Skip to main content

Advertisement

Log in

Broadband photodetection of 2D Bi2O2Se–MoSe2 heterostructure

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Due to their unique structure and photoelectrical properties, two-dimensional (2D) materials have attracted enormous attention on next-generation optoelectronic devices. Recently, the newly discovered 2D layered Bi2O2Se has exhibited outstanding sensitivity and optoelectronic properties. However, the performance of these 2D layered Bi2O2Se photodetectors can be limited by the high dark currents. The suitable band structure of 2D MoSe2 can form a type-II heterojunction with Bi2O2Se, which can reduce the dark current, modulate the interlayer transition energy and induce the charge spatial separation. Herein, we demonstrated a photodetector based on the heterojunction fabricated by van der Waals assembly between Bi2O2Se and few-layer MoSe2, showing visible to near-infrared detection range. Moreover, our results showed that the dark current of this photodetector was significantly reduced and the Ion/Ioff ratio was greatly improved. Importantly, it exhibited a broad detection range from 405 to 808 nm with a responsivity of 413.1 mA W−1, a high detectivity of 3.7 × 1011 Jones (at 780 nm) at room temperature. Compared with the 2D Bi2O2Se photodetector, the photocurrent response and recovery time in the heterojunction photodetector was greatly reduced from 1.92/1.31 to 0.79/0.49 s at room temperature. Our results showed that 2D Bi2O2Se/MoSe2 heterojunction has a great potential for broadband and fast photodetection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hu W, Yang JL (2017) Two-dimensional van der Waals heterojunctions for functional materials and devices. J Mater Chem C 5:12289–12297

    Article  CAS  Google Scholar 

  2. Xie LM (2015) Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications. Nanoscale 7:18392–18401

    Article  CAS  Google Scholar 

  3. Yan FG, Wei ZM, Wei X, Lv QS, Zhu WK, Wang KY (2018) Toward high-performance photodetectors based on 2D materials: strategy on methods. Small Meth 2:1700349

    Article  Google Scholar 

  4. Tan CL, Cao XH, Wu XJ, He QY, Yang J, Zhang X, Chen JZ, Zhao W, Han SK, Nam GH, Sindoro M, Zhang H (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331

    Article  CAS  Google Scholar 

  5. Wang XT, Cui Y, Li T, Lei M, Li JB, Wei ZM (2019) Recent advances in the functional 2D photonic and optoelectronic devices. Adv Opt Mater 7:1801274

    Article  Google Scholar 

  6. Buscema M, Island JO, Groenendijk DJ, Blanter SI, Steele GA, van der Zant HSJ, Castellanos-Gomez A (2015) Photocurrent generation with two-dimensional van der Waals semiconductors. Chem Soc Rev 44:3691–3718

    Article  CAS  Google Scholar 

  7. Hu PA, Wen ZZ, Wang LF, Tan PH, Xiao K (2012) Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 6:5988–5994

    Article  CAS  Google Scholar 

  8. Sun ZH, Chang HX (2014) Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. ACS Nano 8:4133–4156

    Article  CAS  Google Scholar 

  9. Tamalampudi SR, Lu YY, Kumar RU, Sankar R, Liao CD, Moorthy KB, Cheng CH, Chou FC, Chen YT (2014) High performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett 14:2800–2806

    Article  CAS  Google Scholar 

  10. Zhang WJ, Chiu MH, Chen CH, Chen W, Li LJ, Wee ATS (2014) Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 8:8653–8661

    Article  CAS  Google Scholar 

  11. Li X, Sun M, Shan CX, Chen Q, Wei XL (2018) Mechanical properties of 2D materials studied by in situ microscopy techniques. Adv Mater Interfaces 5:1701246

    Article  Google Scholar 

  12. Cheng S, Li J, Han MG, Deng SQ, Tan GT, Zhang XX, Zhu J, Zhu YM (2017) Topologically allowed nonsixfold vortices in a sixfold multiferroic material: observation and classification. Phys Rev Lett 118:145501

    Article  Google Scholar 

  13. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101

    Article  CAS  Google Scholar 

  14. Jorgensen JH, Cabo AG, Balog R, Kyhl L, Groves MN, Cassidy AM, Bruix A, Bianchi M, Dendzik M, Arman MA, Lammich L, Ignacio Pascual J, Knudsen J, Hammer B, Hofmann P, Hornekaer L (2016) Symmetry-driven band gap engineering in hydrogen functionalized graphene. ACS Nano 10:10798–10807

    Article  Google Scholar 

  15. Xu XZ, Liu C, Sun ZH, Cao T, Zhang ZH, Wang E, Liu ZF, Liu KH (2018) Interfacial engineering in graphene bandgap. Chem Soc Rev 47:3059–3099

    Article  CAS  Google Scholar 

  16. Alkis S, Oztas T, Aygun LE, Bozkurt F, Okyay AK, Ortac B (2012) Thin film MoS2 nanocrystal based ultraviolet photodetector. Opt Express 20:21815–21820

    Article  CAS  Google Scholar 

  17. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8:497–501

    Article  CAS  Google Scholar 

  18. Zhang WJ, Huang JK, Chen CH, Chang YH, Cheng YJ, Li LJ (2013) High-gain phototransistors based on a CVD MoS2 monolayer. Adv Mater 25:3456–3461

    Article  CAS  Google Scholar 

  19. Chen PF, Li N, Chen XZ, Ong WJ, Zhao XJ (2018) The rising star of 2D black phosphorus beyond graphene: synthesis, properties and electronic applications. 2D Mater 5:014002

    Article  Google Scholar 

  20. Buscema M, Groenendijk DJ, Blanter SI, Steele GA, van der Zant HSJ, Castellanos-Gomez A (2014) Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett 14:3347–3352

    Article  CAS  Google Scholar 

  21. Engel M, Steiner M, Avouris P (2014) Black phosphorus photodetector for multispectral, high-resolution imaging. Nano Lett 14:6414–6417

    Article  CAS  Google Scholar 

  22. Chen XS, Qiu YF, Yang HH, Liu GB, Zheng W, Feng W, Cao WW, Hu WP, Hu P (2017) In-plane mosaic potential growth of large-area 2D layered semiconductors MoS2-MoSe2 lateral heterostructures and photodetector application. ACS Appl Mater Interfaces 9:1684–1691

    Article  CAS  Google Scholar 

  23. Zhang KN, Zhang TN, Cheng GH, Li TX, Wang SX, Wei W, Zhou XH, Yu WW, Sun Y, Wang P, Zhang D, Zeng CG, Wang XJ, Hu WD, Fan HJ, Shen GZ, Chen X, Duan XF, Chang K, Dai N (2016) Interlayer transition and infrared photodetection in atomically thin type-MoTe2/MoS2 van der Waals heterostructures. ACS Nano 10:3852–3858

    Article  CAS  Google Scholar 

  24. Um DS, Lee YS, Lim SD, Park S, Lee H, Koe H (2016) High-performance MoS2/CuO nanosheet-on-one-dimensional heterojunction photodetectors. ACS Appl Mater Interfaces 8:33955–33962

    Article  CAS  Google Scholar 

  25. Liu KK, Li XM, Cheng SB, Zhou R, Liang YC, Dong L, Shan CX, Zeng HB, Shen DZ (2018) Carbon-ZnO alternating quantum dot chains: electrostatic adsorption assembly and white light-emitting device application. Nanoscale 10:7155–7162

    Article  CAS  Google Scholar 

  26. Wu JX, Yuan HT, Meng MM, Chen C, Sun Y, Chen ZY, Dang WH, Tan CW, Liu YJ, Yin JB, Zhou YB, Huang SY, Xu HQ, Cui Y, Hwang HY, Liu ZF, Chen YL, Yan BH, Peng HL (2017) High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat Nanotechnol 12:530–534

    Article  CAS  Google Scholar 

  27. Ruleova P, Drasar C, Lostak P, Li CP, Ballikaya S, Uher C (2010) Thermoelectric properties of Bi2O2Se. Mater Chem Phys 119:299–302

    Article  CAS  Google Scholar 

  28. Li J, Wang ZX, Wen Y, Chu JW, Yin L, Cheng RQ, Lei L, He P, Jiang C, Feng LP, He J (2018) High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv Funct Mater 28:1706437

    Article  Google Scholar 

  29. Tian XL, Luo HY, Wei RF, Zhu CH, Guo QY, Yang DD, Wang FQ, Li JF, Qiu JR (2018) An ultrabroadband mid-infrared pulsed optical switch employing solution-processed bismuth oxyselenide. Adv Mater 30:1801021

    Article  Google Scholar 

  30. Chen YC, Lu YJ, Lin CN, Tian YZ, Gao CJ, Dong L, Shan CX (2018) Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J Mater Chem C 6:5727

    Article  CAS  Google Scholar 

  31. Hu H, Guo XD, Hu DB, Sun ZP, Yang XX, Dai Q (2018) Flexible and electrically tunable plasmons in graphene-mica heterostructures. Adv Sci 5:1800175

    Article  Google Scholar 

  32. Yang XX, Sun ZP, Low T, Hu H, Guo XD, Garcia de Abajo FJ, Avouris P, Dai Q (2018) Nanomaterial-based plasmon-enhanced infrared spectroscopy. Adv Mater 30:1704896

    Article  Google Scholar 

  33. Zhang WJ, Wang QX, Chen Y, Wang Z, Wee ATS (2016) Van der Waals stacked 2D layered materials for optoelectronics. 2D Mater 3:022001

    Article  Google Scholar 

  34. Cheng SB, Xu CS, Deng SQ, Han MG, Bao SY, Ma J, Nan CW, Duan WH, Bellaiche L, Zhu YM, Zhu J (2018) Interface reconstruction with emerging charge ordering in hexagonal manganite. Sci Adv 4:eaar4298

    Article  Google Scholar 

  35. Quhe R, Liu JC, Wu JX, Yang J, Wang YY, Li QH, Li TR, Guo Y, Yang JB, Peng HL, Lei M, Lu J (2018) High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale 11:532–540

    Article  Google Scholar 

  36. Gong YJ, Lei SD, Ye GL, Li B, He YM, Keyshar K, Zhang X, Wang QZ, Lou J, Liu Z, Vajtai R, Zhou W, Ajayan PM (2015) Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett 15:6135–6141

    Article  CAS  Google Scholar 

  37. Li X, Sun M, Cheng SB, Ren XY, Zang JH, Xu TT, Wei XL, Li SF, Chen Q, Shan CX (2019) Crystallographic-orientation dependent Li ion migration and reactions in layered MoSe2. 2D Mater 6:035027

    Article  Google Scholar 

  38. Shaw JC, Zhou HL, Chen Y, Weiss NO, Liu Y, Huang Y, Duan XF (2014) Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res 7:511–517

    Article  CAS  Google Scholar 

  39. Guo JH, Shi YT, Bai XG, Wang XC, Ma TL (2015) Atomically thin MoSe2/Graphene and WSe2/Graphene nanosheets for the highly efficient oxygen reduction reaction. J Mater Chem A 3:24397–24404

    Article  CAS  Google Scholar 

  40. Cheng S, Langelier B, Ra YH, Rashid RT, Mi Z, Botton GA (2019) Structural origin of the high-performance light-emitting InGaN/AlGaN quantum disks. Nanoscale 11:8994–8999

    Article  CAS  Google Scholar 

  41. Wu JX, Tan CW, Tan ZJ, Liu YJ, Yin JB, Dang WH, Wang MZ, Peng HL (2017) Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett 17:3021–3026

    Article  CAS  Google Scholar 

  42. Zhang ZD, Yang JH, Zhang K, Chen S, Mei FH, Shen GZ (2017) Anisotropic photoresponse of layered 2D SnS-based near infrared photodetectors. J Mater Chem C 5:11288–11293

    Article  CAS  Google Scholar 

  43. Abderrahmane A, Ko PJ, Jung PG, Kim NH, Sandhu A (2018) Optoelectronic characterizations of two-dimensional h-BN/MoSe2 heterostructures based photodetector. Sci Adv Mater 10:627–631

    Article  CAS  Google Scholar 

  44. Wu D, Wang YG, Zeng LH, Jia C, Wu EP, Xu TT, Shi ZF, Tian YT, Li XJ, Tsang YH (2018) Design of 2D layered PtSe2 heterojunction for the high-performance, room-temperature, broadband, infrared photodetector. ACS Photonics 5:3820–3827

    Article  Google Scholar 

  45. Shi ZF, Xu TT, Wu D, Zhang YT, Zhang BL, Tian YT, Li XJ, Du GT (2016) Semi-transparent all-oxide ultraviolet light-emitting diodes based on ZnO/NiO-core/shell nanowires. Nanoscale 8:9997–10003

    Article  CAS  Google Scholar 

  46. Zhang F, Shi ZF, Ma ZZ, Li Y, Li S, Wu D, Xu TT, Li X-J, Shan CX, Du GT (2018) Silica coating enhances the stability of inorganic perovskite nanocrystals for efficient and stable down-conversion in white light-emitting devices. Nanoscale 10:20131–20139

    Article  CAS  Google Scholar 

  47. Zhang K, Peng M, Wu W, Guo J, Gao G, Liu Y, Kou J, Wen R, Lei Y, Yu A, Zhang Y, Zhai J, Wang ZL (2017) A flexible p-CuO/n-MoS2 heterojunction photodetector with enhanced photoresponse by the piezo-phototronic effect. Mater Horiz 4:274–280

    Article  CAS  Google Scholar 

  48. Wang F, Yin L, Wang ZX, Xu K, Wang FM, Shifa TA, Huang Y, Jiang C, He J (2016) Configuration-dependent electrically tunable van der Waals heterostructures based on MoTe2/MoS2. Adv Funct Mater 26:5499–5506

    Article  CAS  Google Scholar 

  49. Henck H, Pierucci D, Chaste J, Naylor CH, Avila J, Balan A, Silly MG, Asensio MC, Sirotti F, Johnson ATC, Lhuillier E, Ouerghi A (2016) Electrolytic phototransistor based on graphene-MoS2 van der Waals p-n heterojunction with tunable photoresponse. Appl Phys Lett 109:113103

    Article  Google Scholar 

  50. Cho AJ, Namgung SD, Kim H, Kwon JY (2017) Electric and photovoltaic characteristics of a multi-layer ReS2/ReSe2 heterostructure. APL Mater 5:076101

    Article  Google Scholar 

  51. Lan C, Li C, Wang S, Yin Y, Guo H, Liu N, Liu Y (2016) ZnO-WS2 heterostructures for enhanced ultra-violet photodetectors. RSC Adv 6:67520–67524

    Article  CAS  Google Scholar 

  52. Xu H, Xing J, Lu JH, Han X, Li D, Zhou Z, Bao LH, Gao HJ, Huang Y (2019) Annealing effects on the electrical and photoelectric performance of SnS2 field-effect transistor. Appl Surf Sci 484:39–44

    Article  CAS  Google Scholar 

  53. Sharma A, Srivastava AK, Senguttuvan TD, Husale S (2017) Robust broad spectral photodetection (UV-NIR) and ultra high responsivity investigated in nanosheets and nanowires of Bi2Te3 under harsh nano-milling conditions. Sci Rep 7:17911

    Article  Google Scholar 

  54. Sharma A, Senguttuvan TD, Ojha VN, Husale S (2019) Novel synthesis of topological insulator based nanostructures (Bi2Te3) demonstrating high performance photodetection. Sci Rep 9:3804

    Article  Google Scholar 

  55. Liu JL, Wang H, Li X, Chen H, Zhang ZK, Pan WW, Luo GQ, Yuan CL, Ren YL, Lei W (2019) High performance visible photodetectors based on thin two-dimensional Bi2Te3 nanoplates. J Alloys Compd 798:656–664

    Article  Google Scholar 

  56. Kumar R, Sharma A, Kaur M, Husale S (2017) Pt-nanostrip-enabled plasmonically enhanced broad spectral photodetection in bilayer MoS2. Adv Opt Mater 5:1700009

    Article  Google Scholar 

  57. Ma X, Zhang R, An C, Wu S, Hu X, Liu J (2019) Efficient doping modulation of monolayer WS2 for optoelectronic applications. Chin Phys B 28:037803

    Article  CAS  Google Scholar 

  58. Zheng Z, Zhang T, Yao J, Zhang Y, Xu J, Yang G (2016) Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 27:225501

    Article  Google Scholar 

  59. Ding Y, Zhou N, Gan L, Yan X, Wu R, Abidi IH, Waleed A, Pan J, Ou X, Zhang Q, Zhuang M, Wang P, Pan X, Fan Z, Zhai T, Luo Z (2018) Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV-vis-IR photodetectors. Nano Energy 49:200–208

    Article  CAS  Google Scholar 

  60. Mehew JD, Unal S, Torres Alonso E, Jones GF, Fadhil Ramadhan S, Craciun MF, Russo S (2017) Fast and highly sensitive ionic-polymer-gated WS2-graphene photodetectors. Adv Mater 29:1700222

    Article  Google Scholar 

  61. Zhang Z, Gong Y, Zou X, Liu P, Yang P, Shi J, Zhao L, Zhang Q, Gu L, Zhang Y (2019) Epitaxial growth of two-dimensional metal-semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments. ACS Nano 13:885–893

    Article  CAS  Google Scholar 

  62. Kong WY, Wu GA, Wang KY, Zhang TF, Zou YF, Wang DD, Luo LB (2016) Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv Mater 28:10725–10731

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant Nos. 11804304, 61804136) and China Postdoctoral Science Foundation (Grant No. 2017M622371).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Li, Lin Dong or Chong-Xin Shan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1867 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Li, X., Wang, L. et al. Broadband photodetection of 2D Bi2O2Se–MoSe2 heterostructure. J Mater Sci 54, 14742–14751 (2019). https://doi.org/10.1007/s10853-019-03963-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03963-1

Navigation