Skip to main content
Log in

Fusarium wilt in banana: unraveling molecular aspects of host–pathogen interaction and resistance mechanism

  • Review Articles
  • Published:
Vegetos Aims and scope Submit manuscript

Abstract

Bananas and plantains (Musa spp.) are an important socio-economic fruit crop grown worldwide. Their production across the regions where they are grown, is largely hampered by pests and diseases. Fusarium wilt, also known as Panama wilt is a disastrous disease of bananas caused by the fungal pathogen Fusarium oxysporum f.sp. cubense (Foc). The fungus is classified into Foc race 1 (R1), Foc race 2, and Foc race 4 based on host specificity. Among these, race 1 and 4 have threatened the survival and existence of banana crop production. Although enormous attempts were made, including chemicals, biological control agents, and cultural methods, they were all found to be ineffective. Understanding the diversity of pathogens, their genome organization, effector molecules, the mechanism of infection, and the molecular basis of host defense through banana genome sequencing, gene expression studies, and proteomic profile analysis will help to formulate strategies to develop resistant cultivars and manage crop production. Further, the identification of genes involved in various aspects of resistance like early events of disease progression, signaling, pathogenicity, autophagy, cell wall strengthening, etc., would help in the genetic modification of bananas. Several transgenic approaches have recently been employed as tools for transferring resistance genes from wild relatives and gene editing techniques, which might serve as a newer strategy to develop resistant cultivars. Keeping this in mind, the present review summarises the molecular-level understanding of the Fusarium pathogen, the mechanism of resistance in bananas, and genetic modification studies for the generation of resistant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability and materials

Raw data are available upon request.

References

  • Ahmad F, Martawi NM, Poerba YS, de Jong H, Schouten H, Kema GH (2020) Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession. Theor Appl Genet 133:3409–3418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arinaitwe IK, Teo CH, Kayat F, Tumuhimbise R, Uwimana B, Kubiriba J, Swennen R, Harikrishna JA, Othman RY (2019) Evaluation of banana germplasm and genetic analysis of an F1 population for resistance to Fusarium oxysporum f. sp. cubense race 1. Euphytica 215(10):1–11

    Article  CAS  Google Scholar 

  • Brandes EW (1919) Banana wilt. University of Michigan

  • Carvalhais LC, Henderson J, Rincon-Florez VA, O’Dwyer C, Czislowski E, Aitken EA, Drenth A (2019) Molecular diagnostics of banana Fusarium Wilt targeting secreted-in-xylem genes. Front Plant Sci 10:547

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang W, Li H, Chen H, Qiao F, Zeng H (2020) NBS-LRR gene family in banana (Musa acuminata): genome-wide identification and responses to Fusarium oxysporum f. sp. cubense race 1 and tropical race 4. Eur J Plant Pathol 157:549–563

    Article  Google Scholar 

  • Chaturvedi S, Khan S, Usharani TR, Tiwari S (2021) Analysis of TCP transcription factors revealed potential roles in plant growth and Fusarium oxysporum f. sp. cubense tolerance in banana (cv. Rasthali). Appl Biochem Biotechnol. https://doi.org/10.21203/rs.3.rs-715375/v1

    Article  PubMed  Google Scholar 

  • Cheng C, Liu F, Sun X, Tian N, Mensah RA, Li D, Lai Z (2019) Identification of Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) responsive miRNAs in banana root. Sci Rep 9(1):1–16

    Article  Google Scholar 

  • Czislowski E, Fraser-Smith S, Zander M, O’Neill WT, Meldrum RA, Tran-Nguyen LTT (2017) Investigation of the diversity of effector genes in the banana pathogen, Fusarium oxysporum f. sp. cubense, revealsevidence of horizontal gene transfer. Mol Plant Pathol 19:1155–1171

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488:213–221

    Article  PubMed  Google Scholar 

  • Dale J, James A, Paul JY et al (2017) Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat Commun 8:1496

    Article  PubMed  PubMed Central  Google Scholar 

  • Das P, Nanda S (2022) Host-delivered-RNAi-mediated resistance in bananas against biotic stresses. J Exp Biol Agric Sci 10(5):953–959. https://doi.org/10.18006/2022.10(5).953.959

    Article  Google Scholar 

  • Dita MA, Waalwijk C, Buddenhagen IW, Souza MT Jr, Kema GHJ (2010) A molecular diagnostic for tropical race 4 of the banana fusarium wilt pathogen. Plant Pathol 59(2):348–357

    Article  CAS  Google Scholar 

  • Dou T, Shao X, Hu C, Liu S, Sheng O, Bi F, Deng G, Ding L, Li C, Dong T, Gao H (2020) Host-induced gene silencing of Foc TR4 ERG6/11 genes exhibits superior resistance to Fusarium wilt of banana. Plant Biotechnol J 18(1):11

    Article  CAS  PubMed  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 10:e2183–e2191

    Google Scholar 

  • Endah R, Beyene G, Kiggundu A, Van den Berg N, Schluter U, Kunert K, Chikwamba R (2008) Elicitor and Fusarium-induced expression of NPR1-like genes in banana. Plant Physiol Biochem 46:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Fei S, Czislowski E, Fletcher S, Peters J, Batley J, Aitken E, Mitter N (2019) Small RNA profiling of Cavendish banana roots inoculated with Fusarium oxysporum f. sp. cubense race 1 and tropical race 4. Phytopathol Res 1(1):1–12

    Article  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2012) Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS One 7(6):e39557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghag SB, Shekhawat UKS, Ganapathi TR (2014) Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants. AOB Plants 6:plu037

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu CH, Wei YR, Huang YH, Yi GJ (2013) An efficient protocol for the production of chit42 transgenic Furenzhi banana (Musa spp. AA group) resistant to Fusarium oxysporum. In Vitro Cell Dev Biol Plant 49(5):584–592

    Article  CAS  Google Scholar 

  • Huang XQ, Lu XH, Sun MH et al (2019) Transcriptome analysis of virulence-differentiated Fusarium oxysporum f. sp. cucumerinum isolates during cucumber colonisation reveals pathogenicity profiles. BMC Genomics 20:570

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito S, Ihara T, Tamura H, Tanaka S, Ikeda T, Kajihara H, Dissanayake C, Abdel-Motaal FF, El-Sayed MA (2007) a-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum. FEBS Lett 581:3217–3222

    Article  CAS  PubMed  Google Scholar 

  • Jing-yao L, Xiao-lei P, Tie-cheng P, Yun-yun C, Hui Z, Lei M, Yun P, Rui HE, Hua T (2016a) DNA methylation patterns of banana leaves in response to Fusarium oxysporum f. sp. cubense tropical race 4. J Integr Agric 15(12):2736–2744

    Article  Google Scholar 

  • Kazan K, Gardiner DM (2018) Transcriptomics of cereal-Fusarium graminearum interactions: what we have learned so far. Mol Plant Pathol 19:764–778

    Article  CAS  PubMed  Google Scholar 

  • Kotari P, Rekha A, Ravishankar KV (2018) Expressions of autophagy-associated ATG genes in response to fusarium wilt infection in banana. Aust Plant Dis Notes 13:44–45

    Article  Google Scholar 

  • Lakshmanan P, Selvaraj P, Mohan S (1987) Efficacy of different methods for the control of Panama disease. Tropical Pest Management 33:373–376

    Article  Google Scholar 

  • Li WM, Qian CM, Mo YW, Hu YL, Xie JH (2011) Tolerance of banana for fusarium wilt is associated with early H2O2 accumulation in the roots. Afr J Biotechnol 10:11378–11387

    CAS  Google Scholar 

  • Li CY, Deng GM, Yang J, Viljoen A, Jin Y, Kuang RB, Zuo CW, Lv ZC, Yang QS, Sheng O, Wei YR, Hu CH, Dong T, Yi GJ (2012) Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics 13:3741–3811

    Article  Google Scholar 

  • Li X, Bai T, Li Y, Ruan X, Li H (2013) Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4-inoculated response to Fusarium wilts in the banana root cells. Proteome Sci 11:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Li C, Li S et al (2017) Long noncoding RNAs that respond to Fusarium oxysporum infection in ‘Cavendish’ banana (Musa acuminata). Sci Rep 7:16939

    Article  PubMed  PubMed Central  Google Scholar 

  • Li S, Dong Y, Li L, Zhang Y, Yang X, Zeng H, Shi M, Pei X, Qiu D, Yuan Q (2019a) The novel cerato-platanin-like protein FocCP1 from Fusarium oxysporum triggers an immune response in plants. Int J Mol Sci 20(11):2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Wang X, Li C, Sun J, Li S, Peng M (2019b) Dual species transcript profiling during the interaction between banana (Musa acuminata) and the fungal pathogen Fusarium oxysporum f. sp. cubense. BMC Genomics 20(1):1–16

    Google Scholar 

  • Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magambo B, Harjeet K, Arinaitwe G, Tendo S, Arinaitwe IK, Kubiriba J, Tushemereirwe W, Dale J (2016) Inhibition of cell death as an approach for development of transgenic resistance against Fusarium wilt disease. Afr J Biotech 15(19):786–797

    Article  CAS  Google Scholar 

  • Mahdavi F, Sariah M, Maziah M (2012) Expression of rice thaumatin-like protein gene in transgenic banana plants enhances resistance to Fusarium wilt. Appl Biochem Biotechnol 166:1008–1019

    Article  CAS  PubMed  Google Scholar 

  • Maziah M, Sariah M, Sreeramanan S (2007) Transgenic banana Rastali (AAB) with β-1, 3-glucanase gene for tolerance to Fusarium wilt race 1 disease via agrobacterium-mediated transformation system. Plant Pathol J 6(4):271–282. https://doi.org/10.3923/ppj.2007.271.282

    Article  CAS  Google Scholar 

  • Misra AK, Chowdappa P, Pratibha S, Khetrapal RK (2012) Diseases of fruit crops. Indian Phytopathological Society, New Delhi, p 342

    Google Scholar 

  • Mohandas S, Sowmya HD, Saxena AK, Meenakshi S, Rani RT, Mahmood R (2013) Transgenic banana cv. Rasthali (AAB, Silk gp) harboring Ace-AMP1 gene imparts enhanced resistance to Fusarium oxysporum f. sp. cubense race 1. Sci Hortic 164:392–399

    Article  CAS  Google Scholar 

  • Moore NY, Hargreaves PA, Pegg KG, Irwin JAG (1991) Characterisation of strains of Fusarium oxysporum f. sp. cubense by production of volatiles. Aust J Bot 39(2):161–166

    Article  CAS  Google Scholar 

  • Mustaffa MM, Thangavelu R (2011) Status of Fusarium wilt in India. In: Proceedings of the international ISHS

  • Ndayihanzamaso P, Karangwa P, Mostert D, Mahuku G, Blomme G, Beed F, Swennen R, Viljoen A (2020) The development of a multiplex PCR assay for the detection of Fusarium oxysporum f. sp. cubense lineage VI strains in East and Central Africa. Eur J Plant Pathol 158(2):495–509

    Article  CAS  Google Scholar 

  • Nelson PE, Toussoun TA, Marasas WFO (1983) Fusarium species: an illustrated manual for identification. Pennsylvania State University Press, University Park

    Google Scholar 

  • Niu Y, Hu B, Li X, Chen H, Takáč T, Šamaj J, Xu C (2018) Comparative digital gene expression analysis of tissue-cultured plantlets of highly resistant and susceptible banana cultivars in response to Fusarium oxysporum. Int J Mol Sci 19(2):350

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul JY, Becker DK, Dickman MB, Harding RM, Khanna HK, Dale JL (2011) Apoptosis-related genes confer resistance to Fusarium wilt in transgenic ‘Lady Finger’ bananas. Plant Biotechnol J 9(9):1141–1148

    Article  CAS  PubMed  Google Scholar 

  • Pavitra K, Ajith R, Sreeram S, Ravishankar KV (2019) The expression of fusarium oxysporum. f.sp. cubense race 1(FOC-1) effector protiens in compatible and incompatible environment of banana. Syndowia 1:85–89

    Google Scholar 

  • Pegg KG, Coates LM, O’Neill WT, Turner DW (2019) The epidemiology of Fusarium wilt of banana. Front Plant Sci 10:1395

    Article  PubMed  PubMed Central  Google Scholar 

  • Pei XW, Chen SK, Wen RM, Ye S, Huang JQ, Zhang YQ, Wang BS, Wang ZX, Jia SR (2005) Creation of transgenic bananas expressing human lysozyme gene for Panama wilt resistance. J Integr Plant Biol 47(8):971–977

    Article  CAS  Google Scholar 

  • Peng Y, Bartley LE, Chen X, Dardick C, Chern M, Ruan R, Canlas PE, Ronald PC (2008) OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol Plant 1:446–458

    Article  CAS  PubMed  Google Scholar 

  • Persley GJ, De Langhe EA (1987) Banana and plantain breeding strategies: proceedings of an international workshop held at Cairns, Australia, 13–17 October 1986 (No. 634.772 P431b Ej. 1 02505448.50). Australian Centre for International Agricultural Research. International Network for Improvement of Banana and Plantain. Queensland

  • Ploetz RC (2015) Fusarium wilt of banana. Phytopathology 105(12):1512–1521

    Article  PubMed  Google Scholar 

  • Ploetz RC, Pegg KG (1997) Fusarium wilt of banana and Wallace’s line: was the disease originally restricted to his Indo-Malayan region? Australas Plant Pathol 26(4):239–249

    Article  Google Scholar 

  • Poon NK (2020) Gene expression analysis of effectors involved in early interaction of banana and Fusarium oxysporum f. sp. Cubense/Poon Nee Kiew. Doctoral dissertation, University of Malaya

  • Sang H, Kim JI (2020) Advanced strategies to control plant pathogenic fungi by host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS). Plant Biotechnol Rep 14(1):1–8

    Article  Google Scholar 

  • Song S, Chen X, Huang D, Xu Y, Zeng H, Hu X et al (2016) Identification of miRNAs differentially expressed in fusarium wilt-resistant and susceptible banana varieties. S Afr J Bot 106:244–249

    Article  CAS  Google Scholar 

  • Ssali RT, Kiggundu A, Lorenzen J, Karamura E, Tushemereirwe W, Viljoen A (2013) Inheritance of resistance to Fusarium oxysporum f. sp. cubense race 1 in bananas. Euphytica 194(3):425–430

    Article  Google Scholar 

  • Stover RH, Buddenhagen IW (1986) Banana breeding: polyploidy, disease resistance and productivity. Fruits 41(3):175–214

    Google Scholar 

  • Sun D, Lu X, Hu Y, Li W, Hong K, Mo Y, Cahill DM, Xie J (2013) Methyl jasmonate induced defense responses increase resistance to Fusarium oxysporum f. sp. cubense race 4 in banana. Sci Hortic 164:484–549

    Article  CAS  Google Scholar 

  • Sunisha C, Sowmya HD, Usharani TR, Umesha M, Gopalkrishna HR, Sriram S (2020) Induction of Ced9 mediated anti-apoptosis in commercial banana cultivar Rasthali for stable resistance against Fusarium wilt. 3 Biotech 10(8):1–8

    Article  Google Scholar 

  • Swarupa V, Ravishankar KV, Rekha A (2014) Plant defense response against Fusarium oxysporum and strategies to develop tolerant genotypes in banana. Planta 239:735–751

    Article  CAS  PubMed  Google Scholar 

  • Thangavelu R, Palaniswami A, Ramakrishman G, Doraiswamy S, Muthukrishnan S, Velazhahan R (2001) Involvement of Fusaric acid detoxification by Pseudomonas fluorescens strain Pf10 in the biological control of Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense. J Plant Dis 24(7):566–574

    Google Scholar 

  • Thangavelu R, Kumar KM, Devi PG, Mustaffa MM (2012) Genetic diversity of Fusarium oxysporum f. sp. cubense isolates (Foc) of India by inter simple sequence repeats (ISSR) analysis. Mol Biotechnol 51(3):203–211

    Article  CAS  PubMed  Google Scholar 

  • Thangavelu R, Mostert D, Gopi M et al (2019) First detection of Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) on Cavendish banana in India. Eur J Plant Pathol 154:777–786. https://doi.org/10.1007/s10658-019-01701-6

    Article  CAS  Google Scholar 

  • Thangavelu R, Loganathan M, Arthee R, Prabakaran M, Uma S (2020) Fusarium wilt: a threat to banana cultivation and its management. CABI Rev 2020:1–24

    Article  Google Scholar 

  • Thangavelu R, Edwinraj E, Gopi M, Pushpakanth P, Sharmila K, Prabaharan M, Loganathan M, Uma S (2022) Development of PCR-based race-specific markers for differentiation of Indian Fusarium oxysporum f. sp. cubense, the causal agent of Fusarium wilt in banana. J Fungi 8(1):53

    Article  CAS  Google Scholar 

  • Thatcher LF, Manners JM, Kazan K (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J 58(6):927–939

    Article  CAS  PubMed  Google Scholar 

  • Tripathi JN, Ntui VO, Shah T, Tripathi L (2021) CRISPR/Cas9-mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease. Plant Biotechnol J 19(7):1291–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uwimana B, Shah T, Nyine M, Hrobova E, Chen SW, Aitken E, Mpina M, Brown A (2020) Molecular approaches in banana improvement: success of breeding better bananas. In: Abstracts of international conference on banana—2020, Tiruchirappalli, Tamil Nadu, p 21

  • Van den Berg N, Berger DK, Hein I, Birch PRJ, Wingfield MJ, Viljoen A (2007) Tolerance in banana to Fusarium wilt is associated with early up-regulation of cell wall-strengthening genes in the roots. Mol Plant Pathol 8:333–341

    Article  PubMed  Google Scholar 

  • Van der Weerden NL, Lay FT, Anderson MA (2008) The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. Biol Chem 283:14445–14452

    Article  Google Scholar 

  • Wang D, Peng C, Zheng X, Chang L, Xu B, Tong Z (2020) Secretome analysis of the banana Fusarium wilt fungi Foc R1 and Foc TR4 reveals a new effector OASTL required for full pathogenicity of Foc TR4 in banana. Biomolecules 10(10):1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Liu W, Hu W, Liu G, Wu C, Liu W, Zeng H, He C, Shi H (2017) Genome-wide analysis of autophagy-related genes in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt. Plant Cell Rep 36:1237–1250

    Article  CAS  PubMed  Google Scholar 

  • Yip MK, Lee SW, Su KC, Lin YH, Chen TY, Feng TY (2011a) An easy and efficient protocol in the production of pflp transgenic banana against Fusarium wilt. Plant Biotechnol Rep 5(3):245–254

    Article  Google Scholar 

  • Yip MK, Lee SW, Su KC, Lin YH, Chen TY, Feng TY (2011b) An easy and efficient protocol in the production of pflp transgenic banana against Fusarium wilt. Plant Biotechnol Rep 5(3):245–254

    Article  Google Scholar 

  • Yue J, Sun H, Zhang W, Pei D, He Y, Wang H (2015) Wheat homologs of yeast ATG6 function in autophagy and are implicated in powdery mildew immunity. BMC Plant Biol 15:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Mallik A, Zeng RS (2013) Control of panama disease of banana by rotating and intercropping with Chinese Chive (Allium Tuberosum Rottler): role of plant volatiles. J Chem Ecol 39:243–252

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Huang H, Wu B, Xie J, Viljoen A, Wang W, Mostert D, Xie Y, Fu G, Xiang D, Lyu S (2021) The M35 metalloprotease effector FocM35_1 is required for full virulence of Fusarium oxysporum f. sp. cubense tropical race 4. Pathogens 10(6):670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

PD, PS, AB and coauthors would like to acknowledge DBT North-East region Banana programme for providing financial assistance and Director of Research (Agri.) AAU-Jorhat for administrative support. KVR Acknowledges financial support from DBT North-East region Banana programme on Fusarium wilt and ICAR NPFGGM project on Functional Genomics-Banana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyabrata Sen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethics approval

As no human or mammalian subjects were involved in this research, no ethics approvals were required for this study.

Informed consent

All authors consent to participate in publication of these data.

Consent for publication

All authors consent to publish this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Savani, A.K., Sharma, R. et al. Fusarium wilt in banana: unraveling molecular aspects of host–pathogen interaction and resistance mechanism. Vegetos (2023). https://doi.org/10.1007/s42535-023-00682-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42535-023-00682-6

Keywords

Navigation