Skip to main content
Log in

Ultrawide-bandgap (6.14 eV) (AlGa)2O3/Ga2O3 heterostructure designed by lattice matching strategy for highly sensitive vacuum ultraviolet photodetection

以晶格匹配策略设计的超宽禁带(6.14 eV) (AlGa)2O3/Ga2O3异质结用于高灵敏度真空紫外探测

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

One judiciously designed strategy of utilizing an ultrathin but conductive Ga2O3:Si nanolayer to prepare (AlGa)2O3 crystalline film is demonstrated. Benefiting from the existence of Ga2O3:Si nanolayer, a high-quality (Al0.68Ga0.32)2O3 sesquioxide film with 68 at.% aluminum was epitaxially grown on sapphire substrates, which was characterized by high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction. Its bandgap was broadened to 6.14 eV, and a vacuum ultraviolet (VUV) (AlGa)2O3/Ga2O3:Si photodetector was subsequently fabricated. The detector exhibits a pretty high on-off ratio of about 103, an open-circuit voltage of 1.0 V and a responsivity of 8.1 mAW−1 at 0 V bias voltage. The performances imply that the proposed strategy is valuable for improving the quality and also adjusting the bandgap of (AlGa)2O3 sesquioxides, which is expected to facilitate their application in VUV photodetection.

摘要

本文展示了一种利用超薄导电的Ga2O3: S i纳米层获得 (AlGa)2O3结晶薄膜的设计策略. 受益于Ga2O3:Si插层的存在, 高质 量的(Al0.68Ga0.32)2O3倍半氧化物薄膜得以在蓝宝石衬底上外延生 长, 其中铝组分含量高达~68%, 并被多种技术如HRTEM, XPS和 XRD等进行了系统性表征. (Al0.68Ga0.32)2O3材料的带隙被成功拓宽 至6.14 eV, 我们在此基础上制备出了(AlGa)2O3/Ga2O3:Si真空紫外 光电探测器. 该探测器性能优异, 开关比高达103, 开路电压为 1.0 V, 0 V偏压下响应度为8.1 mA W−1. 以上结果表明, 本文提出的 生长策略可有效提高(AlGa)2O3倍半氧化物的质量并调节其带隙, 有助于推动其在真空紫外探测领域的实际应用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng W, Jia L, Huang F. Vacuum-ultraviolet photon detections. iScience, 2020, 23: 101145

    Article  CAS  Google Scholar 

  2. Zheng W, Huang F, Zheng R, et al. Low-dimensional structure vacuum-ultraviolet-sensitive (λ<200 nm) photodetector with fast-response speed based on high-quality AlN micro/nanowire. Adv Mater, 2015, 27: 3921–3927

    Article  CAS  Google Scholar 

  3. Zheng W, Lin R, Jia L, et al. Vacuum ultraviolet photovoltaic arrays. Photon Res, 2019, 7: 98–102

    Article  CAS  Google Scholar 

  4. Zheng W, Lin R, Zhang D, et al. Vacuum-ultraviolet photovoltaic detector with improved response speed and responsivity via heating annihilation trap state mechanism. Adv Opt Mater, 2018, 6: 1800697

    Article  Google Scholar 

  5. Jia L, Zheng W, Huang F. Vacuum-ultraviolet photodetectors. PhotoniX, 2020, 1: 22

    Article  Google Scholar 

  6. Monroy E, Omns F, Calle F. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond Sci Technol, 2003, 18: R33–R51

    Article  CAS  Google Scholar 

  7. Li Y, Zheng W, Huang F. All-silicon photovoltaic detectors with deep ultraviolet selectivity. PhotoniX, 2020, 1: 15

    Article  Google Scholar 

  8. Lin R, Zheng W, Zhang D, et al. Brushed crystallized ultrathin oxides: Recrystallization and deep-ultraviolet imaging application. ACS Appl Electron Mater, 2019, 1: 2166–2173

    Article  CAS  Google Scholar 

  9. Xu J, Zheng W, Huang F. Gallium oxide solar-blind ultraviolet photodetectors: A review. J Mater Chem C, 2019, 7: 8753–8770

    Article  CAS  Google Scholar 

  10. Peng L, Hu L, Fang X. Low-dimensional nanostructure ultraviolet photodetectors. Adv Mater, 2013, 25: 5321–5328

    Article  CAS  Google Scholar 

  11. Kong WY, Wu GA, Wang KY, et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv Mater, 2016, 28: 10725–10731

    Article  CAS  Google Scholar 

  12. Zheng W, Lin R, Ran J, et al. Vacuum-ultraviolet photovoltaic detector. ACS Nano, 2018, 12: 425–431

    Article  CAS  Google Scholar 

  13. Li T, Wang F, Lin R, et al. In-plane enhanced epitaxy for step-flow AlN yielding a high-performance vacuum-ultraviolet photovoltaic detector. CrystEngComm, 2020, 22: 654–659

    Article  CAS  Google Scholar 

  14. Jia L, Zheng W, Lin R, et al. Ultra-high photovoltage (2.45 V) forming in graphene heterojunction via quasi-fermi level splitting enhanced effect. iScience, 2020, 23: 100818

    Article  CAS  Google Scholar 

  15. Sun H, Mitra S, Subedi RC, et al. Unambiguously enhanced ultraviolet luminescence of AlGaN wavy quantum well structures grown on large misoriented sapphire substrate. Adv Funct Mater, 2019, 29: 1905445

    Article  CAS  Google Scholar 

  16. Huang C, Zhang H, Sun H. Ultraviolet optoelectronic devices based on AlGaN-SiC platform: Towards monolithic photonics integration system. Nano Energy, 2020, 77: 105149

    Article  CAS  Google Scholar 

  17. Wang D, Liu X, Fang S, et al. Pt/AlGaN nanoarchitecture: Toward high responsivity, self-powered ultraviolet-sensitive photodetection. Nano Lett, 2021, 21: 120–129

    Article  CAS  Google Scholar 

  18. Zheng W, Lin R, Jia L, et al. Vacuum-ultraviolet-oriented van der Waals photovoltaics. ACS Photonics, 2019, 6: 1869–1875

    Article  CAS  Google Scholar 

  19. Caldwell JD, Aharonovich I, Cassabois G, et al. Photonics with hexagonal boron nitride. Nat Rev Mater, 2019, 4: 552–567

    Article  CAS  Google Scholar 

  20. Zheng W, Lin R, Zhang Z, et al. Vacuum-ultraviolet photodetection in few-layered h-BN. ACS Appl Mater Interfaces, 2018, 10: 27116–27123

    Article  CAS  Google Scholar 

  21. Dahal R, Li J, Majety S, et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material. Appl Phys Lett, 2011, 98: 211110

    Article  Google Scholar 

  22. Li Y, Guo J, Zheng W, et al. Amorphous boron nitride for vacuum-ultraviolet photodetection. Appl Phys Lett, 2020, 117: 023504

    Article  CAS  Google Scholar 

  23. Guo D, Wu Z, Li P, et al. Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt Mater Express, 2014, 4: 1067–1076

    Article  Google Scholar 

  24. Zhang Q, Jie J, Diao S, et al. Solution-processed graphene quantum dot deep-UV photodetectors. ACS Nano, 2015, 9: 1561–1570

    Article  CAS  Google Scholar 

  25. Ai M, Guo D, Qu Y, et al. Fast-response solar-blind ultraviolet photodetector with a graphene/β-Ga2O3/graphene hybrid structure. J Alloys Compd, 2017, 692: 634–638

    Article  CAS  Google Scholar 

  26. Lin R, Zheng W, Zhang D, et al. High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication. ACS Appl Mater Interfaces, 2018, 10: 22419–22426

    Article  CAS  Google Scholar 

  27. Yuan SH, Wang CC, Huang SY, et al. Improved responsivity drop from 250 to 200 nm in sputtered gallium oxide photodetectors by incorporating trace aluminum. IEEE Electron Device Lett, 2018, 39: 220–223

    Article  CAS  Google Scholar 

  28. Feng Q, Li X, Han G, et al. (AlGa)2O3 solar-blind photodetectors on sapphire with wider bandgap and improved responsivity. Opt Mater Express, 2017, 7: 1240–1248

    Article  CAS  Google Scholar 

  29. Liao C H, Badan Y, Da Prato G, et al. β-(AlGa)2O3 solar-blind photodetector fabricated by high-temperature driven interdiffusion method (Conference Presentation). SPIE OPTO, San Francisco, 2020, doi: https://doi.org/10.1117/12.2544676

    Google Scholar 

  30. Zhang D, Lin W, Liu S, et al. Ultra-robust deep-UV photovoltaic detector based on graphene/(AlGa)2O3/GaN with high-performance in temperature fluctuations. ACS Appl Mater Interfaces, 2019, 11: 48071–48078

    Article  CAS  Google Scholar 

  31. Zhang D, Zheng W, Lin R, et al. Ultrahigh EQE (15%) solar-blind UV photovoltaic detector with organic-inorganic heterojunction via dual built-in fields enhanced photogenerated carrier separation efficiency mechanism. Adv Funct Mater, 2019, 29: 1900935

    Article  Google Scholar 

  32. Zhang H, Huang C, Song K, et al. Compositionally graded IIInitride alloys: Building blocks for efficient ultraviolet optoelectronics and power electronics. Reports on progress in physics Physical Society (Great Britain), 2021

  33. Zhang D, Zheng W, Lin RC, et al. High quality β-Ga2O3 film grown with N2O for high sensitivity solar-blind-ultraviolet photodetector with fast response speed. J Alloys Compd, 2018, 735: 150–154

    Article  CAS  Google Scholar 

  34. Nakagomi S, Kokubun Y. Crystal orientation of β-Ga2O3 thin films formed on c-plane and a-plane sapphire substrate. J Cryst Growth, 2012, 349: 12–18

    Article  CAS  Google Scholar 

  35. Kumar S, Sarau G, Tessarek C, et al. Study ofiron-catalysed growth of β-Ga2O3 nanowires and their detailed characterization using TEM, Raman and cathodoluminescence techniques. J Phys D-Appl Phys, 2014, 47: 435101

    Article  Google Scholar 

  36. Kamimura T, Sasaki K, Hoi Wong M, et al. Band alignment and electrical properties of Al2O3/β-Ga2O3 heterojunctions. Appl Phys Lett, 2014, 104: 192104

    Article  Google Scholar 

  37. Gottschalch V, Mergenthaler K, Wagner G, et al. Growth of β-Ga2O3 on Al2O3 and GaAs using metal-organic vapor-phase epitaxy. Phys Status Solidi A, 2009, 206: 243–249

    Article  CAS  Google Scholar 

  38. Lee WE, Lagerlof KPD. Structural and electron diffraction data for sapphire (α-Al2O3). J Elec Microsc Tech, 1985, 2: 247–258

    Article  CAS  Google Scholar 

  39. Jiang ZX, Wu ZY, Ma CC, et al. P-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product. Mater Today Phys, 2020, 14: 100226

    Article  Google Scholar 

  40. Wu ZY, Jiang ZX, Ma CC, et al. Energy-driven multi-step structural phase transition mechanism to achieve high-quality p-type nitrogen-doped β-Ga2O3 films. Mater Today Phys, 2021, 17: 100356

    Article  CAS  Google Scholar 

  41. Dong H, Long S, Sun H, et al. Fast switching β-Ga2O3 power MOSFET with a trench-gate structure. IEEE Electron Device Lett, 2019, 40: 1385–1388

    Article  CAS  Google Scholar 

  42. Hou X, Sun H, Long S, et al. Ultrahigh-performance solar-blind photodetector based on α-phase-dominated Ga2O3 film with record low dark current of 81 fA. IEEE Electron Device Lett, 2019, 40: 1483–1486

    Article  CAS  Google Scholar 

  43. Li Y, Zhang D, Lin R, et al. Graphene interdigital electrodes for improving sensitivity in a Ga2O3:Zn deep-ultraviolet photoconductive detector. ACS Appl Mater Interfaces, 2019, 11: 1013–1020

    Article  CAS  Google Scholar 

  44. Xu C, Du Z, Huang Y, et al. Amorphous-MgGaO film combined with graphene for vacuum-ultraviolet photovoltaic detector. ACS Appl Mater Interfaces, 2018, 10: 42681–42687

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91833301 and 61427901), Guangdong Natural Science Funds for Distinguished Young Scholars (2021B1515020105), and Guangdong Basic and Applied Basic Research Foundation (2019A1515110916).

Author information

Authors and Affiliations

Authors

Contributions

Li Y, Zhang D and Jia L performed the experiments; Li Y analyzed the data and wrote the paper with support from Zhang D and Zheng W. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Dan Zhang  (张丹) or Wei Zheng  (郑伟).

Additional information

Yuqiang Li obtained his bachelor’s degree from Sun Yat-sen University in 2016. He is a PhD candidate at the School of Materials, Sun Yat-sen University. His research interest focuses on wide-bandgap semiconductor materials and devices.

Dan Zhang graduated from the University of the Chinese Academy of Sciences with a doctorate degree in 2017. She is now an associate researcher at the School of Materials, Sun Yat-sen University. Her main research field is wide-bandgap semiconductor materials and devices.

Wei Zheng received his PhD degree from Shenzhen University in 2014. His research interest focuses on semiconductor-based vacuum-ultraviolet (10-200 nm) photodetectors and condensed matter physics in ultra-wide bandgap semiconductors.

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

40843_2021_1698_MOESM1_ESM.pdf

Ultrawide-bandgap (6.14 eV) (AlGa)2O3/Ga2O3 heterostructure designed by lattice matching strategy for highly sensitive vacuum ultraviolet photodetection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, D., Jia, L. et al. Ultrawide-bandgap (6.14 eV) (AlGa)2O3/Ga2O3 heterostructure designed by lattice matching strategy for highly sensitive vacuum ultraviolet photodetection. Sci. China Mater. 64, 3027–3036 (2021). https://doi.org/10.1007/s40843-021-1698-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1698-3

Keywords

Navigation