Skip to main content

Advertisement

Log in

Mechanical and Tribological Behaviour of Ti2AlC Reinforced Hypereutectic Aluminium Alloy Matrix Composite Fabricated by Vacuum Assisted Induction Melting: Experimental and Theoretical Modelling

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The effects of vacuum induction melting and various concentrations (range of 0–8% by weight) of the titanium aluminium carbide (Ti2AlC) phase on the mechanical and tribological properties of Aluminium hypereutectic alloy (A390) were investigated. The addition of Ti2AlC particles enhances the strength and wear resistance of A390 alloy and also exerts a positive effect on its ductility, Moreover aerospace and automotive brake rotors deserved high strength and high wear resistance. The quick induction heating process could decrease the thermal energy degradation of the Ti2AlC particles into an Al alloy matrix alloy. The structural, microscopic and elemental analysis carried out to observe the hard precipitate components and reveal the various phases of the composites. The addition of Ti2AlC inclusions altered the morphology of eutectic silica to be globular and improved the grain size and evenly distributed within the A390 (Al-16Si) matrix. As the content of Ti2AlC reaches 8 wt% the strength and microhardness of the composites increased 74% and elongation decreased 2.1% (UTS = 285 MPa, H = 127VMH and EI = 1.1%). The tensile and fracture behaviour of the composites has been studied at 30 °C, 150 °C, and 250 °C. The Johnson-Cook model theoretically calculated the accurate flow stress of the Al-16Si/Ti2AlC composites. The negligible decrease in strength and ductility at 250 °C was observed. The root mean squared error (RMSE) and mean absolute percentage error (MAPE) values for the stress-strain curves prove the higher relationship between the theoretical and experimental values. The composites containing 8 wt% Ti2AlC reinforcement significantly enhanced the mechanical behaviour with a porosity < 2.23%.Therefore this composite exhibited appreciable tribological properties. It appeared that the wear mechanism of the composites abrasive wear at applied pressure 0.2 MPa with sliding distance 2000 m was prevailing. The ANN model addressing the parameters which influence the wear rate and friction coefficient as well as the experimental wear analysis of these composites was correlated precisely with the results of this model.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons

References

  1. A. Hekmat-Ardakan, X. Liu, F. Ajersch, X Grant Chen et al., Wear behaviour of hypereutectic Al–Si–Cu–Mg casting alloys with variable Mg contents. Wear 269(9–10), 684–692 (2010). https://doi.org/10.1016/j.wear.2010.07.007

    Article  CAS  Google Scholar 

  2. J.Y. Chang, G.H. Kim, I.G. Moon, C.S. Choi et al., Rare earth concentration in the primary Si crystal in rare earth added Al-21wt% Si alloy. Scripta Mater. 39(3), 307–314 (1998). https://doi.org/10.1016/S1359-6462(98)00168-7

    Article  CAS  Google Scholar 

  3. J. Chang, I. Moon, C. Choi et al., Refinement of cast microstructure of hypereutectic Al-Si alloys through the addition of rare earth metals. J. Mater. Sci. 33(20), 5015–5023 (1998). https://doi.org/10.1023/A:1004463125340

    Article  CAS  Google Scholar 

  4. C.L. Xu, Q.C. Jiang, Y.F. Yang, H.Y. Wang, J.G. Wang et al., Effect of Nd on primary silicon and eutectic silicon in hypereutectic Al–Si alloy. J. Alloy. Compd. 422(1–2), L1–L4 (2006). https://doi.org/10.1016/j.jallcom.2005.03.128

    Article  CAS  Google Scholar 

  5. J.-G. Jung, T.-Y. Ahn, Y.-H. Cho, S.-H. Kim, J.-M. Lee et al., Synergistic effect of ultrasonic melt treatment and fast cooling on the refinement of primary Si in a hypereutectic Al–Si alloy. Acta Mater. 144, 31–40 (2018). https://doi.org/10.1016/j.actamat.2017.10.039

    Article  CAS  Google Scholar 

  6. J.H. Jeon, J.H. Shin, D.H. Bae et al., Si phase modification on the elevated temperature mechanical properties of Al-Si hypereutectic alloys. Mater. Sci. Eng. A 748, 367–370 (2019). https://doi.org/10.1016/j.msea.2019.01.119

    Article  CAS  Google Scholar 

  7. V.S. Mann, O.P. Pandey et al., Influence of natural beach mineral corundum on the wear characteristics of LM30 aluminium alloy composites. Wear 477, 203801 (2021). https://doi.org/10.1016/j.wear.2021.203801

    Article  CAS  Google Scholar 

  8. S. Sharma, R. Gupta, O.P. Tarun Nanda, Pandey et al., Influence of two different range of sillimanite particle reinforcement on tribological characteristics of LM30 based composites under elevated temperature conditions. Mater. Chem. Phys. 258(2021), 123988 (2021). https://doi.org/10.1016/j.matchemphys.2020.123988

    Article  CAS  Google Scholar 

  9. M. Manoj, G.R. Jinu, J.S. Kumar et al., Effect of TiB2 particles on the morphological, mechanical and corrosion behaviour of Al7075 metal matrix composite produced using stir casting process. Int. J. Metal Cast. 58, 1–16 (2021). https://doi.org/10.1007/s40962-021-00696-3

    Article  CAS  Google Scholar 

  10. P. Wang, C. Gammer, F. Brenne, T. Niendorf, J. Eckert, S. Scudino et al., A heat treatable TiB2/Al-3.5Cu-1.5 Mg-1Si composite fabricated by selective laser melting: microstructure, heat treatment and mechanical properties. Compos. B Eng. 147, 162–168 (2018). https://doi.org/10.1016/j.compositesb.2018.04.026

    Article  CAS  Google Scholar 

  11. A.K. Yadav, V. Kumar, Ankit et al., Microstructure and mechanical properties of an In Situ Al 356-Mg2Si-TiB2 hybrid composite prepared by stir and cooling slope casting. Inter Metalcast 17, 740–752 (2023). https://doi.org/10.1007/s40962-022-00804-x

    Article  CAS  Google Scholar 

  12. B. Park, D. Lee, I. Jo, S.B. Lee, S.K. Lee, S. Cho et al., Automated quantification of reinforcement dispersion in B4C/Al metal matrix composites. Compos. Part B Eng. 181, 107584 (2020). https://doi.org/10.1016/j.compositesb.2019.107584

    Article  CAS  Google Scholar 

  13. N. Li, C. Dong, C. Man, X. Li, D. Kong, Y. Ji, M. Ao, J. Cao, L. Yue, X. Liu, D. Min et al., Insight into the localized strain effect on micro-galvanic corrosion behavior in AA7075-T6 aluminum alloy. Corros. Sci. 180, 109174 (2021). https://doi.org/10.1016/j.corsci.2020.109174

    Article  CAS  Google Scholar 

  14. V.S. Mann, O.P. Pandey et al., Influence of two different corundum particle size ranges on the tribological properties of LM30 Aluminum Alloy/corundum composites at elevated temperatures. J. Mater. Eng. Perform. 32, 917–933 (2023). https://doi.org/10.1007/s11665-022-07147-y

    Article  CAS  Google Scholar 

  15. H.Z. Niu, X.J. Chen, Y.F. Chen, S. Zhao, G.H. Liu, D.L. Zhang et al., Microstructural stability, phase transformation and mechanical properties of a fully-lamellar microstructure of a Mo-modified high-Nb γ-TiAl alloy. Mater. Sci. Eng. A 784, 139313 (2020). https://doi.org/10.1016/j.msea.2020.139313

    Article  CAS  Google Scholar 

  16. Q. Wang, R. Chen, Y. Yang, J. Guo, S. Yanqing, H. Ding, F. Hengzhi et al., Effects of V and B, Y additions on the microstructure and creep behaviour of high-Nb TiAl alloys. J. Alloys Compd. 747, 640–647 (2018). https://doi.org/10.1016/j.jallcom.2018.03.055

    Article  CAS  Google Scholar 

  17. X.H. Wang, Y.C. Zhou et al., Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. J. Mater. Sci. Technol. 26(5), 385–416 (2010). https://doi.org/10.1016/S1005-0302(10)60064-3

    Article  Google Scholar 

  18. B.K. Show, D.K. Mondal, K. Biswas, J. Maity et al., Development of a novel 6351 Al–(Al4SiC4+ SiC) hybrid composite with enhanced mechanical properties. Mater. Sci. Eng. A 579, 136–149 (2013). https://doi.org/10.1016/j.msea.2013.04.105

    Article  CAS  Google Scholar 

  19. S. Gupta, T. Hammann, R. Johnson et al., Synthesis and characterization of novel al-matrix composites reinforced with ti3sic2 particulates. J. of Mater. Eng. Perform. 24, 1011–1017 (2015). https://doi.org/10.1007/s11665-014-1330-z

    Article  CAS  Google Scholar 

  20. W.J. Wang, V. Gauthier-Brunet, G.P. Bei, G. Laplanche, J. Bonneville, A. Joulain, S. Dubois et al., Powder metallurgy processing and compressive properties of Ti3AlC2/Al composites. Mater. Sci. Eng., A 530, 168–173 (2011). https://doi.org/10.1016/j.msea.2011.09.068

    Article  CAS  Google Scholar 

  21. J. Lapin, K. Kamyshnykova et al., Processing, microstructure and mechanical properties of in-situ Ti3Al+ TiAl matrix composite reinforced with Ti2AlC particles prepared by centrifugal casting. Intermetallics 98, 34–44 (2018). https://doi.org/10.1016/j.intermet.2018.04.012

    Article  CAS  Google Scholar 

  22. W. Chen, W. Yu, P. Zhang et al., Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlNx MAX phase. Int J Miner Metall Mater 29, 1406–1412 (2022). https://doi.org/10.1007/s12613-022-2427-2

    Article  CAS  Google Scholar 

  23. H. Wenqiang, Z. Huang, Y. Wang, X. Li, H. Zhai, Y. Zhou, L. Chen et al., Layered ternary MAX phases and their MX particulate derivative reinforced metal matrix composite: a review. J. Alloys Compd. 856, 157313 (2021). https://doi.org/10.1016/j.jallcom.2020.157313

    Article  CAS  Google Scholar 

  24. Y. Bai, X. He, C. Zhu, G. Chen et al., Microstructures, electrical, thermal, and mechanical properties of bulk Ti2AlC synthesized by self-propagating high-temperature combustion synthesis with pseudo hot isostatic pressing. J. Am. Ceram. Soc. 95(1), 358–364 (2012). https://doi.org/10.1111/j.1551-2916.2011.04934.x

    Article  CAS  Google Scholar 

  25. J. Cao, J. Liu, X. Song, X. Lin, J. Feng et al., Diffusion bonding of TiAl intermetallic and Ti3AlC2 ceramic: interfacial microstructure and joining properties. Mater. Design 1980–2015(56), 115–121 (2014). https://doi.org/10.1016/j.matdes.2013.10.074

    Article  CAS  Google Scholar 

  26. Z. Huang, J. Bonneville, H. Zhai, V. Gauthier-Brunet, S. Dubois et al., Microstructural characterization and compression properties of TiC0. 61/Cu (Al) composite synthesized from Cu and Ti3AlC2 powders. J. Alloy. Compd. 602, 53–57 (2014). https://doi.org/10.1016/j.jallcom.2014.02.159

    Article  CAS  Google Scholar 

  27. Y. Sun, C. Zhou, Z. Zhao, W. Gaohui et al., High plasticity achieved by spark plasma sintering method in aluminum matrix composites reinforced with Ti2AlC particles. Mater. Character. 177, 111204 (2021). https://doi.org/10.1016/j.matchar.2021.111204

    Article  CAS  Google Scholar 

  28. Abou Bakr Elshalakany, T. A. Osman, A. Khattab, B. Azzam, M. Zaki, "Microstructure and Mechanical Properties of MWCNTs Reinforced A356 Aluminum Alloys Cast Nanocomposites Fabricated by Using a Combination of Rheocasting and Squeeze Casting Techniques", Journal of Nanomaterials, vol. 2014, Article ID 386370, 14 pages, 2014. https://doi.org/10.1155/2014/386370.

  29. K. Wilson, E.V. Barrera, Y Bayazitoglu et al., Processing of titanium single-walled carbon nanotube metal-matrix composites by the induction melting method. J. Compos. Mater. 44(9), 1037–1048 (2010). https://doi.org/10.1177/0021998310367263

    Article  CAS  Google Scholar 

  30. N. Kotkunde, A.D. Deole, A.K. Gupta, S.K. Singh et al., Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures. Mater. Design 55, 999–1005 (2014). https://doi.org/10.1016/j.matdes.2013.10.089

    Article  CAS  Google Scholar 

  31. S. Ahmadifard et al., Microstructure, tribological and mechanical properties of Al7075/Ti3AlC2 MAX-phase surface composite produced by friction stir processing. Vacuum 155, 134–141 (2018). https://doi.org/10.1016/j.vacuum.2018.06.002

    Article  CAS  Google Scholar 

  32. M.T. Agne, B. Anasori, M.W. Barsoum, Reactions between Ti2AlC, B4C, and Al and phase equilibria at 1000 °C in the Al-Ti-BC Quaternary system. J. Phase Equilib. Diffus. 36, 169–182 (2015). https://doi.org/10.1007/s11669-015-0371-9

    Article  CAS  Google Scholar 

  33. Z.I. Zaki, A.A. Francis, In situ TiC/Al3Ti intermetallic alloy composite produced by SHS. Combust. Sci. Technol. 185(6), 943–952 (2013). https://doi.org/10.1080/00102202.2013.766605

    Article  CAS  Google Scholar 

  34. R. Benitez et al., Mechanical properties and microstructure evolution of Ti2AlC under compression in 25–1100 °C temperature range. Acta Mater. 189, 154–165 (2020). https://doi.org/10.1016/j.actamat.2020.02.057

    Article  CAS  Google Scholar 

  35. A.S. Verma, M.S. Cheema, S. Kant et al., Porosity study of developed Al–Mg–Si/Bauxite residue metal matrix composite using advanced stir casting process. Arab J Sci Eng 44, 1543–1552 (2019). https://doi.org/10.1007/s13369-018-3613-4

    Article  CAS  Google Scholar 

  36. P.R. Jadhav, B.R. Sridhar, M. Nagaral et al., Mechanical behavior and fractography of graphite and boron carbide particulates reinforced A356 alloy hybrid metal matrix composites. Adv Compos Hybrid Mater 3, 114–119 (2020). https://doi.org/10.1007/s42114-020-00143-7

    Article  CAS  Google Scholar 

  37. Y. Guo, Y. Liang, J. Lin, In situ synthesis of nano/micron Ti2AlC reinforced high-Nb TiAl composites: microstructure and mechanical properties. Intermetallics 159, 107937 (2023). https://doi.org/10.1016/j.intermet.2023.107937

    Article  CAS  Google Scholar 

  38. J. Cheng et al., Microstructure, mechanical and tribological properties of TiAl-based composites reinforced with high volume fraction of nearly network Ti2AlC particulates. J. Mater. Sci. Technol. 34(4), 670–678 (2018). https://doi.org/10.1016/j.jmst.2017.09.007

    Article  CAS  Google Scholar 

  39. Yue Sun et al., Microstructure and mechanical properties of Ti2AlC particle and in-situ TiAl3 reinforced pure Al composites. Mater. Sci. Eng. A 785, 139310 (2020). https://doi.org/10.1016/j.msea.2020.139310

    Article  CAS  Google Scholar 

  40. J. Lapin et al., Fracture behaviour of cast in-situ TiAl matrix composite reinforced with carbide particles. Mater. Sci. Eng., A 721, 1–7 (2018). https://doi.org/10.1016/j.jallcom.2017.10.074

    Article  CAS  Google Scholar 

  41. N.K. Chandla, S.K. Yashpal, M.M. Goud, C.S. Jawalkar et al., Experimental analysis and mechanical characterization of Al 6061/alumina/bagasse ash hybrid reinforced metal matrix composite using vacuum-assisted stir casting method. J. Compos. Mater. 54(27), 4283–4297 (2020). https://doi.org/10.1177/0021998320929417

    Article  CAS  Google Scholar 

  42. M.E. Turan, F. Aydin, Improved elevated temperature mechanical properties of graphene-reinforced pure aluminium matrix composites. Mater. Sci. Technol. 36(10), 1092–1103 (2020). https://doi.org/10.1080/02670836.2020.1753933

    Article  CAS  Google Scholar 

  43. Manikandan, R. T. V. Arjunan, "Studies on micro structural characteristics, mechanical and tribological behaviours of boron carbide and cow dung ash reinforced aluminium (Al 7075) hybrid metal matrix composite. Compos. Part B: Eng. 183, 107668 (2020). https://doi.org/10.1016/j.compositesb.2019.107668

    Article  CAS  Google Scholar 

  44. S.J. Chelladurai, Samuel et al., "Optimisation of dry sliding wear parameters of squeeze cast AA336 aluminium alloy: copper-coated steel wire-reinforced composites by response surface methodology. Int. J. Metalcast. 13, 354–366 (2019). https://doi.org/10.1007/s40962-018-0258-8

    Article  CAS  Google Scholar 

  45. R. Soundararajan et al., "Evaluation of microstructures, mechanical and dry-sliding wear performance of A356-(Fly Ash/SiCp) hybrid composites. Int. J. Metalcast. 16, 1–18 (2022). https://doi.org/10.1007/s40962-021-00731-3

    Article  CAS  Google Scholar 

  46. S. Gupta, M.W. Barsoum, On the tribology of the MAX phases and their composites during dry sliding: a review. Wear 271(9–10), 1878–1894 (2011). https://doi.org/10.1016/j.wear.2011.01.043

    Article  CAS  Google Scholar 

  47. A. Manochehrian et al., On the surface reinforcing of A356 aluminum alloy by nanolayered Ti3AlC2 MAX phase via friction stir processing. Surf. Coat. Technol. 377, 124884 (2019). https://doi.org/10.1016/j.surfcoat.2019.08.013

    Article  CAS  Google Scholar 

  48. N. Shahin, Sh. Kazemi, A. Heidarpour et al., Mechanochemical synthesis mechanism of Ti3AlC2 MAX phase from elemental powders of Ti, Al and C. Adv. Powder Technol. 27(4), 1775–1780 (2016). https://doi.org/10.1016/j.apt.2016.06.008

    Article  CAS  Google Scholar 

  49. S. Sharma, T. Nanda, O.P. Pandey, Effect of elevated temperatures and applied pressure on the tribological properties of LM30/sillimanite aluminium alloy composites. J. Compos. Mater. 53(11), 1521–1539 (2019). https://doi.org/10.1177/0021998318805203

    Article  CAS  Google Scholar 

  50. Z. Yazdani et al., A novel method for the fabrication of Al-matrix nanocomposites reinforced by mono-dispersed TiAl3 intermetallic via a three-step process of cold-roll bonding, heat-treatment and accumulative roll bonding. J. Alloy. Compd. 747, 217–226 (2018). https://doi.org/10.1016/j.jallcom.2018.03.017

    Article  CAS  Google Scholar 

  51. X.Y. Yang et al., Al matrix composites reinforced by high volume fraction of TiAl3 fabricated through combined accumulative roll-bonding processes. Mater. Sci. Eng., A 754, 309–317 (2019). https://doi.org/10.1016/j.msea.2019.03.076

    Article  CAS  Google Scholar 

  52. M. Raaft et al., Microstructural, mechanical and wear behavior of A390/graphite and A390/Al2O3 surface composites fabricated using FSP. Mater. Sci. Eng., A 528(18), 5741–5746 (2011). https://doi.org/10.1016/j.msea.2011.03.097

    Article  CAS  Google Scholar 

  53. I.S. El-Mahallawi, A.Y. Shash, A.E. Amer, Nanoreinforced cast Al-Si alloys with Al2O3, TiO2 and ZrO2 nanoparticles. Metals 5(2), 802–821 (2015). https://doi.org/10.3390/met5020802

    Article  Google Scholar 

  54. Raj, K. V., et al. "Evaluation of mechanical properties of A390 reinforced with boron carbide MMC." AIP Conference Proceedings. Vol. 2274. No. 1. AIP Publishing, 2020. https://doi.org/10.1063/5.0024160.

  55. M.M. Rahvard et al., Characterization of the graded distribution of primary particles and wear behavior in the A390 alloy ring with various Mg contents fabricated by centrifugal casting. Mater. Design 1980–2015(56), 105–114 (2014). https://doi.org/10.1016/j.matdes.2013.10.070

    Article  CAS  Google Scholar 

  56. J. Mohamadigangaraj, S. Nourouzi, H.J. Aval, "The effect of heat treatment and cooling conditions on friction stir processing of A390–10 wt% SiC aluminium matrix composite. Mater. Chem. Phys. 263, 124423 (2021). https://doi.org/10.1016/j.matchemphys.2021.124423

    Article  CAS  Google Scholar 

  57. G. Ma et al., Enhanced combination of strength and ductility in the semi solid rheocast hypereutectic AlSi alloy with the effect of in situ TiB2 particles. Mater. Character. 176, 111143 (2021). https://doi.org/10.1016/j.matchar.2021.111143

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to central workshop of NIT agartala for fabricating and forming the composite testing samples

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Biswas.

Ethics declarations

Conflict of interest

All authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keerthipalli, T., Aepuru, R. & Biswas, A. Mechanical and Tribological Behaviour of Ti2AlC Reinforced Hypereutectic Aluminium Alloy Matrix Composite Fabricated by Vacuum Assisted Induction Melting: Experimental and Theoretical Modelling. Inter Metalcast 18, 1173–1191 (2024). https://doi.org/10.1007/s40962-023-01115-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-023-01115-5

Keywords

Navigation