Skip to main content
Log in

Fusarium wilt of banana: sustainable management through deployment of antiapoptotic genes into the susceptible genomes

  • Review
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium wilt of banana is a highly damaging disease caused by Fusarium oxysporum f.sp. cubense (Foc), a soilborne pathogen affecting a wide range of cultivars from sub-tropical to tropical countries worldwide. The extinction of valuable genetic materials of banana cultivars is a realized threat faced by the banana scientists across the world. Pathogen spread and disease dynamics are complex and not well understood processes that make the disease management practices ineffective. With the advances in functional genomics, classes of genes that are antimicrobial, antiapoptotic and R genes have been introduced into susceptible genomes of banana for enhanced resistance. The R genes (RGA-2) identified in banana species are highly race-specific and lack durable resistance under field conditions. However, with the spread of Foc tropical race 4, a highly virulent race infecting banana cultivars, the utilization of broad spectrum genes can remarkably control the pathogen. Among the transgenes, the antiapoptotic genes convey a broad spectrum resistance and are highly effective in controlling Fusarium wilt disease caused by all races. Aspects of resistance, screening methods and future research are presented and discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill AH Jr, Riley RT (1994) Fumonisin and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiology 106:1085–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrios GN (2005) Plant Pathol 5th edn. New York: Elsevier Academic Press 922

  • Alfano JR, Collmer A (1996) Bacterial pathogens in plants: life up against the wall. Plant Cell 8:1683–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amagasa T, Paul RN, Heitholt JJ, Duke SO (1994) Physiological effects of cornexistinon Lemna pausicostata. Pesticide Biochemistry Physiology 49:37–52

    Article  CAS  Google Scholar 

  • Ambastha V, Tripathy BC, Tiwari BS (2015) Programmed cell death in plants: A chloroplastic connection. Plant Signaling and Behavior 10:2

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism oxidative stress and signal transduction. Annual Review Plant Biology 55:373–399

    Article  CAS  Google Scholar 

  • Arias JA (1985) Secretory organelles and mitochondrial alterations induced by fusaric acid in root cells of Zea mays. Physiology Plant Pathology 27:149–158

    Article  CAS  Google Scholar 

  • Arie T (2019) Fusarium diseases of cultivated plants, control, diagnosis, and molecular and genetic studies. Journal of Pesticide Science 44:275–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arinaitwe G, Remy S, Strosse H, Swennen R, Sági L (2004) Agrobacterium and particle bombardment-mediated transformation of a wide range of banana cultivars. In: Mohan Jain S, Swennen R (eds) Banana Improvement: Cellular, Molecular Biology and Induced Mutations. Science Publishers Inc, Enfield NH USA, pp 351–357

    Google Scholar 

  • Bailey BA (1995) Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum-Coca. Phytopathology 85:1250–1255

    Article  CAS  Google Scholar 

  • Balk J, Leaver CJ, McCabe PF (1999) Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Letter 463:151–154

    Article  CAS  Google Scholar 

  • Balmanno K, Cook SJ (2009) Tumour cell survival signalling by the ERK1/2 pathway. Cell Death and Differentiation 16:368–377

    Article  CAS  PubMed  Google Scholar 

  • Becker DK, Dugdale B, Smith MK, Harding RM, Dale JL (2000) Genetic transformation of Cavendish banana (Musa spp. AAA group) cv ‘Grand Nain’ via microprojectile bombardment. Plant Cell Report 19:229–234

    Article  CAS  Google Scholar 

  • Beckman CH (1987) The nature of wilt diseases of plants. St Paul Minn: APS Press ix 175

  • Beckman CH (1990) Host responses to the pathogen. In: Ploetz RC (ed) Fusarium Wilt of Banana. APS Press, St Paul MN USA, pp 93–105

    Google Scholar 

  • Belgrove A, Steinberg C, Viljoen A (2011) Evaluation of non-pathogenic Fusarium oxysporum and Pseudomonas fluorescens for Panama disease control. Plant Disease 95:951–959

    Article  CAS  PubMed  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors effectors and R genes: the new paradigm and a lifetime supply of questions. Annual Review of Phytopathology 45:399–436

    Article  CAS  PubMed  Google Scholar 

  • Bentley AR, Cromey MG, Farrokhi-Nejad R, Leslie JF, Summerell BA, Burgess LW (2006) Fusarium crown and root rot pathogens associated with wheat and grass stem bases on the South Island of New Zealand. Australasian Plant Pathology 35:495–502

    Article  Google Scholar 

  • Bhagwat B, Duncan EJ (1998) Mutation breeding of banana cv. Highgate (Musa spp., AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens. Scientia Horticulturae 73:11–22

    Article  CAS  Google Scholar 

  • Breusegem FV, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiology 141:384–390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai YM, Jia Y, Patrick G (2014) Endoplasmic reticulum stress-induced PCD and caspase-like activities involved. Frontiers in Plant Science 5:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Pi H, Chandrangsu P (2018) Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Scientific Reports 8:4360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castillo AG, Puig CG, Cumagun CJR (2019) Non-synergistic effect of Trichoderma harzianum and Glomus spp. in reducing infection of Fusarium wilt in banana. Pathogens 8:43

    Article  CAS  PubMed Central  Google Scholar 

  • Chae HJ, Kim HR, Xu C, Bailly-Maitre B, Krajewska M, Banares S, Cui J, Digicalioglu M, Ke N, Kitada S, Monosov E, Thomas M, Kress CL, Babendure JR, Tsien RY, Lipton SA, Reed JC (2004) BI-1 regulates an apoptosis pathway linked to endoplasmic reticulum stress. Molecular Cell 15:355–366

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti A, Ganapathi TR, Mukherjee PK, Bapat VA (2003) MSI-99 a magainin analogue imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216:587–596

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Dickman MB (2004) Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast targeted herbicides. Journal of Experimental Botany 55:2617–2623

    Article  CAS  PubMed  Google Scholar 

  • Chen YF, Chen W, Huang X, Hu X, Zhao JT, Gong Q, Li XJ, Huang XL (2013) Fusarium wilt-resistant lines of Brazil banana (Musa spp. AAA) obtained by EMS-induced mutation in a micro-cross-section cultural system. Plant Pathology 62:112–119

    Article  CAS  Google Scholar 

  • Chittarath K, Nguyen CH, Bailey WC, Zheng SJ, Mostert D, Viljoen A, Tazuba AF, Ocimati W, Kearsley E, Chi TY, Tho NT (2022) Geographical distribution and genetic diversity of the banana Fusarium wilt fungus in Laos and Vietnam. Journal of Fungi 8:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christou P (1996) Transformation technology. Trends in Plant Science 1:423–431

    Article  Google Scholar 

  • Clarke A, Radhika D, Roger D, Hurst JT, Hancock SJN (2000) "NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant Journal 5:667–677

    Article  Google Scholar 

  • Dale J, James A, Paul JY, Khanna H, Smith M, Peraza-Echeverria S, Garcia-Bastidas F, Kema G, Waterhouse P, Mengersen K, Harding R (2017) Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nature Communication 8:1496

    Article  CAS  Google Scholar 

  • Dale J, PaulJ-Y DugdaleB, Harding R (2017b) Modifying bananas: from transgenics to organics? Sustainability 9:333

    Article  CAS  Google Scholar 

  • Daneva A, Gao Z, Van Durme M, Nowack MK (2016) Functions and regulation of programmed cell death in plant development. Annual Review of Cell and Developmental Biology 32:441–468

    Article  CAS  PubMed  Google Scholar 

  • Dangl JL, Jones JD (2001) Plant pathogens and integrated defence response to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  • Dat JF, Pellinen R, Beeckman Tom, Van De Cotte B, Langebartels C, Kangasjärvi J, Inzé D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant Journal 33:621–632

    Article  CAS  Google Scholar 

  • de Freitas DS, Coelho MC, Souza MT Jr, Marques A, Ribeiro EB (2007) Introduction of the anti-apoptotic baculovirus p35 gene in passion fruit induces herbicide tolerance reduced bacterial lesions but does not inhibits passion fruit woodiness disease progress induced by cow pea aphid-borne mosaic virus (CABMV). Biotechnology Letter 29:79–87

    Article  CAS  Google Scholar 

  • de Pinto MC, Locato V, De Gara L (2012) Redox regulation in plant programmed cell death. Plant, Cell and Environment 35:234–244

    Article  PubMed  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proceedings of the National Academy of Sciences 98:13454–13459

    Article  CAS  Google Scholar 

  • DeLong A, Calderon-Urrea A, Dellaporta SL (1993) Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74:757–768

    Article  CAS  PubMed  Google Scholar 

  • Deltour P, França SC, Pereira OL, Cardoso I, De Neve S, Debode J (2017) Disease suppressiveness to Fusarium wilt of banana in an agroforestry system: influence of soil characteristics and plant community. Agriculture, Ecosystems and Environment 239:173–181

    Article  Google Scholar 

  • Desjardins AE, Hohn TM, McCormick SP (1993) Trichothecene biosynthesis in Fusarium species: chemistry, genetics and significance. Microbiology Reviews 57:595–604

    Article  CAS  Google Scholar 

  • Desjardins AE, McCormick SP, Appell M (2007) Structure-activity relationships of trichothecene toxins in an Arabidopsis thaliana leaf assay. Journal of Agricultural and Food Chemistry 55:6487–6492

    Article  CAS  PubMed  Google Scholar 

  • Dickman MB, de Figueiredo P (2013) Death be not proud-cell death control in plant fungal interactions. PLoS Pathogens 9:e1003542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickman MB, Park YK, Oltersdorf T, Li W, Clemente T, French R (2001) Abrogation of disease development in plants expressing animal antiapoptotic genes. Proceedings of the National Academy of Sciences USA 98:6957–6962

    Article  CAS  Google Scholar 

  • Din AS, Brahmbhatt H, Leber B, Andrews DW (2011) BH3-only proteins: Orchestrators of apoptosis. Biochimica et Biophysica Acta 1813:508–520

    Article  CAS  Google Scholar 

  • Doukhanina EV, Chen S, Zalm E, Godzik A, Reed J, Dickman MB (2006) Identification and functional characterization of the BAG protein family in Arabidopsis thaliana. Journal of Biological Chemistry 281:18793–18801

    Article  CAS  PubMed  Google Scholar 

  • Duronio V (2008) The life of a cell: apoptosis regulation by the PI3K/PKB pathway. The Biochemical Journal 415:33–344

    Article  Google Scholar 

  • Edel-Hermann V, Lecomte C (2019) Current status of Fusarium oxysporum formae speciales and races. Phytopathology 109:512–530

    Article  CAS  PubMed  Google Scholar 

  • Fendrych M, Van Hautegem T, Van Durme M, Olvera-Carrillo Y, Huysmans M, Karimi M, Lippens S, Guérin CJ, Krebs M, Schumacher K (2014) Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Current Biology 24:931–940

    Article  CAS  PubMed  Google Scholar 

  • Fortunato AA, Rodrigues FA, Baroni JCP, Soares GCB, Rodriguez AD, Pereira OL (2012) Silicon suppresses Fusarium wilt development in banana plants. Journal of Phytopathology 160:1–6

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signalling acclimation and practical implications. Antioxidants and Redox Signaling 11:861–905

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Penton CR, Ruan YZ, Shen ZZ, Xue C, Li R, Shen QR (2017) Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biology and Biochemistry 104:39–48

    Article  CAS  Google Scholar 

  • Gallois P, Makishima T, Hecht V, Despres B, Laudie M, Nishimoto T, Cooke R (1997) An Arabidopsis thaliana cDNA complementing a hamster apoptosis suppressor mutant. The Plant Journal 11:1325–1331

    Article  CAS  PubMed  Google Scholar 

  • Ganapathi TR, Higgs NS, Balint-Kurti PJ, Arntzen CJ, May GD, Van Eck JM (2001) Agrobacterium-mediated transformation of the embryogenic cell suspension of the banana cultivar Rasthali (AAB). Plant Cell Reports 20:157–162

    Article  CAS  PubMed  Google Scholar 

  • Gao C, Xing D, Li L, Zhang L (2008) Implication of reactive oxygen species and mitochondrial dysfunction in the early stages of plant programmed cell death induced by ultraviolet-C overexposure. Planta 227:755–767

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Bastidas F, Ordóñez N, Konkol J, Al-Qasim M, Naser Z, Abdelwali M, Salem N, Waalwijk C, Ploetz RC, Kema GHJ (2014) First report of Fusarium oxysporum f. sp. cubense tropical race 4 associated with Panama disease of banana outside Southeast Asia. Plant Disease 98:694–694

    Article  CAS  PubMed  Google Scholar 

  • Ge S, Kang Z, Li YA, Zhang F, Shen Y, Ge R, Huang Z (2016) Cloning and function analysis of BAG family genes in wheat. Functional Plant Biology 43:393–402

    Article  CAS  PubMed  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS One 7:e39557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2014) Host induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnology Journal 12:541–553

    Article  CAS  PubMed  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2014b) Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants. AoB Plants :6

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2014) Transgenic banana plants expressing a Stellaria media defensin gene (Sm-AMP-D1) demonstrate improved resistance to Fusarium oxysporum. Plant Cell Tissue and Organ Culture 119:247–255

    Article  CAS  Google Scholar 

  • Gleason C, Huang S, Thatcher LF, Foley RC, Anderson CR, Carroll AJ (2011) Mitochondrial complex II has a key role in mitochondrial-derived reactive oxygen species influence on plant stress gene regulation and defence. Proceedings of the National Academy of Sciences USA 108:10768–10773

    Article  CAS  Google Scholar 

  • Gnanasekaran P, Salique SM, Panneerselvam A, Umamagh-eswari K (2015) In vitro biological control of Fusarium oxysporum f. sp. cubense by using some Indian medicinal plants. Journal of Current Research and Academic Review 3:107–116

    CAS  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology 10:751–757

    Article  CAS  PubMed  Google Scholar 

  • Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signalling in disease resistance. Plant Physiology 124:21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg JT (1996) Programmed cell death: A way of life for plants. Proceedings of the National Academy of Sciences USA 93:12094–12097

    Article  CAS  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiology 6:201–211

    Article  CAS  Google Scholar 

  • Gunawardena AHLAN, John S, Greenwood NGD (2004) Programmed cell death remodels lace plant leaf shape during development. Plant Cell 1:60–73

    Article  CAS  Google Scholar 

  • Halloin JM, De Zoeten GA, Walker JC (1970) The effects of tentoxin on chlorophyll synthesis and plastid structure in cucumber and cabbage. Plant Physiology 45:310–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Nishimura M, Hara-Nishimura I (2006) A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis 11:905–911

    Article  CAS  PubMed  Google Scholar 

  • Hoeberichts FA, de Jong AJ, Woltering EJ (2005) Apoptotic-like cell death marks the early stages of gypsophila (Gypsophila paniculata) petal senescence. Postharvest Biology and Technology 35:229–236

    Article  CAS  Google Scholar 

  • Hwang SC, Ko WH (2004) Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan. Plant Disease 88:580–588

    Article  PubMed  Google Scholar 

  • Isbat M, Zeba N, Kim SR, Hong CB (2009) A Bax inhibitor-1 gene in Capsicum annuum is induced under various abiotic stresses and endows multi-tolerance in transformants tobacco. Journal of Plant Physiology 166:1685–1693

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa T, Watanabe N, Nagano M, Kawai-Yamada M, Lam E (2011) Bax inhibitor-1: a highly conserved endoplasmic reticulum-resident cell death suppressor. Cell Death and Differentiation 18:1271–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochemical Pharmacology 57:231–245

    Article  CAS  PubMed  Google Scholar 

  • Jacobs AT, Marnett LJ (2009) HSF1-mediated BAG3 expression attenuates apoptosis in 4-hydroxynonenal-treated colon cancer cells via stabilization of anti-apoptotic Bcl-2 proteins. International Journal of Biological Chemistry 284:9176–9183

    Article  CAS  Google Scholar 

  • Jia Y, McAdams SA, Bryan GT, Hershey HP, Valent B (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal 19:4004–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kacprzyk J, Daly CT, McCabe PF (2011) The botanical dance of death: programmed cell death in plants. Advances in Botanical Research 60:169–261

    Article  CAS  Google Scholar 

  • Kang CH, Jung WY, Kang YH, Kim JY, Kim DG, Jeong JC, Baek DW, Jin JB, Lee JY, Kim MO (2006) AtBAG6 a novel calmodulin-binding protein induces programmed cell death in yeast and plants. Cell Death and Differentiation 13:84–95

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Alok A, Shivani (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Functional and Integrative Genomics 18:89–99

    Article  CAS  PubMed  Google Scholar 

  • Kauss H, Jeblick W, Ziegler J, Krabler W (1994) Pre-treatment of parsley (Petroselinum crispum L.) suspension cultures with methyl jasmonate enhances elicitation of activated oxygen species. Plant Physiology 105:89–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai M, Pan L, Reed JC, Uchimiya H (1999) Evolutionally conserved plant homologue of the Bax Inhibitor-1 (BI-1) gene capable of suppressing Bax-induced cell death in yeast. FEBS Letter 464:143–147

    Article  CAS  Google Scholar 

  • Khanna H, Becker D, Kleidon J, Dale J (2004) Centrifugation assisted Agrobacterium tumefaciens mediated transformation (CAAT) of embryogenic cell suspensions of banana (Musa spp. Cavendish AAA and Lady finger AAB). Molecular Plant Breeding 14:239–252

    Article  CAS  Google Scholar 

  • Kim KS, Min JY, Dickman MB (2008) Oxalic acid is an elicitor of plant programmed cell death during Sclerotinia sclerotiorum disease development. Molecular Plant-Microbe Interactions 21:605–612

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Ahn JW, Jin UH, Choi D, Paek KH, Pai HS (2003) Activation of the programmed cell death pathway by inhibition of proteasome function in plants. International Journal of Biological Chemistry 278:19406–19415

    Article  CAS  Google Scholar 

  • Komarek M, Cadkova E, Chrastny V, Bordas F, Bollinger JC (2010) Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environment International 36:138–151

    Article  CAS  PubMed  Google Scholar 

  • Kovács G, Sági L, Jacon G, Arinaitwe G, Busogoro JP, Thiry E, Strosse H, Swennen R, Remy S (2013) Expression of a rice chitinase gene in transgenic banana (“Gros Michel”, AAA genome group) confers resistance to black leaf streak disease. Transgenic Research 22:117–130

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni VM, Ganapathi TR, Suprasanna P, Bapat VA (2007) In vitro mutagenesis in banana (Musa spp.) using gamma irradiation. In: Jain SM, Haggman H (eds) Protocols For Micropropagation of Woody Trees and Fruits. Springer, Netherlands, pp 543–559

    Chapter  Google Scholar 

  • Kuroyanagi M, Yamada K, Hatsugai N, Kondo M, Nishimura M, Hara-Nishimura I (2005) Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. Journal of Biological Chemistry 280:32914–32920

    Article  CAS  PubMed  Google Scholar 

  • Lam E (2004) Controlled cell death plant survival and development. Nature Reviews Molecular Cell Biology 5:305–315

    Article  CAS  PubMed  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Lee WS, Devonshire BJ, Hammond-Kosack KE, Rudd JJ, Kanyuka K (2015) Deregulation of plant cell death through disruption of chloroplast functionality affects asexual sporulation of Zymoseptoria tritici on wheat. Molecular Plant-Microbe Interactions 28:590–604

    Article  CAS  PubMed  Google Scholar 

  • Levine A, Tenhaken R, Dixon RA, Lamb CJ (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  CAS  PubMed  Google Scholar 

  • Li W, Dickman MB (2004) Abiotic stress induces apoptotic-like features in tobacco that is inhibited by expression of human Bcl-2. Biotechnology 26:87–95

    CAS  Google Scholar 

  • Lian J, Wang Z, Zhou S (2008) Response of endophytic bacterial communities in banana tissue culture plantlets to Fusarium wilt pathogen infection. Journal of General and Applied Microbiology 54:83e92

    Article  Google Scholar 

  • Lincoln JE, Richael C, Overduin B, Smith K, Bostock R, Gilchrist DG (2002) Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proceedings of the National Academy of Sciences USA 99:15217–15221

    Article  CAS  Google Scholar 

  • Liu J, Li Z, Wang Y, Xing D (2014) Overexpression of ALTERNATIVE OXIDASE1a alleviates mitochondria-dependent programmed cell death induced by aluminium phytotoxicity in Arabidopsis. Journal of Experimental Botany 65:4465–4478

    Article  CAS  PubMed  Google Scholar 

  • Liua JX, Howell SH (2010) Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell 22:2930–2942

    Article  CAS  Google Scholar 

  • Lorang JM, Carkaci-Salli N, Wolpert TJ (2004) Identification and characterization of victorin sensitivity in Arabidopsis thaliana. Molecular Plant-Microbe Interactions 17:577–582

    Article  CAS  PubMed  Google Scholar 

  • Lorang JM, Sweat TA, Wolpert TJ (2007) Plant disease susceptibility conferred by a “resistance” gene. Proceedings of the National Academy of Sciences USA 104:4861–4866

    Article  CAS  Google Scholar 

  • Lu P-P, Yu T-F, Zheng W-J, Chen M, Zhou Y-B, Chen J, Ma Y-Z, Xi Y-J, Xu Z-S (2018) The wheat Bax Inhibitor-1 protein interacts with an aquaporin TaPIP1 and enhances disease resistance in Arabidopsis. Frontiers of Plant Science 9:20

    Article  Google Scholar 

  • Magambo B (2012) Generation of transgenic banana (cv. Sukali Ndizi) resistance to Fusarium wilt. B Sc hn Queensland University of Technology Australia

  • Mahesh SK, Hua LIU, De-wen QIU (2012) The Role of radical burst in plant defense responses to necrotrophic fungi. Journal of Integrative Agriculture 11:1305–1312

    Article  CAS  Google Scholar 

  • Mahdavi F, Sariah M, Maziah M (2012) Expression of rice thaumatin-like protein gene in transgenic banana plants enhances resistance to Fusarium wilt. Applied Biochemistry and Biotechnology 166:1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Mahn A, Matzk A, Sautter C, Schiemann J (1995) Transient gene expressions in shoot apical meristems of sugarbeet seedlings after particle bombardment. Journal of Experimental Botany 46:1625–1628

    Article  CAS  Google Scholar 

  • Masuda D, Ishida M, Yamaguchi K, Yamaguchi I, Kimura M, Nishiuchi T (2007) Phytotoxic effects of trichothecenes on the growth and morphology of Arabidopsis thaliana. Journal of Experimental Botany 58:1617–1626

    Article  CAS  PubMed  Google Scholar 

  • Matsumura H, Nirasawa S, Kiba A, Urasaki N, Saitoh H, Ito M, Yamada K, Uchimiya H, Terauchi R (2003) Overexpression of Bax inhibitor suppresses the fungal elicitor-induced cell death in rice (Oryza sativa L.) cells. The Plant Journal 33:425–434

    Article  CAS  PubMed  Google Scholar 

  • Maxmen A (2019) CRISPR might be the banana’s only hope against a deadly fungus. Nature 574:15

    Article  CAS  PubMed  Google Scholar 

  • May GD, Afza R, Mason HS, Wieko A, Novak FJ, Arntzen CJ (1995) Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Nature Biotechnology 13:486–492

    Article  CAS  Google Scholar 

  • Maziah M, Sariah M, Sreeramanan S (2007) Transgenic banana Rasthali (AAB) with β-1,3-glucanase gene for tolerance to Fusarium wilt race1 disease via Agrobacterium-mediated transformation system. Plant Pathology Journal 6:271–282

    Article  CAS  Google Scholar 

  • Mengiste T (2012) Plant immunity to necrotrophs. Annual Review of Phytopathology 50:267–294

    Article  CAS  PubMed  Google Scholar 

  • Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology 10:311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RN, Bertioli DJ, Baurens FC (2008) Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acuminata Colla: Isolation, RFLP marker development and physical mapping. BMC Plant Biology 8:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitsuhara I, Malik KA, Miura M, Ohashi Y (1999) Animal cell-death suppressors Bcl-xL and Ced-9 inhibit cell death in tobacco plants. Current Biology 9:775–778

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Lam E (1996) Sacrifice in the face of foes: pathogen-induced programmed cell death in plants. Trends in Microbiology 4:10–15

    Article  CAS  PubMed  Google Scholar 

  • Mobius N, Hertweck C (2009) Fungal phytotoxins as mediators of virulence. Current Opinion in Plant Biology 12:390–398

    Article  PubMed  CAS  Google Scholar 

  • Mohandas S, Sowmya HD, Saxena AK, Meenakshi S, Thilaka Rani R, Mahmood R (2013) Transgenic banana cv. Rasthali (AAB, Silk gp) harbouring Ace-AMP1 gene imparts enhanced resistance to Fusarium oxysporum f.sp. cubense race 1. Scientia Horticulturae 164:392–399

    Article  CAS  Google Scholar 

  • Mohandas SR, Manjula RD, Rawal HC, Lakshmikantha SC, Ramachandra YL (2010) Evaluation of arbuscular mycorrhiza and other biocontrolagents in managing Fusarium oxysporum f.sp. cubense infection in banana cv Neypoovan. Biocontrol Science and Technology 20:165–181

    Article  Google Scholar 

  • Mondal R, Antony S, Roy S. Chattopadhyay SK (2021) Programmed Cell Death (PCD) in plant: molecular mechanism, regulation, and cellular dysfunction in response to development and stress. Intechopen :97940

  • Morel JB, Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death and Differentiation 4:671–683

    Article  CAS  PubMed  Google Scholar 

  • Mostert D, Molina AB, Daniells J, Fourie G, Hermanto C, Chao CP, Fabregar E, Sinohin VG, Masdek N, Thangavelu R, Li C, Yi G, Mostert L, Viljoen A (2017) The distribution and host range of the banana Fusarium wilt fungus Fusarium oxysporum f. sp. cubense, in Asia. PLoS ONE 12:e0181630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mumbanza FM, Kiggundu A, Tusiime G, Tushemereirwe WK, Nib-let C, Bailey A (2013) In vitro antifungal activity of synthetic dsRNA molecules against two pathogens of banana Fusarium oxysporum f.sp. cubense and Mycosphaerella fijiensis. Pest Management Science 69:1155–1162

    Article  CAS  PubMed  Google Scholar 

  • Naim F, Dugdale B, Kleidon J (2018) Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9. Transgenic Research 27:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nel B, Steinberg C, Labuschagne N, Viljoen A (2007) Evaluation of fungicides and sterilants for potential application in the management of Fusarium wilt of banana. Crop Protection 26:697–705

    Article  CAS  Google Scholar 

  • Nishiuchi T, Masuda D, Nakashita H, Ichimura K, Shinozaki K, Yoshida S, Kimura M, Yamaguchi I, Yamaguchi K (2006) Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but the activity differed significantly among their molecular species. Molecular Plant-Microbe Interactions 19:512–520

    Article  CAS  PubMed  Google Scholar 

  • Obara K, Kuriyama H, Fukuda H (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiology 125:615–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojcius DM, Zychlinsky A, Zheng LM, Young JD (1991) Ionophore-induced apoptosis: role of DNA fragmentation and calcium fluxes. Experimental Cell Research 197:43–49

    Article  CAS  PubMed  Google Scholar 

  • Pattison AB, Wright CL, Kukulies TL, Molina AB (2014) Ground cover management alters development alters development of Fusarium wilt symptoms in Ducasse bananas. Australasians Plant Pathology 43:465–476

    Article  Google Scholar 

  • Paul JY, Becker DK, Dickman MB, Harding RM, Khanna HK, Dale JL (2011) Apoptosis-related genes confer resistance to Fusarium wilt in transgenic ‘Lady Finger’ bananas. Plant Biotechnology Journal 9:1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Pei XW, Chen SK, Wen RM, Ye S, Huang JQ, Zhang YQ, Wang BS, Wang ZA, Jia SR (2005) Creation of transgenic banana expressing human lysozyme gene for Panama wilt resistance. International Journal of Plant Biology 47:971–977

    Article  CAS  Google Scholar 

  • Pei X, Li S, Jiang Y, Zhang Y, Wang Z, Jia S (2007) Isolation, characterization and phylogenetic analysis of the resistance gene analogues (RGAs) in banana (Musa spp.). Plant Science 172:1166–1174

    Article  CAS  Google Scholar 

  • Pemberton CL, Salmond GPC (2004) The Nep1-like proteins - a growing family of microbial elicitors of plant necrosis. Molecular Plant Pathology 5:353–359

    Article  CAS  PubMed  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensins gene in Arabidopsis. Plant Cell 10:2103–2113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peraza-Echeverria S, Dale JL, Harding RM, Smith MK, Collet C (2008) Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f.sp cubense race 4. Molecular Plant Breeding 22:565–579

    Article  CAS  Google Scholar 

  • Peristera R, Stephen H (2012) The oligo-saccharyl transferase subunits OST48, DAD1 and KCP2 function as ubiquitous and selective modulators of mammalian N-glycosylation. Journal of Cell Science 125:3474–3484

    Google Scholar 

  • Pietrowska E, Rozalska S, Kazmierczak A, Nawrocka J, Malolepsza U (2015) Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures-Botrytis cinerea interaction. Protoplasma 252:307–319

    Article  CAS  PubMed  Google Scholar 

  • Pillay M, Hartman J, Tenkouano A (2002) Bananas and plantains: future challenges in Musa breeding. In: Kang MS (ed) Crop improvement challenges in the twenty-first century. Food Products Press, New York, pp 223–252

    Google Scholar 

  • Ploetz RC (2015) Management of Fusarium wilt of banana: A review with special reference to tropical race 4. Crop Protection 73:7–15

    Article  CAS  Google Scholar 

  • Ploetz RC, Pegg KG (2000) Fusarium wilt. In: Jones DR (ed) Diseases of Banana Abacá and Enset. CABI Publishing, Wallingford, pp 143–159

    Google Scholar 

  • Poór P (2020) Efects of salicylic acid on the metabolism of mitochondrial reactive oxygen species in plants. Biomolecules 10:341

    Article  PubMed Central  CAS  Google Scholar 

  • Pozo OD, Lam E (2003) Expression of the baculovirus p35 protein in tobacco affects cell death progression and compromises N gene-mediated disease resistance response to Tobacco mosaic virus. Molecular Plant-Microbe Interactions 16:485–494

    Article  PubMed  Google Scholar 

  • Pusztahelyi T, Holb IJ, Pócsi I (2015) Secondary metabolites in fungus-plant interactions. Frontiers in Plant Science 6:573

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao J, Mitsuhara I, Yazaki Y, Sakano K, Gotoh Y, Miura M, Ohashi Y (2002) Enhanced resistance to salt, cold and wound stresses by overproduction of animal cell death suppressors Bcl-xL and Ced-9 in tobacco cells - their possible contribution through improved function of organella. Plant Cell Physiology 43:992–1005

    Article  CAS  PubMed  Google Scholar 

  • Rana RM, Dong S, Ali Z, Khan AI, Zhang HS (2012) Identification and characterization of the Bcl-2-associated athano gene (BAG) protein family in rice. African Journal of Biotechnology 11:88–99

    CAS  Google Scholar 

  • Raza W, Ling N, Zhang R, Huang Q, Xu Y, Shen Q (2016) Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Critical Reviews in Biotechnology 37:202–212

    Article  PubMed  Google Scholar 

  • Robson CA, Vanlerberghe GC (2002) Transgenic plant cells lacking mitochondrialalternative oxidase have increased susceptibility to mitochondria-dependent and-independent pathways of programmed cell death. Plant Physiology 129:1908–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers HJ (2005) Cell death and organ development in plants. Current Topics in Developmental Biology 71:225261

    Google Scholar 

  • Rogers HJ (2012) Is there an important role for reactive oxygen species and redox regulation during floral senescence? Plant, Cell and Environment 35:217–233

    Article  CAS  PubMed  Google Scholar 

  • Rojo E, Martın R, Carter C, Zouhar J, Pan S, Plotnikova J, Jin H, Paneque M, Sánchez-Serrano JJ, Baker B, Ausubel FM (2004) VPEγ exhibits a caspase-like activity that contributes to defense against pathogens. Current Biology 14:1897–1906

    Article  CAS  PubMed  Google Scholar 

  • Rossi FR, Krapp AR, Bisaro F, Maiale SJ, Pieckenstain FL, Carrillo N (2017) Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea. Plant Journal 92:761–773

    Article  CAS  Google Scholar 

  • Roux N, Toloza A, Dolezel J, Panis B, Jain SM, Swenner R (1999) Usefulness of embriogenic cell suspension for the induction and selection of mutants in Musa spp. Promusa 4:18–19

    Google Scholar 

  • Rutherford MA, Kangire (2005) A prospects for the management of Fusarium wilt of banana (Panama disease) in Africa. Review of IPM research activities Pathology 117–188

  • Sági L, Panis B, Remy S, Schoofs H, De Smet K, Swennen R, Cammue BP (1995) Genetic transformation of banana and plant in Musa spp via particle bombardment. Biotechnology 13:481–485

    PubMed  Google Scholar 

  • Sági L, Remy S, Panis B, Swennen R, Volckaert G (1994) Transient gene expression in electroporated banana (Musa spp., cv. “Bluggoe”, ABB group) protoplasts isolated from regenerable embryogenic cell suspensions. Plant Cell Reports 13:262–266

    Article  PubMed  Google Scholar 

  • Samadi L, Behboodi BS (2006) Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity cytochrome c and H2O2. Planta 225:223–234

    Article  CAS  PubMed  Google Scholar 

  • Saremi H, Okhovvat SM, Ashrafi SJ (2011) Fusarium diseases as the main soil borne fungal pathogen on plants and their control management with soil solarization in Iran. African Journal of Biotechnology 10:18391–18398

    Google Scholar 

  • Schindler T, Bergfeld R, Schopfer P (1995) Arabinogalactan proteins in maize coleoptiles: developmental relationship to cell death during xylem differentiation but not to extension growth. The Plant Journal 7:25–36

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Bielawski J, Mu J, Dong H, Teng C, Zhang J, Yang X, Tomishige N, Hanada K, Hannun YA, Zuo J (2007) Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Research 17:1030–1040

    Article  CAS  PubMed  Google Scholar 

  • Shibata D, Liu YG (2000) Agrobacterium-mediated plant transformation with large DNA fragments. Trends of Plant Science 5:354–357

    Article  CAS  Google Scholar 

  • Singh VK, Upadhyay RS (2014) Fusaric acid induced cell death and changes in oxidative metabolism of Solanum lycopersicum L. Botanical Studies 55:66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Srivastava R, Deng Y, Shah S, Rao AG, Howell SH (2013) BINDING PROTEIN Is a master regulator of the endoplasmic reticulum stress sensor/transducer bZIP28 in Arabidopsis. Plant Cell 25:1416–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stover RH (1990) Fusarium wilt of banana: some history and current status of the disease. In: Ploetz RC (ed) Fusarium Wilt of Banana. APS Press, St Paul, pp 1–7

    Google Scholar 

  • Stover RH, Simmonds NW (1987) Bananas third ed. Longmans London

  • Su H, Hwang S, Ko W (1986) Fusarial wilt of Cavendish bananas in Taiwan. Plant Disease 70:814–818

    Article  Google Scholar 

  • Subramanyam K, Sailaja KV, Srinivasulu M, Lakshmidevi K (2011) Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Reports 30:425–436

    Article  CAS  PubMed  Google Scholar 

  • Sun D, Lu X, Hu Y, Li W, Hong K, Mo Y, Cahill DM, Xie J (2013) Methyl jasmonate induced defense responses increase resistance to Fusarium oxysporum f. sp. cubense race 4 in banana. Scientia Horticulturae 164:484–491

    Article  CAS  Google Scholar 

  • Sunisha C, Sowmya HD, Usharani TR, Umesha M, Gopalkrishna HR, Saxena A (2019) Deployment of stacked antimicrobial genes in banana for stable tolerance against Fusarium oxysporum f.sp. cubense through genetic transformation. Molecular Biotechnology 62:8–17

    Article  CAS  Google Scholar 

  • Sunisha C, Sowmya HD, Usharani TR, Umesha M, Gopalkrishna HR, Sriram S (2020) Induction of Ced9 mediated anti-apoptosis in commercial banana cultivar Rasthali for stable resistance against Fusarium wilt. 3 Biotech 10:371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suprasanna P, Sidha M, Ganapathi TR (2008) Characterization of radiation induced and tissue culture derived dwarf types in banana by using SCAR marker. Australian Journal of Crop Science 1:47–52

    CAS  Google Scholar 

  • Teixeira L, Heck D, Nomura E, Vieira H, Dita M (2021) Soil attributes, plant nutrition, and Fusarium wilt of banana in São Paulo, Brazil. Tropical Plant Pathology 25:1–2

    Google Scholar 

  • Telles-Pupulin AR, Diniz SPSS, Bracht A, Ishii-Iwamoto EL (1996) Effect of fusaric acid on respiration in maize root mitochondria. Plant Biology 38:421–429

    CAS  Google Scholar 

  • Thomma B, Eggermont K, Penninckx I, Mauch-Mani BVR, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences USA 958:15107–15111

    Article  Google Scholar 

  • Tian J, Zhang X, Liang B, Li S, Wu Z (2010) Expression of Baculovirus Anti-Apoptotic Genes p35 and op-iap in Cotton (Gossypium hirsutum L.) Enhances Tolerance to Verticillium Wilt. PLoS ONE 5:e14218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ting ASY, Sariah M, Kadir J, Gurmit S (2009) Field evaluation of non-pathogenic Fusarium oxysporum isolates UPM31P1 and UPM39B3 for the control of Fusarium wilt in ‘Pisang Berangan’ (Musa AAA). Acta Horticulturae 828:139–144

    Article  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition and programmed cell death. Plant Physiology 128:1271–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA (2010) ROS in biotic interactions. Physiologia Plantarum 138:414–429

    Article  CAS  PubMed  Google Scholar 

  • Tripathi JN, Ntui VO, Ron M (2019) CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Communications Biology 2:46

    Article  PubMed  PubMed Central  Google Scholar 

  • Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Molecular Cell 6:961–967

    CAS  PubMed  Google Scholar 

  • Usharani TR, Sowmya HD, Sowmya S, Sunisha C, Dhamodhar P (2015) Sonication assisted Agrobacterium transformation of banana cv. Ney Poovan shoot tips with GUS reporter gene. Journal of Applied and Advanced Research 7:85–90

    Article  Google Scholar 

  • Van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends in Plant Science 10:117–122

    Article  PubMed  CAS  Google Scholar 

  • Viljoen A (2002) The status of Fusarium wilt (Panama disease) of banana in South Africa. South African Journal of Science 98:341–344

    Google Scholar 

  • Vleeshouwers VG, van Dooijeweert W, Govers F, Colo KS, LT, (2000) The hypersensitive response is associated with host and nonhost resistance to Phytophthora infestans. Planta 210:853–864

    Article  CAS  PubMed  Google Scholar 

  • Wagstaff C, Malcolm P, Rafiq A, Leverentz M, Griffiths G, Thomas B, Stead A, Rogers H (2003) Programmed cell death (PCD) processes begin extremely early in Alstroemeria petal senescence. New Phytologist 160:49–60

    Article  CAS  PubMed  Google Scholar 

  • Walters DR (2003) Polyamines and plant disease. Phytochemistry 64:97–107

    Article  CAS  PubMed  Google Scholar 

  • Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723–1733

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Li R, Ruan Y, Ou Y, Zhao Y, Shen Q (2015) Pineapple- banana rotation reduced the amount of Fusarium oxysporum more than maize- banana rotation mainly through modulating fungal communities. Soil Biology and Biochemistry 86:77–86

    Article  CAS  Google Scholar 

  • Wang GF, Li WQ, Li WY, Wu GL, Zhou CY, Chen KM (2013) Characterization of rice NADPH oxidase genes and their expression under various environmental conditions. International Journal of Molecular Sciences 14:9440–9458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang H, Li J, Bostock RM, Gilchrist DG (1996) Apoptosis: A Functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Tang C, Huang X, Li F, Chen X, Zhang G, Sun Y, Han D, Kang Z (2012) Wheat BAX inhibitor-1 contributes to wheat resistance to Puccinia striiformis. Journal of Experimental Botany 63:4571–4584

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Tang C, Zhang H, Xu JR, Liu B, Jie LV, Han D, Huang L, Kang Z (2011) TaDAD2, a negative regulator of programmed cell death, is important for the interaction between wheat and the stripe rust fungus. Molecular Plant-Microbe Interactions 24:79–90

    Article  CAS  PubMed  Google Scholar 

  • Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O’Donnell K (2002) Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenic Fusarium. Proceedings of the National Academy of Sciences USA 99:9278–9283

    Article  CAS  Google Scholar 

  • Watanabe N, Lam E (2009) BaxInhibitor-1, a conserved cell death suppressor is a key molecular switch downstream from a variety of biotic and abiotic stress signals in plants. International Journal of Molecular Sciences 10:3149–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijayanto T, Barker SJ, Wylie SJ, Gilchrist DG, Cowling WA (2009) Significant reduction of fungal disease symptoms in transgenic lupin (Lupinus angustifolius) expressing the anti-apoptotic baculovirus gene p35. Plant Biotechnology Journal 7:778–790

    Article  CAS  PubMed  Google Scholar 

  • Williams B, Dickman M (2008) Plant programmed cell death: can’t live with it; can’t live without it. Molecular Plant Pathology 9:531–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams B, Kabbage M, Britt R, Dickman MB (2010) AtBAG7, an Arabidopsis Bcl-2-associated athanogene, resides in the endoplasmic reticulum and is involved in the unfolded protein response. Proceedings of the National Academy of Sciences USA 107:6088–6093

    Article  CAS  Google Scholar 

  • Xu P, Rogers SJ, Roossinck MJ (2004) Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress. Proceedings of the National Academy of Sciences USA 101:15805–15810

    Article  CAS  Google Scholar 

  • Yan Q, Si J, Cui X, Peng H, Jing M, Chen X, Xing H, Dou D (2019) GmDAD1 a Conserved Defender Against Cell Death 1 (DAD1) from soybean positively regulates plant resistance against Phytophthora pathogens. Frontiers of Plant Science 10:107

    Article  Google Scholar 

  • Yao N, Tada Y, Sakamoto M, Nakayashiki H, Park P, Tosa Y, Mayama S (2002) Mitochondrial oxidative burst involved in apoptotic response in oats. Plant Journal 30:567–579

    Article  CAS  Google Scholar 

  • Yao N, Tada Y, Park P, Nakayashiki H, Tosa Y, Mayama S (2001) Novel evidence for apoptotic cell response and differential signals in chromatin condensation and DNA cleavage in victorin-treated oats. Plant Journal 28:13–26

    Article  CAS  Google Scholar 

  • Yip MK, Lee SN, Su KC, Lin YH, Chen TY, Feng TY (2011) An easy and efficient protocol in the production of pflp transgenic banana against Fusarium wilt. Plant Biotechnology Reports 5:245–254

    Article  Google Scholar 

  • Yoshinaga K, Arimura S, Niwa Y, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2005) Mitochondrial behavior in the early stages of ROS stress leading to cell death in Arabidopsis thaliana. Annals of Botany 96:337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeilinger S, Gupta VK, Dahms TE, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CKM, Nayak SC (2016) Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiology Reviews 40:182–207

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Mallik A, Zeng RS (2013) Control of Panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum Rottler): role of plant volatiles. Journal of Chemical Ecology 39:243–252

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant and Cell Physiology 49:1092–1111

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yuan L, Staehelin C, Li Y, Ruan J, Liang Z, Xie Z, Wang W, Xie J, Huang S (2019) The Lysin motif-containing receptor-like kinase 1 protein of banana is required for perception of pathogenic and symbiotic signals. New Phytologist 223:1530–1546

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Jing T, Qi D, Feng R, Duan Y, Chen Y (2017) Isolation and identification of Streptomyces lunalinharesii and its control effect on the banana Fusarium wilt disease. Acta Horticulturae Sinica 44:664–674

    Google Scholar 

  • Zhu Z, Tian Z, Li J (2021) A Streptomyces morookaensis strain promotes plant growth and suppresses Fusarium wilt of banana. Tropical Plant Pathology 46:175–185

    Article  Google Scholar 

  • Zurbriggen MD, Carrillo N, Tognetti VB, Melzer M, Peisker M, Hause B, Hajirezaei MR (2009) Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria. The Plant Journal 60:962–973

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to DBT-BIRAC for funding review-related research work. This is a part of Ph.D. dissertation work of the first author.

Author information

Authors and Affiliations

Authors

Contributions

Umesha M, Gopalkrishna H R and Megha Ganachari performed the literature search and wrote the manuscript. Dr. Sowmya H.D and Dr. C Sunisha critically revised the text. Dr. Usharani. T.R performed the final editing and formatting.

Corresponding author

Correspondence to T. R. Usharani.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umesha, M., Sowmya, H., Usharani, T. et al. Fusarium wilt of banana: sustainable management through deployment of antiapoptotic genes into the susceptible genomes. Trop. plant pathol. 47, 470–484 (2022). https://doi.org/10.1007/s40858-022-00500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-022-00500-5

Keywords

Navigation