Skip to main content

Advertisement

Log in

Influence of Two Different Corundum Particle Size Ranges on the Tribological Properties of LM30 Aluminum Alloy/Corundum Composites at Elevated Temperatures

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This aim of the present study is to develop highly wear resistant composite for brake rotor applications. Composites with corundum particle size ranges of fine (< 20 µm) and coarse (75-106 µm) with fine: coarse ratio as 1:4, 2:3, 3:2, and 4:1 were prepared. Composites containing different weight percentages (5-20 wt.%) at interval of 5 wt.% were prepared by stir casting route. DTG-TGA of corundum particles indicated the thermal stability of the particles till 1000 °C. Optical micrograph of composites indicated the refinement of primary silicon morphology. The addition of corundum particles to the matrix improved the hardness of the composites. High microhardness values at particle matrix interface indicates strong particle matrix bonding. This indicates strong particle matrix bonding. Further, corundum particles delayed the transition in wear mechanism from mild to severe wear. Increase in corundum wt.% reduced the wear rate and coefficient of friction of the composites. The lower wear rate was also observed for a higher concentration of the fine particles in the mix. Wear tracks and debris showed that abrasive wear mechanism was dominant for low contact pressure of 0.2 MPa. Whereas, for 1 MPa contact pressure the wear mechanism changed to adhesive wear mechanism. Further, for 1.8 MPa contact pressure, dominant material removal was due to delamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. G.B. Veeresh Kumar, C.S.P. Rao, and N. Selvaraj, Studies on mechanical and dry sliding wear of Al6061-SiC composites, Compos. Part B. Eng., 2012, 43, p 1185–1191. https://doi.org/10.1016/j.compositesb.2011.08.046

    Article  CAS  Google Scholar 

  2. P. Rohatgi, Cast aluminum-matrix composites for automotive applications, J. Metals, 1991, 43, p 10–15. https://doi.org/10.1007/BF03220538

    Article  CAS  Google Scholar 

  3. S. Sharma, T. Nanda, and O.P. Pandey, Effect of elevated temperatures and applied pressure on the tribological properties of LM30/sillimanite aluminium alloy composites, J. Compos. Mater., 2019, 53, p 1521–1539. https://doi.org/10.1177/0021998318805203

    Article  CAS  Google Scholar 

  4. A.J. Clegg, and A.A. Das, Wear of a hypereutectic aluminium-silicon alloy, Wear, 1977, 43, p 367–373. https://doi.org/10.1016/0043-1648(77)90132-6

    Article  CAS  Google Scholar 

  5. J. Hashim, The production of cast metal matrix composite by a modified stir casting method, J. Teknol., 2012 https://doi.org/10.11113/jt.v35.588

    Article  Google Scholar 

  6. Q. Hu, H. Zhao, and J. Ge, Microstructure and mechanical properties of (B4C+Al3Ti)/Al hybrid composites fabricated by a two-step stir casting process, Mater. Sci. Eng. A, 2016, 650, p 478–482. https://doi.org/10.1016/j.msea.2015.10.041

    Article  CAS  Google Scholar 

  7. M. Singh, D.P. Mondal, A.K. Jha, S. Das, and A.H. Yegneswaran, Preparation and properties of cast aluminium alloy-sillimanite particle composite, Compos. Part A. Appl. Sci. Manuf., 2001, 32, p 787–795. https://doi.org/10.1016/S1359-835X(00)00187-1

    Article  Google Scholar 

  8. S. Sharma, T. Nanda, and O.P. Pandey, Effect of particle size on dry sliding wear behaviour of sillimanite reinforced aluminium matrix composites, Ceram. Int., 2018, 44, p 104–114. https://doi.org/10.1016/j.ceramint.2017.09.132

    Article  CAS  Google Scholar 

  9. S. Sharma, T. Nanda, and O.P. Pandey, Effect of dual particle size (DPS) on dry sliding wear behaviour of LM30/sillimanite composites, Tribol. Int., 2018, 123, p 142–154. https://doi.org/10.1016/j.triboint.2017.12.031

    Article  CAS  Google Scholar 

  10. R. Gupta, S. Sharma, T. Nanda, and O.P. Pandey, Wear studies of hybrid AMCs reinforced with naturally occurring sillimanite and rutile ceramic particles for brake-rotor applications, Ceram. Int., 2020, 46, p 16849–16859. https://doi.org/10.1016/j.ceramint.2020.03.262

    Article  CAS  Google Scholar 

  11. C.A.V. Kumar, and J.S. Rajadurai, Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy, Trans. Nonferrous Metals Soc. China, 2016, 26, p 63–73. https://doi.org/10.1016/S1003-6326(16)64089-X

    Article  CAS  Google Scholar 

  12. M.G.A. Prasad, and N. Bandekar, Study of microstructure and mechanical behavior of aluminum/garnet/carbon hybrid metal matrix composites (HMMCs) fabricated by chill casting method, J. Mater. Sci. Chem. Eng., 2015, 3, p 1–8. https://doi.org/10.4236/msce.2015.33001

    Article  CAS  Google Scholar 

  13. A. Mazahery, and M.O. Shabani, Study on microstructure and abrasive wear behavior of sintered Al matrix composites, Ceram. Int., 2012, 38, p 4263–4269. https://doi.org/10.1016/j.ceramint.2012.02.008

    Article  CAS  Google Scholar 

  14. S. Das, S. Das, and K. Das, Ageing behavior of Al–4.5 wt.% Cu matrix alloy reinforced with Al2O3 and ZrSiO4 particulate varying particle size, J. Mater. Sci., 2006, 41, p 5402–5406. https://doi.org/10.1016/j.compscitech.2006.05.001

    Article  CAS  Google Scholar 

  15. K. Rahmani, G.H. Majzoobi, A. Sadooghi, and M. Kashfi, Mechanical and physical characterization of Mg-TiO2 and Mg-ZrO2 nanocomposites produced by hot-pressing, Mater. Chem. Phys., 2020, 246, p 122844. https://doi.org/10.1016/j.matchemphys.2020.122844

    Article  CAS  Google Scholar 

  16. N.C. Kaushik, and R.N. Rao, Effect of grit size on two body abrasive wear of Al 6082 hybrid composites produced by stir casting method, Tribol. Int., 2016, 102, p 52–60. https://doi.org/10.1016/j.triboint.2016.05.015

    Article  CAS  Google Scholar 

  17. K. Rahmani, and G.H. Majzoobi, The effect of compaction loading rate on hardness and wear resistance of Mg-B4C nanocomposite, Mater. Res. Expr., 2019, 6, 125081. https://doi.org/10.1088/2053-1591/ab5abd

    Article  CAS  Google Scholar 

  18. A. Baradeswaran, and A. Elaya Perumal, Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites, Compos. Part B Eng., 2013, 54, p 146–152. https://doi.org/10.1016/j.compositesb.2013.05.012

    Article  CAS  Google Scholar 

  19. K. Rahmani, A. Sadooghi, and S.J. Hashemi, The effect of Al2O3 content on tribology and corrosion properties of Mg-Al2O3 nanocomposites produced by single and double-action press, Mater. Chem. Phys., 2020, 250, p 123058. https://doi.org/10.1016/j.matchemphys.2020.123058

    Article  CAS  Google Scholar 

  20. A. Baradeswaran, and A. Elaya Perumal, Study on mechanical and wear properties of Al 7075/Al2O3/graphite hybrid composites, Compos. Part B Eng., 2014, 56, p 464–471. https://doi.org/10.1016/j.compositesb.2013.08.013

    Article  CAS  Google Scholar 

  21. K. Rahmani, A. Sadooghi, and M. Nokhberoosta, The effect of the double-action pressure on the physical, mechanical and tribology properties of Mg-WO3 nanocomposites, J. Mater. Res. Technol., 2019, 9, p 1104–1118. https://doi.org/10.1016/j.jmrt.2019.12.023

    Article  CAS  Google Scholar 

  22. P. Behera, Heavy minerals in beach sands of Gopalpur and Paradeep along Orissa coastline, east cost of India, Indian J. Mar. Sci., 2003, 32, p 172–174.

    Google Scholar 

  23. S. Ayyanar, A. Gnanavelbabu, K. Rajkumar, and P. Loganathan, Studies on high temperature wear and friction behaviour of AA6061/B4C/hBN hybrid composites, Metals Mater. Int., 2020 https://doi.org/10.1007/s12540-020-00710-z

    Article  Google Scholar 

  24. D.R.J. Selvam, I. Dinaharan, R.S. Rai, and P.M. Mashinini, Role of zirconium diboride particles on microstructure and wear behaviour of AA7075 in situ aluminium matrix composites at elevated temperature, Tribol. Mater. Surf. Interfaces, 2019, 13(4), p 230–238. https://doi.org/10.1080/17515831.2019.1661709

    Article  CAS  Google Scholar 

  25. M.A. Abdelgnei, M.Z. Omar, M.J. Ghazali, M.N. Mohammed, and B. Rashid, Dry sliding wear behaviour of thixoformed Al-5.7Si-2Cu-0.3Mg alloys at high temperatures using Taguchi method, Wear, 2020, 442–443, p 203134. https://doi.org/10.1016/j.wear.2019.203134

    Article  CAS  Google Scholar 

  26. S. Sharma, R. Gupta, T. Nanda, and O.P. Pandey, Influence of two different range of sillimanite particle reinforcement on tribological characteristics of LM30 based composites under elevated temperature conditions, Mater. Chem. Phys., 2021, 258, p 123988. https://doi.org/10.1016/j.matchemphys.2020.123988

    Article  CAS  Google Scholar 

  27. T.G. Río, A. Rico, M.A. Garrido, P. Poza, and J. Rodríguez, Temperature and velocity transitions in dry sliding wear of Al-Li/SiC composites, Wear, 2010, 268, p 700–707. https://doi.org/10.1016/j.wear.2009.11.006

    Article  CAS  Google Scholar 

  28. S.M.R. Mousavi Abarghouie, and S.M. Seyed Reihani, Investigation of friction and wear behaviors of 2024 Al and 2024 Al/SiCp composite at elevated temperatures, J. Alloys Compd., 2010, 501, p 326–332. https://doi.org/10.1016/j.jallcom.2010.04.097

    Article  CAS  Google Scholar 

  29. R.S.S. Raju, M.K. Panigrahi, R.I. Ganguly, and G. Srinivasa Rao, Tribological behaviour of al-1100-coconut shell ash (CSA) composite at elevated temperature, Tribol. Int., 2019, 129, p 55–66. https://doi.org/10.1016/j.triboint.2018.08.011

    Article  CAS  Google Scholar 

  30. S.Y. Pawar, and Y.R. Kharde, Tribological characterization of LM26/SiC/Ni.-Gr. Hybrid aluminium matrix composites (HAMCs) for high temperature applications, Mater. Today Proc., 2020, 37, p 793–800. https://doi.org/10.1016/j.matpr.2020.06.003

    Article  CAS  Google Scholar 

  31. H. Zhu, C. Jar, J. Song, J. Zhao, J. Li, and Z. Xie, High temperature dry sliding friction and wear behavior of aluminum matrix composites (Al 3Zrα-Al 2O 3)/Al, Tribol. Int., 2012, 48, p 78–86. https://doi.org/10.1016/j.triboint.2011.11.011

    Article  CAS  Google Scholar 

  32. A. Moharrami, A. Razaghian, M. Emamy, and R. Taghiabadi, Effect of Tool Pin Profile on the Microstructure and Tribological Properties of Friction Stir Processed Al-20 wt% Mg2Si Composite, J. Tribol., 2019, 141, p 122202–122211. https://doi.org/10.1115/1.4044672

    Article  CAS  Google Scholar 

  33. A. Moharrami, A. Razaghian, M. Paidar, M. Šlapáková, O.O. Ojo, and R. Taghiabadi, Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing, Mater. Chem. Phys., 2020, 250, p 123066. https://doi.org/10.1016/j.matchemphys.2020.123066

    Article  CAS  Google Scholar 

  34. A. Moharami, High-temperature tribological properties of friction stir processed Al-30Mg2Si composite, Mater. High Temp., 2020, 37, p 351–356. https://doi.org/10.1080/09603409.2020.1785792

    Article  CAS  Google Scholar 

  35. A. Moharami, A. Razaghian, B. Babaei, O.O. Ojo, and M. Šlapáková, Role of Mg2Si particles on mechanical, wear, and corrosion behaviors of friction stir welding of AA6061-T6 and Al-Mg2Si composite, J. Compos. Mater., 2020, 54, p 4035–4057. https://doi.org/10.1177/0021998320925528

    Article  CAS  Google Scholar 

  36. A.M. Al-Qutub, I.M. Allam, and M.A. Abdul Samad, Wear and friction of Al–Al2O3 composites at various sliding speeds, J. Mater. Sci., 2008, 43, p 5797–5803. https://doi.org/10.1007/s10853-008-2867-8

    Article  CAS  Google Scholar 

  37. S.V. Prasad, and R. Asthana, Aluminum metal-matrix composites for automotive applications:tribological considerations, Tribol. Lett., 2004, 17, p 445–453. https://doi.org/10.1023/B:TRIL.0000044492.91991.f3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for providing financial support under the Letter No. 22(0769)/18/EMR-II for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mann, V.S., Pandey, O.P. Influence of Two Different Corundum Particle Size Ranges on the Tribological Properties of LM30 Aluminum Alloy/Corundum Composites at Elevated Temperatures. J. of Materi Eng and Perform 32, 917–933 (2023). https://doi.org/10.1007/s11665-022-07147-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-022-07147-y

Keywords

Navigation