Skip to main content

Properties and Applications of Indolinooxazolidines as Photo-, Electro-, and Acidochromic Units

  • Chapter
  • First Online:
Photon-Working Switches

Abstract

The aim of this chapter was to introduce the readers to indolinooxazolidines (IndOxa), a new family of molecular switches. First, in a short historical account their evolution is followed from their first appearance in the 1970s until today. The second section concentrates on the general structural features of the indolinooxazolidine motif, which are closely related to those of the spiropyrans. In the core of their chemistry lies the oxazolidine ring opening that is discussed in the following. Owing to the facility of the very same ring opening, they show chromophoric properties and can be addressed using different stimuli, such as light irradiation, change in electrical potential and pH. For this reason, the last three sections are devoted to provide a general understanding on their photo-, electro-, and acidochromic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fritzsche J (1867) CR Acad Sci II(C):69

    Google Scholar 

  2. Bouas-Laurent H, Durr H (2001) Organic photochromism. Pure Appl Chem 73(4):639

    Article  CAS  Google Scholar 

  3. Baker EH, Tompkins FC, Fahim HA, Fleifel AM, Bergmann F, Kalmus A, Fischer E, Hirshberg Y, Arnstein HRV, Ward ER, Day LA, Bradley RS, Tadros W, Kamel M, Bailey AS, Bates DH, Ing HR, Warne MA, Neale E, Williams LTD, Henbest HB, Sharpe AG, Lamberton AH, Hart EP, Bunton CA, Halevi EA, Thurston JP, Walker J, Robinson RA, Mann FG, Smith BB, Hammick DL, Roe AM, Peat S, Whelan WJ, Thomas GJ (1952) Notes. J Chem Soc, p. 4518

    Google Scholar 

  4. Klajn R (2014) Spiropyran-based dynamic materials. Chem Soc Rev 43(1):148

    Article  CAS  Google Scholar 

  5. Lukyanov BS, Lukyanova MB (2005) Spiropyrans: synthesis, properties, and application. Chem Heterocycl Compd 41(3):281

    Article  CAS  Google Scholar 

  6. Ono J, Osada C, Kosuge K (1970) Photochromic spiro compounds. U.K. Patent GB 1186987

    Google Scholar 

  7. Schmitt E (1972) Basic indole dyes. Germany Patent DE2064882

    Google Scholar 

  8. Shachkus AA, Degutis YA, Urbonavichyus AG (1989) Synthesis and study of 5a,6-dihydro-12H-indolo[2,1-b][1, 3]-benzoxazines. Chem Heterocycl Compd 25(5):562

    Article  Google Scholar 

  9. Boehmke G, Schmitt E (1972) β-Hydroxyalkylated hydrazone dyestuffs. Germany Patent DE2122038

    Google Scholar 

  10. Schmitt E (1972) Indolenine dyes. Germany Patent DE2064881

    Google Scholar 

  11. Schmitt E (1972) Oxazoloindoles and their basic dye derivatives. Germany Patent DE2060614

    Google Scholar 

  12. Raue R, Kuhlthau HP (1981) Cationic alkylhydrazone dyes and their dye bases. Germany Patent US4376728

    Google Scholar 

  13. Zaitseva EL, Prokhoda AL, Kurkovskaya LN, Shifrina RR, Kardash NS, Drapkina DA, Krongauz VA (1973) Photochromy of organic substances. VI. Preparation of N-methacryloylhydroxyethyl derivatives of indoline spiropyrans. Khim Geterotsik l(10):1362

    Google Scholar 

  14. Hayami M, Torikoshi S (1976) Color-changing compounds. DE2541666A1

    Google Scholar 

  15. Kawami S, Yoshioka H, Nakatsu K, Okazaki T, Hayami M (1987) X-ray structures of electrochromic compounds. Colorless 3,3-dimethyl-2-(p-dimethylaminostyryl)indolino-[1,2-b]oxazoline and colored 2-(p-dimethylaminostyryl)-1-hydroxyethyl-3,3-dimethylindolinium bromide. Chem Lett 16(4):711

    Article  Google Scholar 

  16. Electrochromic display devices (1985). JP60057323A

    Google Scholar 

  17. Electrochromic display elements (1985). JP60057322A

    Google Scholar 

  18. Yamashita T, Tsuchiya S, Okazaki Y, Fujita H (1990) Guest-host liquid-crystal display device. JP02179618A

    Google Scholar 

  19. Sertova N, Nunzi JM, Petkov I, Deligeorgiev T (1998) Photochromism of styryl cyanine dyes in solution. J Photoch Photobio A 112(2,3):187

    Google Scholar 

  20. Minkin VI (2004) Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds. Chem Rev 104(5):2751

    Article  CAS  Google Scholar 

  21. Castet F, Ducasse L, Champagne B, Sanguinet L, Pozzo JL, Adamietz F, Rodriguez V (2005) Experimental and theoretical determination of the first-order hyperpolarizability of photo- and acidochromic indolino [2,1-b]oxazolidines. Synthetic Metals 155(2):393

    Google Scholar 

  22. Sanguinet L, Pozzo J-L, Rodriguez V, Adamietz F, Castet F, Ducasse L, Champagne B (2005) Acido- and phototriggered NLO properties enhancement. J Phys Chem B 109(22):11139

    Article  CAS  Google Scholar 

  23. Bertelson RC, Maeda S (1999) In: Crano JC, Guglielmetti RJ (eds) Organic photochromic and thermochromic compounds: main photochromic families, vol 1. Kluwer Academic Publishers, New York, p 17

    Google Scholar 

  24. Guglielmetti R (2003) 4n + 2 Systems: spiropyrans. In: Bouas-Laurent H, Dürr H (eds) Photochromism. Molecules and systems. Elsevier, Amsterdam, p 420

    Google Scholar 

  25. Sevez G (2009) Conception, synthèse et étude de nouveaux switches multimodulables. Thesis, Université Bordeaux 1

    Google Scholar 

  26. Bartnik R, Lesniak S, Mloston G, Zielinski T, Gebicki K (1990) Cationic dye derivatives of 1-(2-hydroxyethyl)-2-styryl-3,3-dimethyl-3H-indole. Chem Stos 34(3–4):325

    CAS  Google Scholar 

  27. Mançois F, Pozzo J-L, Pan J, Adamietz F, Rodriguez V, Ducasse L, Castet F, Plaquet A, Champagne B (2009) Two-way molecular switches with large nonlinear optical contrast. Chem-Eur J 15(11):2560

    Article  Google Scholar 

  28. Szalóki G, Sanguinet L (2015) Silica-mediated synthesis of indolinooxazolidine-based molecular switches. J Organ Chem 80(8):3949

    Article  Google Scholar 

  29. Sheng L, Li M, Zhu S, Li H, Xi G, Li Y-G, Wang Y, Li Q, Liang S, Zhong K, Zhang SX-A (2014) Hydrochromic molecular switches for water-jet rewritable paper. Nat Commun, vol 5

    Google Scholar 

  30. Kropp PJ, Daus KA, Tubergen MW, Kepler KD, Wilson VP, Craig SL, Baillargeon MM, Breton GW (1993) Surface-mediated reactions. 3. Hydrohalogenation of alkenes. J Am Chem Soc 115(8):3071

    Article  CAS  Google Scholar 

  31. Plos G (2007) Use of a composition comprising a styryl or imine type dye for coloring keratin fibers. FR2888747A1

    Google Scholar 

  32. Plos G (2008) Hair dye composition comprising a styryl or imine type dye and a thiol compound. WO2008043968A2

    Google Scholar 

  33. Plos G, Daubresse N (2009) Process for dyeing of keratin fibers by means of a disulfide/thiol styryl or imine type compound. FR2918667A1

    Google Scholar 

  34. Hirasawa Y (2010) Treatment of hair by styryl or imine compounds in the presence of organic or inorganic acids and zinc salts. WO2010128214A1

    Google Scholar 

  35. Qi QK, Fang XF, Liu YF, Zhou P, Zhang YM, Yang B, Tian WJ, Zhang SXA (2013) A TPE-oxazoline molecular switch with tunable multi-emission in both solution and solid state. RSC Adv 3(38):16986

    Article  CAS  Google Scholar 

  36. Li SH, Shang YL, Zhao EG, Kwok RTK, Lam JWY, Song YL, Tang BZ (2015) Color-tunable and highly solid emissive AIE molecules: synthesis, photophysics, data storage and biological application. J Mater Chem C 3(14):3445

    Article  CAS  Google Scholar 

  37. Yuan WZ, Chen S, Lam JWY, Deng C, Lu P, Sung HHY, Williams ID, Kwok HS, Zhang Y, Tang BZ (2011) Towards high efficiency solid emitters with aggregation-induced emission and electron-transport characteristics. Chem Commun 47(40):11216

    Article  CAS  Google Scholar 

  38. Zhao Z, Chen S, Chan CYK, Lam JWY, Jim CKW, Lu P, Chang Z, Kwok HS, Qiu H, Tang BZ (2012) A facile and versatile approach to efficient luminescent materials for applications in organic light-emitting diodes. Chem Asian J 7(3):484

    Article  CAS  Google Scholar 

  39. Zhao N, Li M, Yan Y, Lam JWY, Zhang YL, Zhao YS, Wong KS, Tang BZ (2013) A tetraphenylethene-substituted pyridinium salt with multiple functionalities: synthesis, stimuli-responsive emission, optical waveguide and specific mitochondrion imaging. J Mater Chem C 1(31):4640

    Article  CAS  Google Scholar 

  40. Zhao N, Yang Z, Lam JWY, Sung HHY, Xie N, Chen S, Su H, Gao M, Williams ID, Wong KS, Tang BZ (2012) Benzothiazolium-functionalized tetraphenylethene: an AIE luminogen with tunable solid-state emission. Chem Commun 48(69):8637

    Article  CAS  Google Scholar 

  41. Zhang X, Sheng L, Li M (2013) Novel repeatable water writing paper. CN103434309A

    Google Scholar 

  42. Petkov I, Charra F, Nunzi JM, Deligeorgiev T (2004) Photo- and thermoinduced ring opening reaction of 2[(1,3,3-trimethylindoline-2(1H)-yliden)propen-1-yl]-3,3-dimethylindolino[1,2-b]-oxazolidine in polymer films. Cent Eur J Chem 2(2):290

    CAS  Google Scholar 

  43. Petkov I, Charra F, Nunzi JM, Deligeorgiev T (1999) Photochemistry of 2-[(1,3,3-trimethylindoline-2(1H)-ylidene)propen-1-yl]-3,3-dimethylindolino[1,2-b]-oxazolidine in solution. J Photoch Photobio A 128(1–3):93

    Article  CAS  Google Scholar 

  44. Coe BJ (1999) Molecular materials possessing switchable quadratic nonlinear optical properties. Chem A Eur J 5(9):2464

    Article  CAS  Google Scholar 

  45. Castet F, Rodriguez V, Pozzo JL, Ducasse L, Plaquet A, Champagne B (2013) Design and characterization of molecular nonlinear optical switches. Acc Chem Res 46(11):2656

    Article  CAS  Google Scholar 

  46. Sekkat Z (2002) 8-Photoisomerization effects in organic nonlinear optics: photo-assisted poling and depoling and polarizability switching. In: Knoll ZS (ed) Photoreactive organic thin films. Academic Press, San Diego, p 271

    Chapter  Google Scholar 

  47. Irie M, Fukaminato T, Matsuda K, Kobatake S (2014) Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev 114(24):12174

    Article  CAS  Google Scholar 

  48. Boixel J, Guerchais V, Le Bozec H, Jacquemin D, Amar A, Boucekkine A, Colombo A, Dragonetti C, Marinotto D, Roberto D, Righetto S, De Angelis R (2014) Second-order NLO switches from molecules to polymer films based on photochromic cyclometalated platinum(II) complexes. J Am Chem Soc 136(14):5367

    Google Scholar 

  49. Mancois F, Rodriguez V, Pozzo JL, Champagne B, Castet F (2006) Theoretical design of molecular photo- and acido-triggered non-linear optical switches. Chem Phys Lett 427(1–3):153

    Article  CAS  Google Scholar 

  50. Mancois F, Pozzo JL, Pan J, Adamietz F, Rodriguez V, Ducasse L, Castet F, Plaquet A, Champagne B (2009) Two-way molecular switches with large nonlinear optical contrast. Chem Eur J 15(11):2560

    Article  CAS  Google Scholar 

  51. Andreasson J, Pischel U (2010) Smart molecules at work-mimicking advanced logic operations. Chem Soc Rev 39(1):174

    Article  CAS  Google Scholar 

  52. Mrozek T, Görner H, Daub J (2001) Multimode-photochromism based on strongly coupled dihydroazulene and diarylethene. Chem Eur J 7(5):1028

    Article  CAS  Google Scholar 

  53. Mrozek T, Daub J, Gorner H (1999) Towards multifold cycloswitching of biphotochromes: investigation on a bond-fused dihydroazulene/vinylheptafulvene and dithienylethene/dihydrothienobenzothiophene. Chem Commun 16:1487

    Article  Google Scholar 

  54. Choi H, Ku B-S, Keum S-R, Ook Kang S, Ko J (2005) Selective photoswitching of a dyad with diarylethene and spiropyran units. Tetrahedron 61(15):3719

    Article  CAS  Google Scholar 

  55. Andréasson J, Pischel U, Straight SD, Moore TA, Moore AL, Gust D (2011) All-photonic multifunctional molecular logic device. J Am Chem Soc 133(30):11641

    Article  Google Scholar 

  56. Szalóki G, Sevez G, Berthet J, Pozzo J-L, Delbaere S (2014) A simple molecule-based octastate switch. J Am Chem Soc 136(39):13510

    Article  Google Scholar 

  57. Sevez G, Gan J, Delbaere S, Vermeersch G, Sanguinet L, Levillain E, Pozzo JL (2010) Photochromic performance of a dithienylethene-indolinooxazolidine hybrid. J Photoch Photobio A 9(2):131

    Article  CAS  Google Scholar 

  58. Jacquemin D, Perpete EA, Maurel F, Perrier A (2011) Photochromic properties of a dithienylethene-indolinooxazolidine switch: a theoretical investigation. Comput Theor Chem 963(1):63

    Article  CAS  Google Scholar 

  59. Zhi JF, Baba R, Fujishima A (1996) An electrochemical study of some spirobenzopyran derivatives in dimethylformamide. An electrochemical study of some spirobenzopyran derivatives in dimethylformamide, vol 100(11):1802

    Google Scholar 

  60. Preigh MJ, Stauffer MT, Lin FT, Weber SG (1996) Anodic oxidation mechanism of a spiropyran. J Chem Soc Faraday Trans 92(20):3991

    Article  CAS  Google Scholar 

  61. Ivashenko O, van HJT, Rudolf P, Feringa BL, Browne WR (2013) Oxidative electrochemical aryl C–C coupling of spiropyrans. Chem Commun 49(60):6737

    Google Scholar 

  62. Campredon M, Giusti G, Guglielmetti R, Samat A, Gronchi G, Alberti A, Benaglia M (1993) Radical ions and germyloxyaminoxyls from nitrospiro indoline-naphthopyrans -a combined electrochemical and EPR study. J Chem Soc Perk T 2(11):2089

    Article  Google Scholar 

  63. Hadji R, Szaloki G, Aleveque O, Levillain E, Sanguinet L (2015) The stepwise oxidation of indolino[2,1-b]oxazolidine derivatives. J Electroanal Chem 749:1

    Article  CAS  Google Scholar 

  64. Bunce NJ, Pilon P, Ruzo LO, Sturch DJ (1976) Electron transfer on photolysis of 1-chloronaphthalene in alkane solvents. J Org Chem 41(18):3023

    Article  CAS  Google Scholar 

  65. Ohashi M, Tsujimoto K (1983) Amine assisted photodechlorination of 4-chlorobiphenyl. a comment on the mechanism. Chem Lett 12(4):423

    Google Scholar 

  66. Chesta CA, Cosa JJ, Previtali CM (1986) The N,N-dimethylaniline-photosensitized dechlorination of chlorobenzenes. J Photochem 32(2):203

    Google Scholar 

  67. Szaloki G, Aleveque O, Pozzo JL, Hadji R, Levillain E, Sanguinet L (2015) Indolinooxazolidine: a versatile switchable unit. J Phys Chem B 119(1):307

    Article  CAS  Google Scholar 

  68. Bondu F, Hadji R, Szaloki G, Aleveque O, Sanguinet L, Pozzo J-L, Cavagnat D, Buffeteau T, Rodriguez V (2015) Huge electro-/photo-/acido-induced second-order nonlinear contrasts from multiaddressable indolinooxazolodine. J Phys Chem 119(22):6758

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Sanguinet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Szalóki, G., Sanguinet, L. (2017). Properties and Applications of Indolinooxazolidines as Photo-, Electro-, and Acidochromic Units. In: Yokoyama, Y., Nakatani, K. (eds) Photon-Working Switches. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56544-4_3

Download citation

Publish with us

Policies and ethics