Skip to main content

Advertisement

Log in

Evaluation of Microstructures, Mechanical and Dry-Sliding Wear Performance of A356-(Fly Ash/SiCp) Hybrid Composites

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The present study was conducted to examine the physical, metallurgical, mechanical, and tribological behaviors of A356 alloy reinforced with fly ash (5, 10 wt%), and SiCp (2.5 wt%) hybrid composites. Three hybrid composites were synthesized and consolidated through a stir cum squeeze cast technique followed by solution treatment and aging. X-ray diffraction and microstructural evaluations were performed using an optical microscopy and a scanning electron microscopy. The microstructural results revealed pore-free, homogeneous dispersions and effective bonding of reinforcements in the matrix. The experimental bulk density of the A356-10wt% fly ash-2.5 wt% SiC hybrid composite exhibited lower value compared with other samples indicating lighter weight. The same sample produced Brinell hardness number of 90.35 ± 3.80 HB and ultimate strength of 329 MPa which was 1.28 times and 1.14 times higher than matrix respectively. The dry sliding wear test results showed that the wear rate and coefficient of friction started to increase with increasing applied load and sliding speed. The 10 wt% fly ash sample produced lower wear rate 1.42 × 10−3 mg/m at a load 10 N and sliding distance of 1000 m. Finally, the surface worn-out mechanisms were studied using SEM. The developed 10 wt% fly ash-based hybrid composite exhibited improved performances recommending to use in automotive and various structural parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

Availability of Data and Material

The experimental datasets obtained from this research work and the analyzed results during the current study are available from the corresponding author on reasonable request.

Abbreviations

A/Al:

Aluminum

AMCs:

Aluminum matrix composites

HMMCs:

Hybrid metal matrix composites

B4C:

Boron carbide

Al2O3 :

Aluminium oxide

SiC:

Silicon carbide

Gr:

Graphite

AIN:

Aluminium nitride

TiB2 :

Titanium boride

ZrO2 :

Zirconium oxide

°C:

Degree Celsius

ASTM:

American Society for Testing and Materials

SiO2 :

Silicon dioxide

Fe2O3 :

Iron oxide

Mg:

Magnesium

Ca:

Calcium

Na:

Sodium

K:

Potassium

References

  1. X. Liu, S. Jia, L. Nastac, Int. J. Met. 8, 51–58 (2014)

    CAS  Google Scholar 

  2. C.Y. Liu, B. Zhang, Z.Y. Ma, H.J. Jiang, W.B. Zhou, J. Alloys Compd. 772, 775–781 (2019)

    Article  CAS  Google Scholar 

  3. M. Asif, K. Chandra, P.S. Misra, J. Miner. Mater. Charact. Eng. 10, 1337–1344 (2011)

    Google Scholar 

  4. P.B. Madakson, D.S. Yawas, A. Apasi, Int. J. Eng. Sci. Technol. 4, 1190–1198 (2012)

    Google Scholar 

  5. M.O. Bodunrin, K.K. Alaneme, L.H. Chown, J. Mater. Res. Technol. 4, 434–445 (2015)

    Article  CAS  Google Scholar 

  6. K.K. Alaneme, P.A. Olubambi, J. Mater. Res. Technol. 2, 188–194 (2013)

    Article  Google Scholar 

  7. H. Tahiri, S.S. Mohamed, H.W. Doty, S. Valtierra, F.H. Samuel, Int. J. Met. 12, 343–361 (2018)

    CAS  Google Scholar 

  8. A.K. Kasar, N. Gupta, P.K. Rohatgi, P.L. Menezes, Jom 72, 2340–2351 (2020)

    Article  CAS  Google Scholar 

  9. P.K. Rohatgi, J.K. Kim, N. Gupta, S. Alaraj, A. Daoud, Compos. Part A Appl. Sci. Manuf. 37, 430–437 (2006)

    Article  Google Scholar 

  10. S. P. Dwivedi, S. Sharma, R. K. Mishra, Int. J. Manuf. Eng. 2014, 1–13

  11. S. P. Dwivedi, S. Sharma, R. K. Mishra, Microstructure and mechanical behavior of A356/SiC/Fly-ash hybrid composites produced by electromagnetic stir casting (Retraction of Vol 37, art no 57, 2015), (2020).

  12. X. Canute, M.C. Majumder, J. Eng. Sci. Technol. 13, 755–777 (2018)

    Google Scholar 

  13. A. Vencl, I. Bobic, S. Arostegui, B. Bobic, A. Marinković, M. Babić, J. Alloys Compd. 506, 631–639 (2010)

    Article  CAS  Google Scholar 

  14. A. Karthikeyan and S. Nallusamy, in International Journal of Engineering Research in Africa, Trans Tech Publ, 2017, vol. 31, pp. 36–43

  15. H.R. Lashgari, S. Zangeneh, H. Shahmir, M. Saghafi, M. Emamy, Mater. Des. 31, 4414–4422 (2010)

    Article  CAS  Google Scholar 

  16. R. Suresh, M.P. Kumar, Int. J. Res. Eng. Technol. 1, 91–104 (2013)

    Google Scholar 

  17. R. Palanivel, I. Dinaharan, R.F. Laubscher, J.P. Davim, Mater. Des. 106, 195–204 (2016)

    Article  CAS  Google Scholar 

  18. B.A. Kumar, N. Murugan, I. Dinaharan, Trans. Nonferrous Met. Soc. China 24, 2785–2795 (2014)

    Article  CAS  Google Scholar 

  19. G. Karthikeyan, G.R. Jinu, Trans. FAMENA 39, 89–98 (2015)

    Google Scholar 

  20. P. Sharma, D. Khanduja, S. Sharma, J. Mater. Res. Technol. 5, 29–36 (2016)

    Article  Google Scholar 

  21. R. Soundararajan, S. Sivasankaran, F.A. Al-Mufadi, M. Akilesh, P.R. Elango, Mater. Res. Express 6, 96572 (2019)

    Article  CAS  Google Scholar 

  22. V.S. Ayar, M.P. Sutaria, Development and Characterization of In Situ AlSi5Cu3/TiB2 Composites. Int. J. Met. 14, 59–68. https://doi.org/10.1007/s40962-019-00328-x (2020)

  23. R.K. Uyyuru, M.K. Surappa, S. Brusethaug, Wear 260, 1248–1255 (2006)

    Article  CAS  Google Scholar 

  24. N. Radhika, R. Subramanian, S. V. Prasat, B. Anandavel, Ind. Lubr. Tribol. 64, 359–366

  25. H. Ghandvar, S. Farahany, M.H. Idris, Tribol. Trans. 61, 88–99 (2018)

    Article  CAS  Google Scholar 

  26. I. A. Alkadir, L. S. Salim, Eng. Technol. J. 26, 301–310

  27. V.S. Aigbodion, S.B. Hassan, Mater. Sci. Eng. A 447, 355–360 (2007)

    Article  Google Scholar 

  28. A. Mohammed Razzaq, D. L. Majid, M. R. Ishak, U. M. Basheer, Metals (Basel), 2017, 7, 477.

  29. M.S. Kumar, M. Vasumathi, S.R. Begum, S.M. Luminita, S. Vlase, C.I. Pruncu, J. Mater. Res. Technol. 15, 1201–1216 (2021)

    Article  CAS  Google Scholar 

  30. B. Vinod, S. Ramanathan, M. Anandajothi, SN Appl. Sci. 1, 1–15 (2019)

    Article  CAS  Google Scholar 

  31. C. Wang, J. Liu, H. Du, A. Guo, Ceram. Int. 38, 4395–4400 (2012)

    Article  CAS  Google Scholar 

  32. U. Aybarç, O. Ertuğrul, M.Ö. Seydibeyoğlu, Int. J. Met. 15, 638–649 (2021)

    Google Scholar 

  33. R. Gecu, A. Karaaslan, Tribol. Lett. 65, 1–15 (2017)

    Article  CAS  Google Scholar 

  34. S. Sivasankaran, K. R. Ramkumar, H. R. Ammar, F. A. Al-Mufadi, A. S. Alaboodi and O. M. Irfan, J. Mater. Process. Technol. https://doi.org/10.1016/j.jmatprotec.2021.117063.

  35. A. Gnanavelbabu, K. T. S. Surendran, S. Kumar, Process Optimization and Studies on Mechanical Characteristics of AA2014/Al2O3 Nanocomposites Fabricated Through Ultrasonication Assisted Stir–Squeeze Casting. Int. Met., 2021, 1–24. https://doi.org/10.1007/s40962-021-00634-3 (2021)

  36. R. Gecü, A. Karaaslan, Tribol. Trans. 62, 249–261 (2019)

    Article  Google Scholar 

  37. D. M. Shinde, P. Sahoo, Influence of Speed and Sliding Distance on the Tribological Performance of Submicron Particulate Reinforced Al-12Si /1.5 Wt% B4C Composite Int. J. Met., 2021, 1–20. https://doi.org/10.1007/s40962-021-00636-1 (2021)

  38. R. Gecu, A. Karaaslan, Int. J. Met. 13, 641–652 (2019)

    CAS  Google Scholar 

  39. K. Nithesh, M. C. Gowrishankar, R. Nayak, S. Sharma, J. Mater. Res. Technol. 15, 4272–4292

  40. V. Verma, R.C. Cozza, V. Cheverikin, A. Kondratiev, R. Penchaliah, SN Appl Sci. 3, 1–13 (2021)

    Google Scholar 

  41. N. Radhika, J. Sasikumar, J.L. Sylesh, R. Kishore, J. Mater. Res. Technol. 9, 1578–1592 (2020)

    Article  CAS  Google Scholar 

  42. H. Xie, Y. Cheng, S. Li, J. Cao, C.A.O. Li, Trans. Nonferrous Met. Soc. China 27, 336–351 (2017)

    Article  CAS  Google Scholar 

  43. M. Zolfaghari, M. Azadi, M. Characterization of High-Cycle Bending Fatigue Behaviors for Piston Aluminum Matrix SiO2 Nano-composites in Comparison with Aluminum–Silicon Alloys. Azadi, Int. J. Met. 15, 152–168 https://doi.org/10.1007/s40962-020-00437-y (2021).

Download references

Author information

Authors and Affiliations

Authors

Contributions

RS: Conceptualization, Methodology, Formal Analysis; AS: Investigation, writing—original draft preparation; SS: Data curation, Writing-review and editing; GS: Methodology, Formal analysis; SK: Data curation, and conceptualization.

Corresponding author

Correspondence to S. Sivasankaran.

Ethics declarations

Conflict of Interest

The authors declare no financial or commercial conflict of interest.

Ethics Approval

The submitted work is original and is not published elsewhere in any form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soundararajan, R., Sathishkumar, A., Sivasankaran, S. et al. Evaluation of Microstructures, Mechanical and Dry-Sliding Wear Performance of A356-(Fly Ash/SiCp) Hybrid Composites. Inter Metalcast 16, 2079–2096 (2022). https://doi.org/10.1007/s40962-021-00731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00731-3

Keywords

Navigation