Skip to main content
Log in

Multilayer SnS2/few-layer MoS2 heterojunctions with in-situ floating photogate toward high-performance photodetectors and optical imaging application

原位集成光浮栅的多层SnS2/少层MoS2异质结用于高 性能光电探测器与光学成像

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Since the successful preparation of the monolayer MoS2 phototransistor, two-dimensional (2D) layered materials (2DLMs) have been regarded as one of the most compelling candidates toward the implementation of the next generation of novel optoelectronic devices and systems. However, most reported 2DLM photodetectors suffer from specific shortcomings, such as low responsivity, large dark current, low specific detectivity, low on/off ratio, and sluggish response rate. Herein, multilayer SnS2/few-layer MoS2 van der Waals heterostructures have been constructed by stacking the MoS2 and SnS2 nanosheets grown by a single atmospheric pressure chemical vapor deposition method. The SnS2/MoS2 heterojunction photodetector demonstrates competitive overall performance with a large on/off ratio of 171, a high responsivity of 28.3 A W−1, and an excellent detectivity of 1.2 × 1013 Jones. In addition, an ultrafast response rate with the response/recovery time down to 1.38 ms/600 µs is achieved. The excellent properties are associated with the synergy of type-II band alignment of SnS2/MoS2 and the in-situ formed seamless floating photogate, which contribute to separating the photoexcited electron-hole pairs and extending the carrier lifetime. Taking advantage of the excellent photosensitivity, the SnS2/MoS2 device demonstrates proof-of-concept optical imaging application. On the whole, this study provides a distinctive perspective to implement advanced photodetectors with competitive overall performance.

摘要

自单层MoS2光电晶体管问世以来, 二维层状材料一直被认为是 实现下一代新型光电器件与系统的最引人瞩目的候选材料之一. 然而, 大多数报道的二维层状材料光电探测器都存在一定的缺点, 如响应率 低、暗电流大、比探测率低、开关比低、响应速率慢等. 在本研究中, 通过堆叠由大气压化学气相沉积技术所生长的MoS2和SnS2纳米片, 制 备出了多层SnS2/少层MoS2范德华异质结. 相应的SnS2/MoS2异质结光 电探测器展示出了具有竞争力的综合性能: 大开关比(171)、高响应率 (28.3 A W−1), 以及出色的比探测率(1.2 × 1013 Jones). 此外, 该器件还 实现了响应/恢复时间低至1.38 ms/600 μs的超快响应速率. 其优异的性 能与SnS2/MoS2异质结的II型能带排列以及原位形成的无缝光浮栅的协 同作用相关, 这有助于分离光激发的电子-空穴对, 并延长非平衡载流 子的寿命. 得益于出色的光敏性, 该SnS2/MoS2器件实现了概念验证的 光学成像应用. 总体而言, 本研究为实现具有优异综合性能的先进光电 探测器提供了独特视角.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yao JD, Zheng ZQ, Yang GW. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog Mater Sci, 2019, 106: 100573

    Article  CAS  Google Scholar 

  2. Yao J, Yang G. 2D layered material alloys: Synthesis and application in electronic and optoelectronic devices. Adv Sci, 2022, 9: 2103036

    Article  Google Scholar 

  3. Jin L, Wang H, Cao R, et al. The rise of 2D materials/ferroelectrics for next generation photonics and optoelectronics devices. APL Mater, 2022, 10: 060903

    Article  CAS  Google Scholar 

  4. Liu S, Wang J, Shao J, et al. Nanopatterning technologies of 2D materials for integrated electronic and optoelectronic devices. Adv Mater, 2022, 34: 2200734

    Article  CAS  Google Scholar 

  5. Sakthivel R, Keerthi M, Chung RJ, et al. Heterostructures of 2D materials and their applications in biosensing. Prog Mater Sci, 2023, 132: 101024

    Article  CAS  Google Scholar 

  6. Hossain M, Qin B, Li B, et al. Synthesis, characterization, properties and applications of two-dimensional magnetic materials. Nano Today, 2022, 42: 101338

    Article  CAS  Google Scholar 

  7. Wang C, Zhang L, Zhang Z, et al. Layered materials for supercapacitors and batteries: Applications and challenges. Prog Mater Sci, 2020, 118: 100763

    Article  Google Scholar 

  8. Fu J, Qiu M, Bao W, et al. Frontiers in electronic and optoelectronic devices based on 2D materials. Adv Electron Mater, 2021, 7: 2100444

    Article  CAS  Google Scholar 

  9. Zahra QA, Ullah S, Shahzad F, et al. MXene-based aptasensors: Advances, challenges, and prospects. Prog Mater Sci, 2022, 129: 100967

    Article  CAS  Google Scholar 

  10. Xin X, Zhang Y, Chen J, et al. Defect-suppressed submillimeter-scale WS2 single crystals with high photoluminescence quantum yields by alternate-growth-etching CVD. Mater Horiz, 2022, 9: 2416–2424

    Article  CAS  Google Scholar 

  11. Liu L, Sun Y, Huang X, et al. Ultrafast flash memory with large self-rectifying ratio based on atomically thin MoS2-channel transistor. Mater Futures, 2022, 1: 025301

    Article  Google Scholar 

  12. Ye L, Peng X, Wen Z, et al. Solid-state Z-scheme assisted hydrated tungsten trioxide/ZnIn2S4 photocatalyst for efficient photocatalytic H2 production. Mater Futures, 2022, 1: 035103

    Article  Google Scholar 

  13. Qiao H, Huang Z, Ren X, et al. Self-powered photodetectors based on 2D materials. Adv Opt Mater, 2020, 8: 1900765

    Article  CAS  Google Scholar 

  14. Zhou J, Xin K, Zhao X, et al. Recent progress in optoelectronic applications of hybrid 2D/3D silicon-based heterostructures. Sci China Mater, 2022, 65: 876–895

    Article  Google Scholar 

  15. Yoshioka K, Wakamura T, Hashisaka M, et al. Ultrafast intrinsic optical-to-electrical conversion dynamics in a graphene photodetector. Nat Photon, 2022, 16: 718–723

    Article  CAS  Google Scholar 

  16. Li X, Dai X, Xu H, et al. Multifunctional two-dimensional glassy graphene devices for vis-NIR photodetection and volatile organic compound sensing. Sci China Mater, 2021, 64: 1964–1976

    Article  CAS  Google Scholar 

  17. Zhang Y, Huang P, Guo J, et al. Graphdiyne-based flexible photodetectors with high responsivity and detectivity. Adv Mater, 2020, 32: 2001082

    Article  CAS  Google Scholar 

  18. Chen J, Li L, Gong P, et al. A submicrosecond-response ultraviolet-visible-near-infrared broadband photodetector based on 2D tellurosilicate InSiTe3. ACS Nano, 2022, 16: 7745–7754

    Article  CAS  Google Scholar 

  19. Prechtl M, Parhizkar S, Hartwig O, et al. Hybrid devices by selective and conformal deposition of PtSe2 at low temperatures. Adv Funct Mater, 2021, 31: 2103936

    Article  CAS  Google Scholar 

  20. Zhang W, Liu Y, Pei X, et al. Stretchable MoS2 artificial photoreceptors for e-skin. Adv Funct Mater, 2022, 32: 2107524

    Article  CAS  Google Scholar 

  21. Zhou J, Zhu C, Zhou Y, et al. Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat Mater, 2022, doi: https://doi.org/10.1038/s41563-022-01291-5

  22. Yu W, Dong Z, Mu H, et al. Wafer-scale synthesis of 2D Dirac heterostructures for self-driven, fast, broadband photodetectors. ACS Nano, 2022, 16: 12922–12929

    Article  CAS  Google Scholar 

  23. Guo Z, Zeng Y, Meng F, et al. In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor. eLight, 2022, 2: 9

    Article  Google Scholar 

  24. Guo Z, Cao R, Wang H, et al. High-performance polarization-sensitive photodetectors on two-dimensional β-InSe. Natl Sci Rev, 2021, 9: nwab098

    Article  Google Scholar 

  25. Luo P, Pei K, Wang F, et al. Ultrathin 2D ternary Bi2Te2Se flakes for fast-response photodetectors with gate-tunable responsivity. Sci China Mater, 2021, 64: 3017–3026

    Article  CAS  Google Scholar 

  26. Gao L, Ma C, Wei S, et al. Applications of few-layer Nb2C MXene: Narrow-band photodetectors and femtosecond mode-locked fiber lasers. ACS Nano, 2021, 15: 954–965

    Article  CAS  Google Scholar 

  27. Chen J, Wang G, Meng J, et al. Low-temperature direct growth of few-layer hexagonal boron nitride on catalyst-free sapphire substrates. ACS Appl Mater Interfaces, 2022, 14: 7004–7011

    Article  CAS  Google Scholar 

  28. Wang Z, Luo P, Han B, et al. Strong in-plane anisotropic SiP2 as a IV–V 2D semiconductor for polarized photodetection. ACS Nano, 2021, 15: 20442–20452

    Article  CAS  Google Scholar 

  29. Liu G, Su J, Feng X, et al. Synthesis of 2D ternary layered manganese phosphorous trichalcogenides towards ultraviolet photodetection. Sci China Mater, 2021, 64: 2251–2260

    Article  CAS  Google Scholar 

  30. Fang F, Wan Y, Li H, et al. Two-dimensional Cs2AgBiBr6/WS2 heterostructure-based photodetector with boosted detectivity via interfacial engineering. ACS Nano, 2022, 16: 3985–3993

    Article  CAS  Google Scholar 

  31. Wu D, Guo J, Wang C, et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Nano, 2021, 15: 10119–10129

    Article  CAS  Google Scholar 

  32. Wang H, Li Z, Li D, et al. Junction field-effect transistors based on PdSe2/MoS2 heterostructures for photodetectors showing high responsivity and detectivity. Adv Funct Mater, 2021, 31: 2106105

    Article  CAS  Google Scholar 

  33. Mao J, Zhang B, Shi Y, et al. Conformal MoS2/silicon nanowire array heterojunction with enhanced light trapping and effective interface passivation for ultraweak infrared light detection. Adv Funct Mater, 2022, 32: 2108174

    Article  CAS  Google Scholar 

  34. Qiao J, Feng F, Song S, et al. Perovskite quantum dot-Ta2NiSe5 mixed-dimensional van der Waals heterostructures for high-performance near-infrared photodetection. Adv Funct Mater, 2022, 32: 2110706

    Article  CAS  Google Scholar 

  35. Ye Q, Xu D, Cai B, et al. High-performance hierarchical O-SnS/I-ZnIn2S4 photodetectors by leveraging the synergy of optical regulation and band tailoring. Mater Horiz, 2022, 9: 2364–2375

    Article  CAS  Google Scholar 

  36. Li L, Gao G, Liu X, et al. Polarization-resolved p-Se/n-WS2 hetero-junctions toward application in microcomputer system as multivalued signal trigger. Small, 2022, 18: 2202523

    Article  CAS  Google Scholar 

  37. Zhao Q, Gao F, Chen H, et al. High performance polarization-sensitive self-powered imaging photodetectors based on a p-Te/n-MoSe2 van der Waals heterojunction with strong interlayer transition. Mater Horiz, 2021, 8: 3113–3123

    Article  CAS  Google Scholar 

  38. Wang H, Wang W, Zhong Y, et al. Approaching the external quantum efficiency limit in 2D photovoltaic devices. Adv Mater, 2022, 34: 2206122

    Article  CAS  Google Scholar 

  39. Lei W, Wen X, Cao G, et al. High performance near-infrared MoTe2/Ge heterojunction photodetector fabricated by direct growth of Ge flake on MoTe2 film substrate. Appl Phys Lett, 2022, 121: 081903

    Article  CAS  Google Scholar 

  40. Zhang P, Bian C, Ye J, et al. Epitaxial growth of metal-semiconductor van der Waals heterostructures NbS2/MoS2 with enhanced performance of transistors and photodetectors. Sci China Mater, 2020, 63: 1548–1559

    Article  CAS  Google Scholar 

  41. Pi L, Wang P, Liang SJ, et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat Electron, 2022, 5: 248–254

    Article  CAS  Google Scholar 

  42. Zou Y, Zhang Z, Yan J, et al. High-temperature flexible WSe2 photo-detectors with ultrahigh photoresponsivity. Nat Commun, 2022, 13: 4372

    Article  CAS  Google Scholar 

  43. Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6: 74–80

    Article  CAS  Google Scholar 

  44. Lopez-Sanchez O, Lembke D, Kayci M, et al. Ultrasensitive photo-detectors based on monolayer MoS2. Nat Nanotech, 2013, 8: 497–501

    Article  CAS  Google Scholar 

  45. Li Y, Zhang D, Jia L, et al. Ultrawide-bandgap (6.14 eV) (AlGa)2O3/Ga2O3 heterostructure designed by lattice matching strategy for highly sensitive vacuum ultraviolet photodetection. Sci China Mater, 2021, 64: 3027–3036

    Article  CAS  Google Scholar 

  46. Xue X, Lu C, Luo M, et al. Type-I SnSe2/ZnS heterostructure improving photoelectrochemical photodetection and water splitting. Sci China Mater, 2023, 66: 127–138

    Article  CAS  Google Scholar 

  47. Ye P, Xiao H, Zhu Q, et al. Si-CMOS-compatible 2D PtSe2-based self-driven photodetector with ultrahigh responsivity and specific detectivity. Sci China Mater, 2023, 66: 193–201

    Article  CAS  Google Scholar 

  48. Luo M, Lu C, Liu Y, et al. Band alignment of type-I SnS2/Bi2Se3 and type-II SnS2/Bi2Te3 van der Waals heterostructures for highly enhanced photoelectric responses. Sci China Mater, 2022, 65: 1000–1011

    Article  CAS  Google Scholar 

  49. Wang S, Zhang Y, Zhao D, et al. Fast and controllable synthesis of AB-stacked bilayer MoS2 for photoelectric detection. 2D Mater, 2021, 9: 015016

    Article  Google Scholar 

  50. Giannozzi P, Baroni S, Bonini N, et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J Phys-Condens Matter, 2009, 21: 395502

    Article  Google Scholar 

  51. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  52. Huang L, Wang Y, Su H, et al. Manipulating valley-polarized photoluminescence of MoS2 monolayer at off resonance wavelength with a double-resonance strategy. Appl Phys Lett, 2021, 119: 031106

    Article  CAS  Google Scholar 

  53. Huang X, Zhang L, Liu L, et al. Raman spectra evidence for the covalent-like quasi-bonding between exfoliated MoS2 and Au films. Sci China Inf Sci, 2021, 64: 140406

    Article  Google Scholar 

  54. Mak KF, Lee C, Hone J, et al. Atomically thin MoS2: A new direct-gap semiconductor. Phys Rev Lett, 2010, 105: 136805

    Article  Google Scholar 

  55. Hsu C, Frisenda R, Schmidt R, et al. Thickness-dependent refractive index of 1L, 2L, and 3L MoS2, MoSe2, WS2, and WSe2. Adv Opt Mater, 2019, 7: 1900239

    Article  Google Scholar 

  56. Kang Y, Jeon D, Kim T. Local mapping of the thickness-dependent dielectric constant of MoS2. J Phys Chem C, 2021, 125: 3611–3615

    Article  CAS  Google Scholar 

  57. Turunen MT, Hulkko E, Mentel KK, et al. Deterministic modification of CVD grown monolayer MoS2 with optical pulses. Adv Mater Inter, 2021, 8: 2002119

    Article  CAS  Google Scholar 

  58. Dumcenco D, Ovchinnikov D, Marinov K, et al. Large-area epitaxial monolayer MoS2. ACS Nano, 2015, 9: 4611–4620

    Article  CAS  Google Scholar 

  59. Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10: 1271–1275

    Article  CAS  Google Scholar 

  60. Zheng Y, Cao B, Tang X, et al. Vertical 1D/2D heterojunction architectures for self-powered photodetection application: GaN nanorods grown on transition metal dichalcogenides. ACS Nano, 2022, 16: 2798–2810

    Article  CAS  Google Scholar 

  61. Su G, Hadjiev VG, Loya PE, et al. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett, 2015, 15: 506–513

    Article  CAS  Google Scholar 

  62. Gong Y, Yuan H, Wu CL, et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat Nanotech, 2018, 13: 294–299

    Article  CAS  Google Scholar 

  63. Shao G, Xue XX, Yang M, et al. Modulated anisotropic growth of 2D SnSe based on the difference in a/b/c-axis edge atomic structures. Chem Mater, 2021, 33: 4231–4239

    Article  CAS  Google Scholar 

  64. Zhou X, Zhang Q, Gan L, et al. Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors. Adv Funct Mater, 2016, 26: 4405–4413

    Article  CAS  Google Scholar 

  65. Yang YB, Dash JK, Littlejohn AJ, et al. Large single crystal SnS2 flakes synthesized from coevaporation of Sn and S. Cryst Growth Des, 2016, 16: 961–973

    Article  CAS  Google Scholar 

  66. Li Z, Shu W, Li Q, et al. Nondegenerate p-type In-doped SnS2 mono-layer transistor. Adv Electron Mater, 2021, 7: 2001168

    Article  CAS  Google Scholar 

  67. Seo J, Kim J, Lee J, et al. Intergranular diffusion-assisted liquid-phase chemical vapor deposition for wafer-scale synthesis of patternable 2D semiconductors. Adv Funct Mater, 2022, 32: 2205695

    Article  CAS  Google Scholar 

  68. Kufer D, Konstantatos G. Highly sensitive, encapsulated MoS2 photo-detector with gate controllable gain and speed. Nano Lett, 2015, 15: 7307–7313

    Article  CAS  Google Scholar 

  69. George A, Fistul MV, Gruenewald M, et al. Giant persistent photoconductivity in monolayer MoS2 field-effect transistors. npj 2D Mater Appl, 2021, 5: 15

    Article  CAS  Google Scholar 

  70. Rathi N, Rathi S, Lee I, et al. Reduction of persistent photoconductivity in a few-layer MoS2 field-effect transistor by graphene oxide functionalization. RSC Adv, 2016, 6: 23961–23967

    Article  CAS  Google Scholar 

  71. Cao X, Lei Z, Huang B, et al. Non-layered Te/In2S3 tunneling heterojunctions with ultrahigh photoresponsivity and fast photoresponse. Small, 2022, 18: 2200445

    Article  CAS  Google Scholar 

  72. Lu J, Deng Z, Ye Q, et al. Promoting the performance of 2D material photodetectors by dielectric engineering. Small Methods, 2022, 6: 2101046

    Article  CAS  Google Scholar 

  73. Lu J, Ye Q, Ma C, et al. Dielectric contrast tailoring for polarized photosensitivity toward multiplexing optical communications and dynamic encrypt technology. ACS Nano, 2022, 16: 12852–12865

    Article  CAS  Google Scholar 

  74. Liu Y, Lu C, Luo M, et al. Vertically oriented SnS2 on MoS2 nanosheets for high-photoresponsivity and fast-response self-powered photoelectrochemical photodetectors. Nanoscale Horiz, 2022, 7: 1217–1227

    Article  CAS  Google Scholar 

  75. Lu J, Carvalho A, Liu H, et al. Hybrid bilayer WSe2-CH3NH3PbI3 or-ganolead halide perovskite as a high-performance photodetector. Angew Chem Int Ed, 2016, 55: 11945–11949

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U2001215, 52272175, and 12104517), the Natural Science Foundation of Guangdong Province (2021A1515110403 and 2022A1515011487), the Science and Technology Projects in Guangzhou (202201011232), the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (22qntd0101), the One-Hundred Talents Program of Sun Yat-sen University, and the State Key Laboratory of Optoelectronic Materials and Technologies.

Author information

Authors and Affiliations

Authors

Contributions

Yao J, Ma C and Yang G designed this study. Yao J and Yang G supervised the project. Zou Y, Ma C, Deng Z, Zheng Z, Yao J and Yang G provided the experimental resources. Yi H synthesized the samples, conducted the characterizations, constructed the devices and performed optoelectronic measurements with help from Yang H, Ma Y, Ye Q, Lu J, Wang W and Zheng Z; Deng Z performed the theoretical calculations; Yi H, Ma C, Deng Z and Yao J analyzed the data; Yi H, Ma C, Deng Z and Yao J wrote the paper. All authors contributed to the general discussion of the manuscript.

Corresponding authors

Correspondence to Churong Ma  (马楚荣), Zexiang Deng  (邓泽祥) or Jiandong Yao  (姚健东).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Huaxin Yi received his BS degree from the School of Materials Science and Engineering, Hunan University in 2020. He is now pursuing his MS degree at the School of Materials Science and Engineering, Sun Yat-sen University, under the supervision of Prof. Jiandong Yao. His current research interests include the synthesis, optoelectronic properties and applications of 2D materials.

Churong Ma received his PhD degree in materials physics and chemistry from Sun Yat-sen University in 2019. He is currently a lecturer at the Institute of Photonics Technology, Jinan University. His research interests include the fabrication of low-dimensional nanostructures and their applications in optics and optoelectronics.

Zexiang Deng received his PhD degree in theoretical physics from Sun Yat-sen University in 2018. He held a postdoctoral position at the Department of Chemistry, the University of Hong Kong before joining Guilin University of Aerospace Technology in 2021. His main research interests include first principle calculation, electronic and thermal properties, excited states, and Raman spectra of nanomaterials.

Jiandong Yao received his PhD degree in condensed matter physics from Sun Yat-sen University in 2018. Then, he joined the School of Materials Science & Engineering, Nanyang Technological University as a research fellow. Currently, he is an associate professor at the School of Materials Science & Engineering, Sun Yat-sen University. His research interests include the synthesis of low-di-mentional materials, design of novel device structures, and exploration of their photodetection properties and working principles.

Electronic Supplementary Material

40843_2022_2338_MOESM1_ESM.pdf

Multilayer SnS2/few-layer MoS2 heterojunctions with in-situ floating photogate toward high-performance photodetectors and optical imaging application

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, H., Yang, H., Ma, C. et al. Multilayer SnS2/few-layer MoS2 heterojunctions with in-situ floating photogate toward high-performance photodetectors and optical imaging application. Sci. China Mater. 66, 1879–1890 (2023). https://doi.org/10.1007/s40843-022-2338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2338-9

Keywords

Navigation