://doi.org/10.3389/fchem.2021.639176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Ozhogin IV, Zolotukhin PV, Tkachev VV, Pugachev AD, Kozlenko AS, Belanova AA, Aldoshin SM, Lukyanov BS (2021) Synthesis and study of new indoline spiropyran and its derivative with α-lipoic acid exhibiting low cytotoxicity. Russ Chem Bull 70:1388–1393. https://doi.org/10.1007/s11172-021-3228-x

    Article  CAS  Google Scholar 

  409. Ozhogin IV, Tkachev VV, Kozlenko AS, Pugachev AD, Lukyanova MB, Aldoshin SM, Minkin VI, Lukyanov BS (2021) Comparative structural study and molecular docking of indoline spiropyrans containing α-lipoic acid fragment. Dokl Chem 498:104–111. https://doi.org/10.1134/S0012500821060021

    Article  CAS  Google Scholar 

  410. Shinohara M, Ashikaga Y, Xu W, Kim S, Fukaminato T, Niidome T, Kurihara S (2022) Photochemical OFF/ON cytotoxicity switching by using a photochromic surfactant with visible light irradiation. ACS Omega 7:6093–6098. https://doi.org/10.1021/acsomega.1c06473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Webb B, Chimenti M, Jacobson M, Barber DJ (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11:671–677. https://doi.org/10.1038/nrc3110

    Article  CAS  PubMed  Google Scholar 

  412. Barman S, Das J, Biswas S, Maitib TK, Pradeep SND (2017) A spiropyran–coumarin platform: an environment sensitive photoresponsive drug delivery system for efficient cancer therapy. J Mater Chem B 5:3940–3944. https://doi.org/10.1039/C7TB00379J

    Article  CAS  PubMed  Google Scholar 

  413. Hammarson M, Andersson J, Li S, Lincoln P, Andréasson J (2010) Molecular AND-logic for dually controlled activation of a DNA-binding spiropyran. Chem Commun 46:7130–7132. https://doi.org/10.1039/C0CC01682A

    Article  CAS  Google Scholar 

  414. Andersson J, Li S, Lincoln P, Andréasson J (2008) Photoswitched DNA-binding of a photochromic spiropyran. J Am Chem Soc 130:11836–11837. https://doi.org/10.1021/ja801968f

    Article  CAS  PubMed  Google Scholar 

  415. Rastogi SK, Zhao Z, Gildner MB, Shoulders BA, Velasquez TL, Blumenthal MO, Wang L, Li X, Hudnall TW, Betancourt T, Du L, Brittain WJ (2021) Synthesis, optical properties and in vitro cell viability of novel spiropyrans and their photostationary states. Tetrahedron 80:131854. https://doi.org/10.1016/j.tet.2020.131854

    Article  CAS  Google Scholar 

  416. Rad JK, Mahdavian AR, Khoei S, Shirvalilou S (2018) Enhanced photogeneration of reactive oxygen species and targeted photothermal therapy of C6 glioma brain cancer cells by folate-conjugated gold-photoactive polymer nanoparticles. ACS Appl Mater Interfaces 10:19483–19493. https://doi.org/10.1021/acsami.8b05252

    Article  CAS  Google Scholar 

  417. Jonsson F, Beke-Somfai T, Andréasson J, Nordén B (2013) Interactions of a photochromic spiropyran with liposome model membranes. Langmuir 29:2099–2103. https://doi.org/10.1021/la304867d

    Article  CAS  PubMed  Google Scholar 

  418. Son S, Shin E, Kim B-S (2014) Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery. Biomacromol 15:628–634. https://doi.org/10.1021/bm401670t

    Article  CAS  Google Scholar 

  419. Ghani M, Heiskanen A, Thomsen P, Alm M, Emnéus J (2021) Molecular-gated drug delivery systems using light-triggered hydrophobic-to-hydrophilic switches. ACS Appl Bio Mater 4:1624–1631. https://doi.org/10.1021/acsabm.0c01458

    Article  CAS  PubMed  Google Scholar 

  420. Sana B, Finne-Wistrand A, Pappalardo D (2022) Recent development in near infrared light-responsive polymeric materials for smart drug-delivery systems. Mater Today Chem 25:100963. https://doi.org/10.1016/j.mtchem.2022.100963

    Article  CAS  Google Scholar 

  421. Catania R, Onion D, Russo E, Zelzer M, Mantovani G, Huett A, Stolnik S (2022) A mechanoresponsive nano-sized carrier achieves intracellular release of drug on external ultrasound stimulus. RSC Adv 12:16561–16569. https://doi.org/10.1039/D2RA02307E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Avagliano D, Sánchez-Murcia PA, González L (2020) Spiropyran meets guanine quadruplexes: isomerization mechanism and DNA binding modes of quinolizidine-substituted spiropyran probes. Chemistry 26:13039–13045. https://doi.org/10.1002/chem.202001586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Velema WA, Hansen MJ, Lerch MM, Driessen AJM, Szymanski W, Feringa BL (2015) Ciprofloxacin-photoswitch conjugates: a facile strategy for photopharmacology. Bioconjug Chem 26:2592–2597. https://doi.org/10.1021/acs.bioconjchem.5b00591

    Article  CAS  PubMed  Google Scholar 

  424. Luo Y, Wang C, Peng P, Hossain M, Jiang T, Fu W, Liao Y, Su M (2013) Visible light mediated killing of multidrug-resistant bacteria using photoacids. J Mater Chem B 1:997–1001. https://doi.org/10.1039/C2TB00317A

    Article  CAS  PubMed  Google Scholar 

  425. Ishikawa H, Uemura N, Saito R, Yoshida Y, Mino T, Kasashima Y, Sakamoto M (2019) Chiral symmetry breaking of spiropyrans and spirooxazines by dynamic enantioselective crystallization. Chem Eur J 25:9758–9763. https://doi.org/10.1002/chem.201901889

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation; project 0852-2020-00-19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia S. Kozlenko.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlenko, A.S., Ozhogin, I.V., Pugachev, A.D. et al. A Modern Look at Spiropyrans: From Single Molecules to Smart Materials. Top Curr Chem (Z) 381, 8 (2023). https://doi.org/10.1007/s41061-022-00417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00417-2

Keywords

Navigation