Skip to main content
Log in

Si-CMOS-compatible 2D PtSe2-based self-driven photodetector with ultrahigh responsivity and specific detectivity

与硅基CMOS兼容且具有超高响应率和比探测率的二维二硒化铂自驱动光电探测器

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Photodetectors (PDs) based on two-dimensional (2D) materials are attracting considerable research interest due to the unique properties of 2D materials and their tunable spectral response. However, their performance is not outstanding enough, and the compatibility of their fabrication process with Si-complementary metal oxide semiconductor (CMOS) process flow needs evaluation. Here, we report an unprecedented high-performance, air-stable, self-driven, and broadband room-temperature PD based on the architecture of the PtSe2/ultrathin SiO2/Si heterojunction. The PD exhibits a very prominent responsivity of 8.06 A W−1, a truly high specific detectivity of 4.78 × 1013 cm Hz1/2 W−1, an extremely low dark current of 0.12 pA, and a fantastic photocurrent/dark current ratio of 1.29 × 109 at zero bias. The measured photocurrent responsivities at wavelengths of 375, 532, 1342, and 1550 nm are 2.12, 5.56, 18.12, and 0.65 mA W−1, respectively. Moreover, the fabricated 9 × 9 device array not only illustrates the very high uniformity and reproducibility of the PDs but also shows great potential in the field of ultraviolet-visiblenear infrared illumination imaging applications with a fabrication fully compatible with Si-CMOS technologies. Our design of the PtSe2/ultrathin SiO2/Si heterojunction PD greatly suppresses dark current, improves the diode ideality factor, and increases the potential barrier. Accordingly, it paves the way for a general strategy to enhance the performance of PDs used in novel optoelectronic applications.

摘要

因二维材料的独特性质及其可调谐的光谱响应, 基于二维材料 的光电探测器受到广泛关注. 然而, 它们的性能还不够突出, 其制造工 艺与硅基互补金属氧化物半导体技术工艺流程的兼容性还需要评估. 在本文中, 我们报道了一种基于二硒化铂/超薄二氧化硅/硅异质结构的 高性能、空气稳定、自驱动、室温宽带光电探测器. 该光电探测器表 现出超高的响应度( 8 . 0 6 A W − 1 ) 和比探测率( 4 . 7 8 × 1013 cm Hz1/2 W−1)、极低的暗电流(0.12 pA)以及优秀的开关比(1.29 × 109). 在375, 532, 1342和1550 nm波长处所测的光电流响应度分别为 2.12, 5.56, 18.12和0.65 mA W−1. 此外, 制造的9 × 9器件阵列不仅展示 了该探测器非常好的均匀性和可重复性, 而且还显示了其在紫外-可见- 近红外照明成像应用领域的潜力. 我们设计的二硒化铂/超薄二氧化硅/硅异质结光电探测器极大地抑制了暗电流, 提高了二极管的理想因子 并增加了界面势垒. 因此, 它为改善光电探测器性能的设计提供了一种 新策略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dhyani V, Das S. High-speed scalable silicon-MoS2 p-n heterojunction photodetectors. Sci Rep, 2017, 7: 1–9

    Article  Google Scholar 

  2. Xu Z, Lin S, Li X, et al. Monolayer MoS2/GaAs heterostructure selfdriven photodetector with extremely high detectivity. Nano Energy, 2016, 23: 89–96

    Article  CAS  Google Scholar 

  3. Qiao H, Huang Z, Ren X, et al. Self-powered photodetectors based on 2D materials. Adv Opt Mater, 2020, 8: 1900765

    Article  CAS  Google Scholar 

  4. Zeng L, Wu D, Jie J, et al. Van der Waals epitaxial growth of mosaiclike 2D platinum ditelluride layers for room-temperature mid-infrared photodetection up to 10.6 μm. Adv Mater, 2020, 32: 2004412

    Article  Google Scholar 

  5. Li X, Zhu M, Du M, et al. High detectivity graphene-silicon heterojunction photodetector. Small, 2016, 12: 595–601

    Article  CAS  Google Scholar 

  6. Rogalski A. HgCdTe infrared detector material: History, status and outlook. Rep Prog Phys, 2005, 68: 2267–2336

    Article  CAS  Google Scholar 

  7. Kimukin I, Biyikli N, Kartaloglu T, et al. High-speed InSb photodetectors on GaAs for mid-IR applications. IEEE J Sel Top Quantum Electron, 2004, 10: 766–770

    Article  CAS  Google Scholar 

  8. Long M, Wang P, Fang H, et al. Progress, challenges, and opportunities for 2D material based photodetectors. Adv Funct Mater, 2019, 29: 1803807

    Article  Google Scholar 

  9. Bhimanapati GR, Lin Z, Meunier V, et al. Recent advances in twodimensional materials beyond graphene. ACS Nano, 2015, 9: 11509–11539

    Article  CAS  Google Scholar 

  10. Tan C, Zhang H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem Soc Rev, 2015, 44: 2713–2731

    Article  CAS  Google Scholar 

  11. Chhowalla M, Shin HS, Eda G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem, 2013, 5: 263–275

    Article  Google Scholar 

  12. Xu M, Liang T, Shi M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113: 3766–3798

    Article  CAS  Google Scholar 

  13. Akinwande D, Huyghebaert C, Wang CH, et al. Graphene and twodimensional materials for silicon technology. Nature, 2019, 573: 507–518

    Article  CAS  Google Scholar 

  14. Cao B, Ye Z, Yang L, et al. Recent progress in van der Waals 2D PtSe2. Nanotechnology, 2021, 32: 412001

    Article  CAS  Google Scholar 

  15. Gong Y, Lin Z, Chen YX, et al. Two-dimensional platinum diselenide: Synthesis, emerging applications, and future challenges. Nano-Micro Lett, 2020, 12: 1–34

    Article  Google Scholar 

  16. Wang Y, Li L, Yao W, et al. Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett, 2015, 15: 4013–4018

    Article  CAS  Google Scholar 

  17. Yu X, Yu P, Wu D, et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat Commun, 2018, 9: 1545

    Article  Google Scholar 

  18. Zeng LH, Lin SH, Li ZJ, et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv Funct Mater, 2018, 28: 1705970

    Article  Google Scholar 

  19. Wu D, Wang Y, Zeng L, et al. Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics, 2018, 5: 3820–3827

    Article  Google Scholar 

  20. Xie C, Zeng L, Zhang Z, et al. High-performance broadband heterojunction photodetectors based on multilayered PtSe2 directly grown on a Si substrate. Nanoscale, 2018, 10: 15285–15293

    Article  CAS  Google Scholar 

  21. Ma M, Chen H, Zhou K, et al. Multilayered PtSe2/pyramid-Si heterostructure array with light confinement effect for high-performance photodetection, image sensing and light trajectory tracking applications. J Mater Chem C, 2021, 9: 2823–2832

    Article  CAS  Google Scholar 

  22. Zeng L, Lin S, Lou Z, et al. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater, 2018, 10: 352–362

    Article  CAS  Google Scholar 

  23. Zhuo R, Zeng L, Yuan H, et al. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity. Nano Res, 2019, 12: 183–189

    Article  CAS  Google Scholar 

  24. Ng KK, Card HC. A comparison of majority- and minority-carrier silicon MIS solar cells. IEEE Trans Electron Devices, 1980, 27: 716–724

    Article  Google Scholar 

  25. Zhang H, Zhang X, Liu C, et al. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors. ACS Nano, 2016, 10: 5113–5122

    Article  CAS  Google Scholar 

  26. He L, Jiang C, Wang H, et al. High efficiency planar Si/organic heterojunction hybrid solar cells. Appl Phys Lett, 2012, 100: 073503

    Article  Google Scholar 

  27. Aberle AG. Surface passivation of crystalline silicon solar cells: A review. Prog Photovolt-Res Appl, 2000, 8: 473–487

    Article  CAS  Google Scholar 

  28. Card HC, Rhoderick EH. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J Phys D-Appl Phys, 1971, 4: 1589–1601

    Article  CAS  Google Scholar 

  29. Buscema M, Groenendijk DJ, Steele GA, et al. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat Commun, 2014, 5: 1–6

    Article  Google Scholar 

  30. Lv Q, Yan F, Wei X, et al. High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv Opt Mater, 2018, 6: 1700490

    Article  Google Scholar 

  31. Wang L, Jie J, Shao Z, et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv Funct Mater, 2015, 25: 2910–2919

    Article  CAS  Google Scholar 

  32. Xie C, Yan F. Flexible photodetectors based on novel functional materials. Small, 2017, 13: 1701822

    Article  Google Scholar 

  33. Gong X, Tong M, Xia Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325: 1665–1667

    Article  CAS  Google Scholar 

  34. Choi W, Cho MY, Konar A, et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater, 2012, 24: 5832–5836

    Article  CAS  Google Scholar 

  35. Tong L, Peng M, Wu P, et al. Hole-dominated Fowler-Nordheim tunneling in 2D heterojunctions for infrared imaging. Sci Bull, 2021, 66: 139–146

    Article  CAS  Google Scholar 

  36. Fang Y, Armin A, Meredith P, et al. Accurate characterization of nextgeneration thin-film photodetectors. Nat Photon, 2018, 13: 1–4

    Article  Google Scholar 

  37. Yang S, Pi L, Li L, et al. 2D Cu9S5/PtS2/WSe2 double heterojunction bipolar transistor with high current gain. Adv Mater, 2021, 33: 2106537

    Article  CAS  Google Scholar 

  38. Wang F, Luo P, Zhang Y, et al. Band structure engineered tunneling heterostructures for high-performance visible and near-infrared photodetection. Sci China Mater, 2020, 63: 1537–1547

    Article  CAS  Google Scholar 

  39. Lv L, Zhuge F, Xie F, et al. Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization. Nat Commun, 2019, 10: 3331

    Article  Google Scholar 

  40. Choi MS, Qu D, Lee D, et al. Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. ACS Nano, 2014, 8: 9332–9340

    Article  CAS  Google Scholar 

  41. Wu E, Wu D, Jia C, et al. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics, 2019, 6: 565–572

    Article  CAS  Google Scholar 

  42. Wang G, Wang K, McEvoy N, et al. Ultrafast carrier dynamics and bandgap renormalization in layered PtSe2. Small, 2019, 15: 1902728

    Article  Google Scholar 

  43. Wang Y, Yu Z, Tong Y, et al. High-speed infrared two-dimensional platinum diselenide photodetectors. Appl Phys Lett, 2020, 116: 211101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (62090030/62090031, 51872257, and 51672244), the National Key R&D Program of China (2021YFA1200502), and the Natural Science Foundation of Zhejiang Province, China (LZ20F040001). The authors thank Dr. Yanjun Fang and Dr. Haiming Zhu for discussion.

Author information

Authors and Affiliations

Authors

Contributions

Ye P and Xu M conceived the idea and designed the experiments. Ye P performed the experiments with the assistance of Xiao H, Zhu Q, Kong Y, and Tang Y. Ye P and Xu M analyzed the data. Ye P and Xu M co-wrote the manuscript. All authors discussed the results.

Corresponding author

Correspondence to Mingsheng Xu  (徐明生).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Peng Ye received his BSc degree from Huazhong University of Science and Technology, China. He is currently a graduate student at the College of Information Science and Electronic Engineering, Zhejiang University, China. His main research interest focuses on photodetectors and photoelectronic devices based on 2D materials.

Mingsheng Xu is a full professor at the School of Micro-Nano Electronics/College of Information Science and Electronic Engineering, Zhejiang University. He earned his PhD degree from the Department of Electronic Engineering, The Chinese University of Hong Kong. His current main research includes 2D materials and devices.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, P., Xiao, H., Zhu, Q. et al. Si-CMOS-compatible 2D PtSe2-based self-driven photodetector with ultrahigh responsivity and specific detectivity. Sci. China Mater. 66, 193–201 (2023). https://doi.org/10.1007/s40843-022-2119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2119-1

Keywords

Navigation