Skip to main content
Log in

Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochrome c, and H2O2

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Programmed cell death (PCD), now known as apoptosis, is accompanied by specific morphological features. In this study, fusaric acid, a fusarium mycotoxin, was used to examine cell death in saffron (Crocus sativus Linnaeus) roots, using several apoptosis assays. Our results show that moderate FA doses (50–100 μM) induce apoptotic features while high FA doses (> 200 μM) stimulate necrosis. The apoptotic-like features induced by moderate doses of FA include chromatin condensation, formation of condensed chromatin spheres which bud from the nucleus, fragmentation of nucleosomal DNA into ∼ 180 bp fragments, exposure of phosphatidyl serine to the external membrane leaflet, delivery of cytochrome c to cytosol, and generation of H2O2. These apoptotic alterations in root cells are not observed in the presence of serine protease, caspase-1 or caspase-3 inhibitors. It is proposed that production of H2O2 and release of cytochrome c into the cytosol may activate caspase-like proteases and thus establish the apoptotic pathway. As nuclei budding spheres formed in plant root cells after exposure to 50–100 μM FA doses seem to be digested inside the cytosol, we suggest labeling them as internal apoptotic bodies (IAB) that may be more informative than previously used term, apoptotic-like bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AEBSF:

4-[2-aminoethyl] benzenesulfonylfluoride

CTAB:

Cetyl-N,N,N triethyl ammonium bromide

DEVD:

Acyl-Asp-Glu-Valine-l-aspartic acid dehydrate

DHPE:

2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, triethylammonium salt

FA:

Fusaric acid

HR:

Hypersensitive response

PAS:

Periodic acid shiff

PCD:

Programmed cell death

TLCK:

Nα-p-Tosyl-l-lysine

TUNEL:

Terminal deoxynucleotidyl teransferase-mediated dUTP nick end labeling

YVAD:

Acyl-Tyr-Val-l-aspartic acid aldehyde

References

  • Arias JA (1985) Secretory organelles and mitochondrial alterations induced by fusaric acid in root cells of Zea mays. Physiol Plant Pathol 27:149–158

    Article  CAS  Google Scholar 

  • Balk J, Leaver CJ (2001) The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell 13:1803–1818

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Leaver CJ, McCabe PF (1999) Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett 463:151–154

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Jones RL (2001) Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J 25:19–29

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Fluhr R (2000) The role of calcium and activated oxygens as signals for controlling cross-tolerance. Trends Plant Sci 5:241–245

    Article  PubMed  CAS  Google Scholar 

  • Bozhkov PV, Filonova LH, Suarez MF, Helmersson A, Smertenko AP, Zhivotovsky B, von Arnold S (2004) VEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formation. Cell Death Differ 11:175–182

    Article  PubMed  CAS  Google Scholar 

  • Carimi F, Zottini M, Formentin E, Terzi M, Lo Schiavo F (2003) Cytokinins: new apoptotic inducers in plants. Planta 216:413–421

    PubMed  CAS  Google Scholar 

  • Chichkova NV, Kim SH, Titova ES, Kalkum M, Morozov VS, Rubtsov YP, Kalinina NO, Taliansky ME, Vartapetian AB (2004) A plant caspase-like protease activated during the hypersensitive response. Plant Cell 16:157–171

    Article  PubMed  CAS  Google Scholar 

  • Coffeen WC, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857–873

    Article  PubMed  CAS  Google Scholar 

  • Cohn JJ (1993) Apoptosis. Immunol Today 14:126–130

    Article  Google Scholar 

  • Collins RJ, Harmon BV, Gobe GC, Kerr JFR (1992) Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int J Radiat Biol 61:451–453

    PubMed  CAS  Google Scholar 

  • Dat JF, Pellinen R, Van De Cotte B, Langebartels C, Kangasjarvi J, Inze D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632

    Article  PubMed  CAS  Google Scholar 

  • Dayakar BV, Lin HJ, Chen CH (2003) Ferredoxin from sweet pepper (Capsicum annuum L.) intensifying harpin(pss)-mediated hypersensitive response shows an enhanced production of active oxygen species (AOS). Plant Mol Biol 51:913–924

    Article  PubMed  CAS  Google Scholar 

  • De Jong AJ, Hoeberichts FA, Yakimova ET, Maximova E, Woltering EJ (2000) Chemical-induced apoptotic cell death in tomato cells: involvement of caspase-like proteases. Planta 211:656–662

    Article  PubMed  Google Scholar 

  • Elbaz M, Avni A, Weil M (2002) Constitutive caspase-like machinery executes programmed cell death in plant cells. Cell Death Differ 9:726–733

    Article  PubMed  CAS  Google Scholar 

  • Ellis RE, Yuan J, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663–698

    Article  PubMed  CAS  Google Scholar 

  • Gavereili Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA Fragmentation. J Cell Biol 119:493–501

    Article  Google Scholar 

  • Gilchrist DG (1997) Mycotoxins reveal connections between plants and animals in apoptosis and ceramide signaling. Cell Death Differ 4:689–698

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist DG (1998) Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu Rev Phytopathol 36:393–414

    Article  PubMed  CAS  Google Scholar 

  • Gold R, Schmied M, Rothe G, Zischer H, Breitschopf H, Wekerle H, Lassmann H (1993) Detection of DNA fragmentation in apoptosis: application of in situ nick translation to cell culture systems and tissue sections. J Histochem Cytochem 41:1023–1030

    PubMed  CAS  Google Scholar 

  • Gorczyca W, Bruno S, Darzynkiewicz RJ, Gong J, Darzynkiewicz Z (1992) DNA strand breaks occurring during apoptosis: their early in situ detection by the terminal deoxynucleotidyl transferase and nick translation assays and prevention by serine protease inhibors. Int J Oncol 1:639–648

    CAS  Google Scholar 

  • Gorczyca W, Gong J, Darzynkiewicz Z (1993) Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assay. Cancer Res 15:1945–1951

    Google Scholar 

  • Greenberg JT (1997) Programmed cell death in plant-pathogen interactions. Annu Rev Plant Physiol 48:525–545

    Article  CAS  Google Scholar 

  • Greenberg JT, Guo AL, Klessig DF, Ausubel FM (1994) Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551–563

    Article  PubMed  CAS  Google Scholar 

  • Hancock JT, Desikan R, Clarke A, Hurst RD, Neill SJ (2002) Cell signaling following plant/pathogen interaction involves the generation of reactive nitrogen species. Plant Physiol Biochem 40:611–617

    Article  CAS  Google Scholar 

  • Harris N, Oparka KJ (1994) Plant cell biology. Oxford University Press, New York, pp 156–172

  • Haunstetter A, Izumo S (1998) Apoptosis: basic mechanisms and implication for cardiovascular diseases. Circ Res 282:1111–1129

    Google Scholar 

  • Heath MC (1998) Apoptosis, programmed cell death and hypersensitive response. Eur J Plant Pathol 104:117–124

    Article  CAS  Google Scholar 

  • Jabs T (1999) Reactive oxygen intermediates as mediators of plant programmed cell death in plants and animals. Biochem Pharmacol 57:231–245

    Article  PubMed  CAS  Google Scholar 

  • Jones AM (2000) Does the plant mitochondrion integrates cellular stress and regulates programmed cell death? Trends Plant Sci 5:225–230

    Article  PubMed  CAS  Google Scholar 

  • Jones AM (2001) Programmed cell death in development and defense. Plant Physiol 125:94–97

    Article  PubMed  CAS  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon wide-ranging implication in tissue kinetics. Br J Cancer 26:239–251

    PubMed  CAS  Google Scholar 

  • Korthout HAAJ, Berecki G, Bruin W, van Duijn B, Wang M (2000) The presence and subcellular localization of caspase 3-like proteinases in plant cells. FEBS Lett 475:139–144

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy KV, Krishnaraj R, Chozhavendan R, Christopher FS (2000) The programme of cell death in plants and animals: a comparison. Curr Sci 79:1169–1181

    CAS  Google Scholar 

  • Laloi C, Apel K, Dannon A (2004) Reactive oxygen signaling: the latest news. Curr Opin Plant Biol 7:323–328

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Pontier D, del Pozo O (1999) Die and let live—programmed cell death in plants. Curr Opin Plant Biol 2:502–507

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Levine A, Pennell RI, Alvarez ME, Palmer R, Lamb C (1996) Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr Biol 4:427–437

    Article  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    Article  PubMed  CAS  Google Scholar 

  • Liljeroth E, Bryngelsson T (2001) DNA fragmentation in cereal roots indicative of programmed root cortical cell death. Physiol Plant 111:365–372

    Article  PubMed  CAS  Google Scholar 

  • Lockshin RA, Williams CM (1964) Programmed cell death: endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 10:643–649

    Article  CAS  Google Scholar 

  • Lorrian S, Vailleau F, Balagué C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants? Trends Plant Sci 8:263–271

    Article  CAS  Google Scholar 

  • Martin SJ, Green DR, Cotter TG (1994) Dicing with death: dissecting components of the apoptosis machinery. Trends Biochem Sci 19:26–30

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Shulaev V, Seskar M, Lam E (1996) Inhibition of programmed cell death in tobacco plants during a pathogen-induced hypersensitive response at low oxygen pressure. Plant Cell 8:1991–2001

    Article  PubMed  CAS  Google Scholar 

  • Morel JB, Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Differ 4:671–683

    Article  PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hurst RD, Hancock JT (2002) Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot 53:1237–1247

    Article  PubMed  CAS  Google Scholar 

  • O’Brien IEW, Reutelingsperger CPM, Holdaway KM (1997) Annexin-V and TUNEL use in monitoring the progression of apoptosis in plants. Cytometry 29:28–33

    Article  PubMed  CAS  Google Scholar 

  • Pennell RI, Lamb C (1997) Programmed cell death in plants. Plant Cell 9:1157–1168

    Article  PubMed  CAS  Google Scholar 

  • del Pozo O, Lam E (1998) Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr Biol 8:1129–1132

    Article  PubMed  Google Scholar 

  • Ren D, Yang H, Zhang S (2002) Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem 277:559–565

    Article  PubMed  CAS  Google Scholar 

  • Ryerson DE, Heath MC (1996) Cleavage of nuclear DNA into oligonucleosomal fragments during cell death induced by fungal infection or by abiotic treatments. Plant Cell 8:393–402

    Article  PubMed  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer/length polymorphism in barely, Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Sasabe M, Takeuchi K, Kamoun S, Ichinose Y, Govers F, Toyoda K, Shiraishi T, Yamada T (2000) Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. Eur J Biochem 267:5005–5013

    Article  PubMed  CAS  Google Scholar 

  • Saviania EE, Orsia CH, Oliveiraa JFP, Pinto-Magliob CAF, Salgado I (2002) Participation of the mitochondrial permeability transition pore in nitric oxide-induced plant cell death. FEBS Lett 510:136–140

    Article  Google Scholar 

  • Sellins KS, Cohn JJ (1987) Gene induction by gamma irradiation leads to DNA fragmentation in lymphocytes. J Immunol 139:3199–3209

    PubMed  CAS  Google Scholar 

  • Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A (1999) The Involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11:431–443

    Article  PubMed  CAS  Google Scholar 

  • Sun YL, Zhao Y, Hong X, Zhai ZH (1999) Cytochrome c release and caspase activation during menadione-induced apoptosis in plant. FEBS Letters 462:317–321

    Article  PubMed  CAS  Google Scholar 

  • Telles-Pupulin AR, Diniz SPSS, Bracht A, Ishii-Iwamoto EL (1996) Effect of fusaric acid on respiration in maize root mitochondria. Biol Plant 38:421–429

    CAS  Google Scholar 

  • Telles-Pupulin AR, Salgueiro-Pagadigorria CL, Bracht A, Ishii-Iwamoto EL (1998) Effects of fusaric acid on rat liver mitochondria. Comp Biochem Physiol 120:43–51

    Article  CAS  Google Scholar 

  • Wang H, Li J, Bostock RM, Gilchrist DG (1996) Apoptosis: A functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375–391

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Heath MC (1998) Role of calcium in signal transduction during the hypersensitive response caused by basidiospore-derived infection of the cowpea rust fungus. Plant Cell 10:585–597

    Article  PubMed  CAS  Google Scholar 

  • Yu XH, Perdue TD, Jones AM (2002) Mitochondrial involvement in tracheary element programmed cell death. Cell Death Diff 9:189–198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Research Center Foundation of University of Tehran (research project no. 513/4/609). We sincerely thank Miss Nazanin Radnia for help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Shahsavan Behboodi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samadi, L., Shahsavan Behboodi, B. Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochrome c, and H2O2 . Planta 225, 223–234 (2006). https://doi.org/10.1007/s00425-006-0345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0345-6

Keywords

Navigation