Skip to main content
Log in

Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As one of the most promising materials for two-dimensional transition metal chalcogenides (2D TMDs), molybdenum diselenide (MoSe2) has great potential in photodetectors due to its excellent properties like tunable bandgap, high carrier mobility, and excellent air stability. Although 2D MoSe2-based photodetectors have been reported to exhibit admired performance, the large-area 2D MoSe2 layers are difficult to be achieved via conventional synthesis methods, which severely impedes its future applications. Here, we present the controllable growth of large-area 2D MoSe2 layers over 3.5-inch with excellent homogeneity by a simple post-selenization route. Further, a high-quality n-MoSe2/p-Si van der Waals (vdW) heterojunction device is in-situ fabricated by directly growing 2D n-MoSe2 layers on the patterned p-Si substrate, which shows a self-driven broadband photoresponse ranging from ultraviolet to mid-wave infrared with an impressive responsivity of 720.5 mA·W−1, a high specific detectivity of 1013 Jones, and a fast response time to follow nanosecond pulsed optical signal. In addition, thanks to the inch-level 2D MoSe2 layers, a 4 × 4 integrated heterojunction device array is achieved, which has demonstrated good uniformity and satisfying imaging capability. The large-area 2D MoSe2 layer and its heterojunction device array have great promise for high-performance photodetection and imaging applications in integrated optoelectronic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, H. Y.; Li, Z. X.; Li, D. Y.; Chen, P.; Pi, L. J.; Zhou, X.; Zhai, T. Y. Van der Waals integration based on two-dimensional materials for high-performance infrared photodetectors. Adv. Funct. Mater. 2021, 31, 2103106.

    CAS  Google Scholar 

  2. Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

    CAS  Google Scholar 

  3. Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Silicon/2D-material photodetectors: From near-infrared to mid-infrared. Light: Sci. Appl. 2021, 10, 123.

    CAS  Google Scholar 

  4. Wu, D.; Xu, M. M.; Zeng, L. H.; Shi, Z. F.; Tian, Y. Z.; Li, X. J.; Shan, C. X.; Jie, J. S. In situ fabrication of PdSe2/GaN Schottky junction for polarization-sensitive ultraviolet photodetection with high dichroic ratio. ACS Nano 2022, 16, 5545–5555.

    CAS  Google Scholar 

  5. Wu, D.; Zhao, Z. H.; Lu, W.; Rogée, L.; Zeng, L. H.; Lin, P.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Res. 2021, 14, 1973–1979.

    CAS  Google Scholar 

  6. Zhang, Z. F.; Lin, C. N.; Yang, X.; Tian, Y. Z.; Gao, C. J.; Li, K. Y.; Zang, J. H.; Yang, X. G.; Dong, L.; Shan, C. X. Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array. Carbon 2021, 173, 427–432.

    CAS  Google Scholar 

  7. Zhuo, R. R.; Zeng, L. H.; Yuan, H. Y.; Wu, D.; Wang, Y. G.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res. 2019, 12, 183–189.

    CAS  Google Scholar 

  8. Tian, W.; Sun, H. X.; Chen, L.; Wangyang, P. H.; Chen, X. R.; Xiong, J.; Li, L. Low-dimensional nanomaterial/Si heterostructure-based photodetectors. InfoMat 2019, 1, 140–163.

    CAS  Google Scholar 

  9. Jiao, H. X.; Wang, X. D.; Chen, Y.; Guo, S. F.; Wu, S. Q.; Song, C. Y.; Huang, S. Y.; Huang, X. N.; Tai, X. C.; Lin, T. et al. HgCdTe/black phosphorus van der Waals heterojunction for highperformance polarization-sensitive midwave infrared photodetector. Sci. Adv. 2022, 8, eabn1811.

    CAS  Google Scholar 

  10. Yang, K. X.; Ni, B.; Ge, H. L.; Zhang, L. L.; Yang, L. S.; Ni, H. B.; Tai, G. S.; Chang, J. H. A high-performance quantum well infrared photodetector based on semiconductor-metal periodic microstructure. Opt. Quant. Electron. 2021, 53, 160.

    CAS  Google Scholar 

  11. Zhu, H.; Chen, Y.; Zhao, Y.; Li, X.; Teng, Y.; Hao, X. J.; Liu, J. F.; Zhu, H.; Wu, Q. H.; Huang, Y. Growth and characterization of InGaAs/InAsSb superlattices by metal-organic chemical vapor deposition for mid-wavelength infrared photodetectors. Superlattices Microstruct. 2020, 146, 106655.

    CAS  Google Scholar 

  12. Wu, D.; Guo, J. W.; Du, J.; Xia, C. X.; Zeng, L. H.; Tian, Y. Z.; Shi, Z. F.; Tian, Y. T.; Li, X. J.; Tsang, Y. H. et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano 2019, 13, 9907–9917.

    CAS  Google Scholar 

  13. Yao, J. D.; Yang, G. W. 2D material broadband photodetectors. Nanoscale 2020, 12, 454–476.

    CAS  Google Scholar 

  14. Zhong, F.; Wang, H.; Wang, Z.; Wang, Y.; He, T.; Wu, P. S.; Peng, M.; Wang, H. L.; Xu, T. F.; Wang, F. et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Res. 2020, 14, 1840–1862.

    Google Scholar 

  15. Wang, F. K.; Zhang, Y.; Gao, Y.; Luo, P.; Su, J. W.; Han, W.; Liu, K. L.; Li, H. Q.; Zhai, T. Y. 2D metal chalcogenides for IR photodetection. Small 2019, 15, 1901347.

    Google Scholar 

  16. Miró, P.; Audiffred, M.; Heine, T. An atlas of two-dimensional materials. Chem. Soc. Rev. 2014, 43, 6537–6554.

    Google Scholar 

  17. Wang, J. L.; Fang, H. H.; Wang, X. D.; Chen, X. S.; Lu, W.; Hu, W. D. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet–visible to infrared. Small 2017, 13, 1700894.

    Google Scholar 

  18. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light–matter interactions in heterostructures of atomically thin films. Sciecee 2013, 340, 1311–1314.

    CAS  Google Scholar 

  19. Lu, X.; Utama, M. I.; Lin, J. H.; Gong, X.; Zhang, J.; Zhao, Y. Y.; Pantelides, S. T.; Wang, J. X.; Dong, Z. L.; Liu, Z. et al. Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Naeo Lett. 2014, 14, 2419–2425.

    CAS  Google Scholar 

  20. Geng, X. S.; Yu, Y. Q.; Zhou, X. L.; Wang, C. D.; Xu, K. W.; Zhang, Y.; Wu, C. Y.; Wang, L.; Jiang, Y.; Yang, Q. Design and construction of ultra-thin MoSe2 nanosheet-based heterojunction for high-speed and low-noise photodetection. Naeo Res. 2016, 9, 2641–2651.

    CAS  Google Scholar 

  21. Dhyani, V.; Das, M.; Uddin, W.; Muduli, P. K.; Das, S. Self-powered room temperature broadband infrared photodetector based on MoSe2/germanium heterojunction with 35 A/W responsivity at 1550 nm. Appl. Phys. Lett. 2019, 114, 121101.

    Google Scholar 

  22. Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181.

    CAS  Google Scholar 

  23. Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Van der Waals epitaxial growth of mosaic-like 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 μm. Adv. Mater. 2020, 32, 2004412.

    Google Scholar 

  24. Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Fuect. Mater. 2019, 29, 1806878.

    Google Scholar 

  25. Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Fuect. Mater. 2018, 28, 1705970.

    Google Scholar 

  26. Peng, H.; Wei, C. D.; Wang, K.; Meng, T. Y.; Ma, G. F.; Lei, Z. Q.; Gong, X. Ni0.85Se@MoSe2 nanosheet arrays as the electrode for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 17067–17075.

    CAS  Google Scholar 

  27. Wu, D.; Tian, R.; Lin, P.; Shi, Z. F.; Chen, X.; Jia, M. C.; Tian, Y. T.; Li, X. J.; Zeng, L. H.; Jie, J. S. Wafer-scale synthesis of wide bandgap 2D GeSe2 layers for self-powered ultrasensitive UV photodetection and imaging. Naeo Energy 2022, 104, 107972.

    CAS  Google Scholar 

  28. Zhong, J. H.; Wu, B.; Madoune, Y.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Naeo Res. 2022, 15, 2489–2496.

    CAS  Google Scholar 

  29. Ning, J.; Zhou, Y.; Zhang, J. C.; Lu, W.; Dong, J. G.; Yan, C. C.; Wang, D.; Shen, X.; Feng, X.; Zhou, H. et al. Self-driven photodetector based on a GaSe/MoSe2 selenide van der Waals heterojunction with the hybrid contact. Appl. Phys. Lett. 2020, 117, 163104.

    CAS  Google Scholar 

  30. Liu, B. Y.; Zhao, C.; Chen, X. Q.; Zhang, L. R.; Li, Y. F.; Yan, H.; Zhang, Y. Z. Self-powered and fast photodetector based on graphene/MoSe2/Au heterojunction. Superlattices Microstruct. 2019, 130, 87–92.

    CAS  Google Scholar 

  31. Xia, J.; Huang, X.; Liu, L. Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D. D.; Li, J. J.; Gu, C. Z.; Meng, X. M. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Naeoscale 2014, 6, 8949–8955.

    CAS  Google Scholar 

  32. John, J. W.; Dhyani, V.; Maity, S.; Mukherjee, S.; Ray, S. K.; Kumar, V.; Das, S. Broadband infrared photodetector based on nanostructured MoSe2-Si heterojunction extended up to 2.5 μm spectral range. Naeotecheology 2020, 31, 455208.

    CAS  Google Scholar 

  33. Patel, A. B.; Chauhan, P.; Patel, K.; Sumesh, C. K.; Narayan, S.; Patel, K. D.; Solanki, G. K.; Pathak, V. M.; Jha, P. K.; Patel, V. Solution-processed uniform MoSe2-WSe2 heterojunction thin film on silicon substrate for superior and tunable photodetection. ACS Sustaieable Chem. Eeg. 2020, 8, 4809–4817.

    CAS  Google Scholar 

  34. Yang, T.; Li, X.; Wang, L. M.; Liu, Y. M.; Chen, K. J.; Yang, X.; Liao, L.; Dong, L.; Shan, C. X. Broadband photodetection of 2D Bi2O2Se-MoSe2 heterostcuurure. J. Mater. Sci. 2019, 54, 14742–14751.

    CAS  Google Scholar 

  35. Wazir, N.; Liu, R. B.; Ding, C. J.; Wang, X. S.; Ye, X.; Xie, L. L.; Lu, T. Q.; Wei, L.; Zou, B. S. Vertically stacked MoSe2/MoO2 nanolayered photodetectors with tunable photoresponses. ACS Appl. Naeo Mater. 2020, 3, 7543–7553.

    CAS  Google Scholar 

  36. Wu, D.; Guo, J. W.; Wang, C. Q.; Ren, X. Y.; Chen, Y. S.; Lin, P.; Zeng, L. H.; Shi, Z. F.; Li, X. J.; Shan, C. X. et al. Ultrabroadband and high-detectivity photodetector based on WS2/Ge heterojunction through defect engineering and interface passivation. ACS Naeo 2021, 15, 10119–10129.

    CAS  Google Scholar 

  37. Zhao, B.; Wang, F.; Chen, H. Y.; Zheng, L. X.; Su, L. X.; Zhao, D. X.; Fang, X. S. An ultrahigh responsivity (9.7 mA·W−1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Fuect. Mater. 2017, 27, 1700264.

    Google Scholar 

  38. Henck, H.; Pierucci, D.; Chaste, J.; Naylor, C. H.; Avila, J.; Balan, A.; Silly, M. G.; Asensio, M. C.; Sirotti, F.; Johnson, A. T. C. et al. Electrolytic phototransistor based on graphene-MoS2 van der Waals p–n heterojunction with tunable photoresponse. Appl. Phys. Lett. 2016, 109, 113103.

    Google Scholar 

  39. Ghamgosar, P.; Rigoni, F.; Kohan, M. G.; You, S. J.; Morales, E. A.; Mazzaro, R.; Morandi, V.; Almqvist, N.; Concina, I.; Vomiero, A. Self-powered photodetectors based on core–shell ZnO-Co3O4 nanowire heterojunctions. ACS Appl. Mater. Ieterfaces 2019, 11, 23454–23462.

    CAS  Google Scholar 

  40. Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commue. 2017, 8, 1906.

    Google Scholar 

  41. Zhang, L.; Han, X. N.; Wen, P. T.; Zhang, S. H.; Zheng, Z. Q.; Li, J. B.; Gao, W. Weyl-semimetal TaIrTe4/Si nanostructures for self-powered Schottky photodetectors. ACS Appl. Naeo Mater. 2022, 5, 6523–6531.

    CAS  Google Scholar 

  42. Duan, L.; He, F. N.; Tian, Y.; Sun, B.; Fan, J. B.; Yu, X. C.; Ni, L.; Zhang, Y.; Chen, Y. N.; Zhang, W. X. Fabrication of self-powered fast-response ultraviolet photodetectors based on graphene/ZnO: Al nanorod-array-film structure with stable Schottky barrier. ACS Appl. Mater. Ieterfaces 2017, 9, 8161–8168.

    CAS  Google Scholar 

  43. Wang, F.; Yin, L.; Wang, Z. X.; Xu, K.; Wang, F. M.; Shifa, T. A.; Huang, Y.; Jiang, C.; He, J. Configuration-dependent electrically tunable van der Waals heterostructures based on MoTe2/MoS2. Adv. Fuect. Mater. 2016, 26, 5499–5506.

    CAS  Google Scholar 

  44. Lai, B. K.; Shen, H. L.; Zhao, Q. C.; Li, Y. F.; Fan, W. T. Self-driven heterostructure photodetector of sputtered CZTS film on c-Si with an inverted pyramid structure. Ceram. Iet. 2022, 48, 2105–2111.

    CAS  Google Scholar 

  45. Xiang, D.; Han, C.; Hu, Z. H.; Lei, B.; Liu, Y. Y.; Wang, L.; Hu, W. P.; Chen, W. Surface transfer doping-induced, high-performance graphene/silicon Schottky junction-based, self-powered photodetector. Small 2015, 11, 4829–4836.

    CAS  Google Scholar 

  46. Mao, J.; Yu, Y. Q.; Wang, L.; Zhang, X. J.; Wang, Y. M.; Shao, Z. B.; Jie, J. S. Ultrafast, broadband photodetector based on MoSe2/silicon heterojunction with vertically standing layered structure using graphene as transparent electrode. Adv. Sci. 2016, 3, 1600018.

    Google Scholar 

  47. Wang, Y. Y.; Wu, Y. D.; Peng, W.; Song, Y. H.; Wang, B.; Wu, C. Y.; Lu, Y. Self-assembled KCu7S4 nanowire monolayers for self-powered near-infrared photodetectors. Naeoscale 2018, 10, 18502–18509.

    CAS  Google Scholar 

  48. Boruah, B. D.; Misra, A. Energy-efficient hydrogenated zinc oxide nanoflakes for high-performance self-powered ultraviolet photodetector. ACS Appl. Mater. Ieterfaces 2016, 8, 18182–18188.

    Google Scholar 

  49. Luo, L. B.; Hu, H.; Wang, X. H.; Lu, R.; Zou, Y. F.; Yu, Y. Q.; Liang, F. X. A graphene/GaAs near-infrared photodetector enabled by interfacial passivation with fast response and high sensitivity. J. Mater. Chem. C 2015, 3, 4723–4728.

    CAS  Google Scholar 

  50. Zhang, T.; Ling, C. C.; Wang, X. M.; Feng, B. X.; Cao, M.; Xue, X.; Xue, Q. Z.; Zhang, J. Q.; Zhu, L.; Wang, C. K. et al. Six-arm stellat dendritic-PbS flexible infrared photodetector for intelligent healthcare monitoring. Adv. Mater. Technol. 2022, 7, 2200250.

    CAS  Google Scholar 

  51. Jin, B.; Zuo, N.; Hu, Z. Y.; Cui, W. J.; Wang, R. Y.; Van Tendeloo, G.; Zhou, X.; Zhai, T. Y. Excellent excitonic photovoltaic effect in 2D CsPbBr3/CdS heterostructures. Adv. Funct. Mater. 2020, 30, 2006166.

    CAS  Google Scholar 

  52. Sahatiya, P.; Reddy K. C. S.; Badhulika, S. Discretely distributed 1D V2O5 nanowires over 2D MoS2 nanoflakes for an enhanced broadband flexible photodetector covering the ultraviolet to near infrared region. J. Mater. Chem. C 2017, 5, 12728–12736.

    CAS  Google Scholar 

  53. Xiao, P.; Mao, J.; Ding, K.; Luo, W. J.; Hu, W. D.; Zhang, X. J.; Zhang, X. H.; Jie, J. S. Solution-processed 3D RGO-MoS2/pyramid Si heterojunction for ultrahigh detectivity and ultra-broadband photodetection. Adv. Mater. 2018, 30, 1801729.

    Google Scholar 

  54. Zeng, L. H.; Han, W.; Wu, S. E.; Wu, D.; Lau, S. P.; Tsang, Y. H. Graphene/PtSe2/pyramid Si van der Waals Schottky junction for room-temperature broadband infrared light detection. IEEE Trans. Electron Devices 2022, 69, 6212–6216.

    CAS  Google Scholar 

  55. Zeng, L. H.; Lin, S. H.; Lou, Z. H.; Yuan, H. Y.; Long, H.; Li, Y. Y.; Lu, W.; Lau, S. P.; Wu, D.; Tsang, Y. H. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 2018, 10, 352–362.

    CAS  Google Scholar 

  56. Wu, D.; Guo, C. G.; Zeng, L. H.; Ren, X. Y.; Shi, Z. F.; Wen, L.; Chen, Q.; Zhang, M.; Li, X. J.; Shan, C. X. et al. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light: Sci. Appl. 2023, 12, 5.

    CAS  Google Scholar 

  57. Wu, E. P.; Wu, D.; Jia, C.; Wang, Y. G.; Yuan, H. Y.; Zeng, L. H.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 2019, 6, 565–572.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2022YFB2803900), the National Natural Science Foundation of China (Nos. U2004165, U22A20138, and 11974016), the Natural Science Foundation of Henan Province, China (No. 202300410376), and Key Research and Development Program (social development) of Jiangsu Province (No. BE2021667). The authors are grateful for the technical support from the Nano-X from Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (SINANO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longhui Zeng, Xuechao Yu or Di Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wu, SE., Hei, J. et al. Van der Waals integration inch-scale 2D MoSe2 layers on Si for highly-sensitive broadband photodetection and imaging. Nano Res. 16, 11422–11429 (2023). https://doi.org/10.1007/s12274-023-5759-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5759-y

Keywords

Navigation