Skip to main content

Advertisement

Log in

Pretreatment and optimization of reducing sugar extraction from indigenous microalgae grown on brewery wastewater for bioethanol production

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The aim of this study was to select a suitable pretreatment method and optimize total reducing sugar extraction from indigenous Scenedesmus sp. grown on brewery wastewater for bioethanol production. Microalgal biomass was pretreated using a microwave, autoclave, water bath, and oven with HCl, H2SO4, NaOH, and KOH, followed by the optimization of the best pretreatment method and hydrolytic agent using response surface methodology for reducing sugar extraction. Four independent variables (acid concentration, microwave power, temperature, and extraction time) were then considered in the optimization and model development process; results showed that the maximum reducing sugar content was achieved in a microwave with HCl. Analysis of variance (ANOVA) and regression coefficient (0.983) also showed that the developed model was significant (P < 0.05) and fitted to the experimental data, respectively. The optimum conditions of an acid concentration of 1.68 N, microwave power of 1200 W, the temperature of 145 °C, and extraction time of 19 min were predicted a maximum total reducing sugar production of 175.5 mg/g. The experimental result of total reducing sugar obtained at optimum conditions was 172.5 mg/g, which was well close to the predicted value, verifying the appropriateness of the model. The highest bioethanol yield of 0.08 g ethanol/g microalgal biomass was obtained at 24-h fermentation time with a fermentation efficiency of 88.15%. This study demonstrates the possibility of bioethanol production from indigenous microalgae grown on brewery wastewater through microwave-assisted acid extraction of reducing sugar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data sets used in this study are available from the corresponding author on reasonable request.

Ethical approval and consent to participate.

Not applicable.

References

  1. Yu KL, Chen W-H, Sheen H-K, Chang J-S, Linh C-S, Ong HC et al (2020) Bioethanol production from acid pretreated microalgal hydrolysate using microwave-assisted heating wet torrefaction. Fuel 279:118435. https://doi.org/10.1016/j.fuel.2020.118435

    Article  Google Scholar 

  2. Hussein MA, Filho WL (2012) Analysis of energy as a precondition for improvement of living conditions and poverty reduction in sub-Saharan Africa. Sci Res Essays 7(30):2656–2666

    Google Scholar 

  3. Chen C, Zhao X, Yen H, Ho S, Cheng C (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10. https://doi.org/10.1016/j.bej.2013.03.006

    Article  Google Scholar 

  4. Wannapokin A, Ramaraj R, Whangchai K, Unpaprom Y (2018) Potential improvement of biogas production from fallen teak leaves with co-digestion of microalgae. 3 Biotech 8(123):1–18. https://doi.org/10.1007/s13205-018-1084-7

    Article  Google Scholar 

  5. Nguyen TVT, Unpaprom Y, NumchokManmai KandaWhangchai, Ramaraj R (2020) Impact and significance of pretreatment on the fermentable sugar production from low-grade longan fruit wastes for bioethanol production. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00977-7

    Article  Google Scholar 

  6. Vua PT, Unpapromb Y, Ramaraj R (2018) Impact and significance of alkaline-oxidant pretreatment on the enzymatic digestibility of Sphenoclea zeylanica for bioethanol production. Bioresour Technol 247:125–130. https://doi.org/10.1016/j.biortech.2017.09.012

    Article  Google Scholar 

  7. Agu O, Tabil L, Dumonceaux T (2017) Microwave-assisted alkali pre-treatment, densification and enzymatic saccharification of canola straw and oat hull. Bioengineering 4:1–32

    Article  Google Scholar 

  8. Nguyen TVT, Unpaprom Y, Tandee K, Whangchai K, Ramaraj R (2020) Physical pretreatment and algal enzyme hydrolysis of dried low-grade and waste longan fruits to enhance its fermentable sugar production. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-01176-0

    Article  Google Scholar 

  9. Casabar JT, Unpaprom Y, Ramaraj R (2019) Fermentation of pineapple fruit peel wastes for bioethanol production. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00436-y

    Article  Google Scholar 

  10. Sudhakar MP, Jegatheesan A, Poonam C, Perumal K, Arunkumar K (2017) Biosaccharification and ethanol production from spent seaweed biomass using marine bacteria and yeast. Renew Energy 105:133–139. https://doi.org/10.1016/j.renene.2016.12.055

    Article  Google Scholar 

  11. Sudhakar MP, Arunkumar K, Perumal K (2020) Pretreatment and process optimization of spent seaweed biomass (SSB) for bioethanol production using yeast (Saccharomyces cerevisiae). Renew Energy 153:456–471. https://doi.org/10.1016/j.renene.2020.02.032

    Article  Google Scholar 

  12. Miranda JR, Passarinho PC, Gouveia L (2012) Bioethanol production from Scenedesmus obliquus sugars : the influence of photobioreactors and culture conditions on biomass production. Appl Microbiol Biotechnol 96:555–564. https://doi.org/10.1007/s00253-012-4338-z

    Article  Google Scholar 

  13. Harun R, Jason WSY, Cherrington T, Danquah MK (2011) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88:3464–3467. https://doi.org/10.1016/j.apenergy.2010.10.048

    Article  Google Scholar 

  14. Sudhakar MP, Kumar BR, Mathimani T, Arunkumar K (2019) A review on bioenergy and bioactive compounds from microalgae and macroalgae-sustainable energy perspective. J Clean Prod 228:1320–1333. https://doi.org/10.1016/j.jclepro.2019.04.287

    Article  Google Scholar 

  15. Kumar BR, Mathimani T, Sudhakar MP, Rajendran K, Nizami A, Brindhadevi K et al (2021) A state of the art review on the cultivation of algae for energy and other valuable products : application, challenges, and opportunities. Renew Sustain Energy Rev 138:110649. https://doi.org/10.1016/j.rser.2020.110649

    Article  Google Scholar 

  16. Carrillo-reyes J, Barragán-trinidad M, Buitrón G (2016) Biological pretreatments of microalgal biomass for gaseous biofuel production and the potential use of rumen microorganisms : a review. Algal Res 18:341–351. https://doi.org/10.1016/j.algal.2016.07.004

    Article  Google Scholar 

  17. Guo H, Daroch M, Liu L, Qiu G, Geng S, Wang G (2013) Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta. Bioresour Technol 127:422–428. https://doi.org/10.1016/j.biortech.2012.10.006

    Article  Google Scholar 

  18. Ho S, Huang S, Chen C, Hasunuma T, Kondo A (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 135:191–198. https://doi.org/10.1016/j.biortech.2012.10.015

    Article  Google Scholar 

  19. Marchão L, da Silva TL, Gouveia L, Reis A (2018) Microalgae-mediated brewery wastewater treatment: effect of dilution rate on nutrient removal rates, biomass biochemical composition, and cell physiology. J Appl Phycol 30(3):1583–1595. https://doi.org/10.1007/s10811-017-1374-1

    Article  Google Scholar 

  20. Mercado I, Xavier Á, Verduga M, Cruz A (2020) Enhancement of biomass and lipid productivities of Scenedesmus sp. cultivated in the wastewater of the dairy industry. Processes 8(1458):1–19. https://doi.org/10.3390/pr8111458

    Article  Google Scholar 

  21. Diniz GS, Silva AF, Araújo OQF, Chaloub RM (2017) The potential of microalgal biomass production for biotechnological purposes using wastewater resources. J Appl Phycol 29:821–832. https://doi.org/10.1007/s10811-016-0976-3

    Article  Google Scholar 

  22. Ramaraj R, Unpaprom Y (2019) Optimization of pretreatment condition for ethanol production from Cyperus difformis by response surface methodology. 3 Biotech 9(218):1–9. https://doi.org/10.1007/s13205-019-1754-0

    Article  Google Scholar 

  23. Sophanodorn K, Unpaprom Y, Whangchai K, Homdoung N, Dussadee N, Ramaraj R (2020) Environmental management and valorization of cultivated tobacco stalks by combined pretreatment for potential bioethanol production. Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00992-8

    Article  Google Scholar 

  24. Kiran B, Pathak K, Kumar R, Deshmukh D (2016) Statistical optimization using central composite design for biomass and lipid productivity of microalga : a step towards enhanced biodiesel production. Ecol Eng 92:73–81

    Article  Google Scholar 

  25. Onumaegbu C, Alaswad A, Rodriguez C, Olabi A (2019) Modelling and optimization of wet microalgae Scenedesmus quadricauda lipid extraction using microwave pre-treatment method and response surface methodology. Renew Energy 132:1323–1331. https://doi.org/10.1016/j.renene.2018.09.008

    Article  Google Scholar 

  26. Kassim MA, Bhattacharya S (2016) Dilute alkaline pretreatment for reducing sugar production from Tetraselmis suecica and Chlorella sp. biomass. Process Biochem 51:1757–1766. https://doi.org/10.1016/j.procbio.2015.11.027

    Article  Google Scholar 

  27. Mamo TT, Mekonnen YS (2020) Microwave-assisted biodiesel production from microalgae, Scenedesmus species, using goat bone–made nano-catalyst. Appl Biochem Biotechnol 190:1147–1162. https://doi.org/10.1007/s12010-019-03149-0

    Article  Google Scholar 

  28. Andersen RA, Kawachi M (2005) Traditional microalgae isolation techniques. In: Andersen RA (ed) Algal culturing techniques. Elsevier/Academic Press, London, pp 83–100

    Google Scholar 

  29. Miranda JR, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obiquus microalga for bioethanol production. Bioresour Technol 104:342–348. https://doi.org/10.1016/j.biortech.2011.10.059

    Article  Google Scholar 

  30. Boonmanumsin P, Treeboobpha S, Jeamjumnunja K, Luengnaruemitchai A, Chaisuwan T, Wongkasemjit S (2012) Release of monomeric sugars from Miscanthus sinensis by microwave-assisted ammonia and phosphoric acid treatments. Bioresour Technol 103:425–431. https://doi.org/10.1016/j.biortech.2011.09.136

    Article  Google Scholar 

  31. Chellamboli C, Perumalsamy M (2014) Application of response surface methodology for optimization of growth and lipids in Scenedesmus abundans using batch culture system. RSC Adv 4:22129–22140. https://doi.org/10.1039/c4ra01179a

    Article  Google Scholar 

  32. Owolabi RU, Usman MA, Kehinde AJ (2018) Modelling and optimization of process variables for the solution polymerization of styrene using response surface methodology. J King Saud unviersity-Engineering Sceince 30:22–30. https://doi.org/10.1016/j.jksues.2015.12.005

    Article  Google Scholar 

  33. Harun R, Danquah K, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203. https://doi.org/10.1002/jctb.2287

    Article  Google Scholar 

  34. Mahzabin Q, Zhang B, Wang L, Shahbazi A (2019) A combined pretreatment, fermentation and ethanol-assisted liquefaction process for production of biofuel from Chlorella sp. Fuel 257:1–8. https://doi.org/10.1016/j.fuel.2019.116026

    Article  Google Scholar 

  35. Thu M, Choi SP, Lee J, Lee JH, Sim SJ (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microbiol Biotechnol 19(2):161–166. https://doi.org/10.4014/jmb.0810.578

    Article  Google Scholar 

  36. Lee Y, Chen W, Shen H, Han D, Li Y, Jones HDT et al (2013) Basic culturing and analytical measurement techniques. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Blackwell Publishing Ltd, Second Edi, pp 37–68

    Chapter  Google Scholar 

  37. APHA (1999) Standard methods for the examination of water and wastewater, 20th edn. In: Clesceri LS, Greenberg AE, Eaton AD (eds). Washington, DC

  38. Hach (2002) Procedure manual. Hach Loveland, CO

  39. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  Google Scholar 

  40. Bhuyar P, Sundararaju S, Hasbi M, Rahim A, Ramaraj R (2019) Microalgae cultivation using palm oil mill effluent as growth medium for lipid production with the effect of CO2 supply and light intensity. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-019-00548-5

    Article  Google Scholar 

  41. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker DLAP (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure 1617(1):1–16

    Google Scholar 

  42. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28(3):350–6

    Article  Google Scholar 

  43. AOAC (1990) Official methods of analysis. In: Helrich K (ed) Association of Official Analytical Chemists, INC, 15th edn, vol 1. Virginia, pp 70–74

  44. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar use. Anal Chem 31(3):426–428

    Article  Google Scholar 

  45. Manmai N, Unpaprom Y, Ramaraj R (2020) Bioethanol production from sunflower stalk : application of chemical and biological pretreatments by response surface methodology (RSM). Biomass Conv Bioref. https://doi.org/10.1007/s13399-020-00602-7

    Article  Google Scholar 

  46. Crowell EA, Ough CS (1979) A modified procedure for alcohol determination By dichromate oxidation. Am J Enol Vitic 30(1):61–63

    Article  Google Scholar 

  47. Williams MB, Darwin Reese H (1950) Colorimetric determination of ethyl alcohol. Anal Chem 22(12):1556–1561

    Article  Google Scholar 

  48. Atapour M, Kariminia H, Moslehabadi PM (2013) Optimization of biodiesel production by alkali-catalyzed transesterification of used frying oil. Process Saf Environ Prot 92(2):179–185. https://doi.org/10.1016/j.psep.2012.12.005

    Article  Google Scholar 

  49. Darpito C, Shin WS, Jeon S, Lee H, Nam K, Kwwon JH et al (2014) Cultivation of Chlorella protothecoides in anaerobically treated brewery wastewater for cost-effective biodiesel production. Bioprocess Biosyst Eng 38(3):523–530. https://doi.org/10.1007/s00449-014-1292-4

    Article  Google Scholar 

  50. Ferreira A, Ribeiro B, Marques PASS, Ferreira AF, Paula A, Pinheiro HM et al (2017) Scenedesmus obliquus mediated brewery wastewater remediation and CO2 biofixation for green energy purposes. J Clean Prod 165:1316–1327. https://doi.org/10.1016/j.jclepro.2017.07.232

    Article  Google Scholar 

  51. Gupta PL, Choi HJ, Lee S (2016) Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol. Environ Sci Pollut Res 23:10114–10123. https://doi.org/10.1007/s11356-016-6224-1

    Article  Google Scholar 

  52. Gupta SK, Kumar NM, Guldhe A, Ansari FA, Rawat I, Nasr M et al (2018) Wastewater to biofuels : comprehensive evaluation of various fl occulants on biochemical composition and yield of microalgae. Ecol Eng 117:62–68. https://doi.org/10.1016/j.ecoleng.2018.04.005

    Article  Google Scholar 

  53. Sivaramakrishnan R, Incharoensakdi A (2018) Utilization of microalgae feedstock for concomitant production of bioethanol and biodiesel. Fuel 217:458–466. https://doi.org/10.1016/j.fuel.2017.12.119

    Article  Google Scholar 

  54. Chandra N, Shukla P, Mallick N (2020) Role of cultural variables in augmenting carbohydrate accumulation in the green microalga Scenedesmus acuminatus for bioethanol production. Biocatal Agric Biotechnol 26:1–11. https://doi.org/10.1016/j.bcab.2020.101632

    Article  Google Scholar 

  55. Gouveia L, Sousa C, Ambrosano L, Ribeiro B, Botrel EP, Castro P et al (2016) Microalgae biomass production using wastewater: treatment and costs scale-up considerations. Algal Res 16:167–176. https://doi.org/10.1016/j.algal.2016.03.010

    Article  Google Scholar 

  56. Shokrkar H, Ebrahimi S, Zamani M (2017) Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel 200:380–386. https://doi.org/10.1016/j.fuel.2017.03.090

    Article  Google Scholar 

  57. Park C, Hyun J, Xiaoguang L, Hah Y, Yoo Y (2016) Enhancement of hydrolysis of Chlorella vulgaris by hydrochloric acid. Bioprocess Biosyst Eng 39:1015–1021. https://doi.org/10.1007/s00449-016-1570-4

    Article  Google Scholar 

  58. Hernández D, Riaño B, Coca M, García-gonzález MC (2015) Saccharification of carbohydrates in microalgal biomass by physical, chemical and enzymatic pre-treatments as a previous step for bioethanol production. Chem Eng J 262:939–945. https://doi.org/10.1016/j.cej.2014.10.049

    Article  Google Scholar 

  59. Dash RN, Mohammed H, Humaira T (2016) An integrated Taguchi and response surface methodological approach for the optimization of an HPLC method to determine glimepiride in a supersaturatable self-nanoemulsifying formulation. Saudi Pharm J 24:92–103. https://doi.org/10.1016/j.jsps.2015.03.004

    Article  Google Scholar 

  60. Li X, Wang Z, Wang L, Walid E, Zhang H (2012) Ultrasonic-assisted extraction of polysaccharides from Hohenbuehelia serotina by response surface methodology. Int J Biol Macromol 51(4):523–530. https://doi.org/10.1016/j.ijbiomac.2012.06.006

    Article  Google Scholar 

  61. Pandey A, Gupta A, Sunny A, Kumar S, Srivastava S (2020) Multi-objective optimization of media components for improved algae biomass, fatty acid and starch biosynthesis from Scenedesmus sp. ASK22 using desirability function approach. Renew Energy 150:476–486

    Article  Google Scholar 

  62. Xu Y, Cai F, Yu Z, Zhang L, Li X, Yang Y et al (2016) Optimisation of pressurised water extraction of polysaccharides from blackcurrant and its antioxidant activity. Food Chem 1(194):650–8. https://doi.org/10.1016/j.foodchem.2015.08.061

    Article  Google Scholar 

  63. Chen W, Wang WP, Zhang HS, Huang Q (2012) Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology. Carbohydr Polym 87:614–619. https://doi.org/10.1016/j.carbpol.2011.08.029

    Article  Google Scholar 

  64. Zhu T, Heo HJ, Row KH (2010) Optimization of crude polysaccharides extraction from Hizikia fusiformis using response surface methodology. Carbohydr Polym 82:106–110. https://doi.org/10.1016/j.carbpol.2010.04.029

    Article  Google Scholar 

  65. Pancha I, Chokshi K, Maurya R, Bhattacharya S, Bachani P, Mishra S (2016) Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production. Bioresour Technol 204:9–16. https://doi.org/10.1016/j.biortech.2015.12.078

    Article  Google Scholar 

  66. Ansari FA, Ravindran B, Gupta SK, Nasr M, Rawat I, Bux F (2019) Techno-economic estimation of wastewater phycoremediation and environmental bene fi ts using Scenedesmus obliquus microalgae. J Environ Manage 240:293–302. https://doi.org/10.1016/j.jenvman.2019.03.123

    Article  Google Scholar 

  67. Zhang Y, Kong X, Wang Z, Sun Y (2018) Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp. Renew Energy 125:1049–1057. https://doi.org/10.1016/j.renene.2018.01.078

    Article  Google Scholar 

  68. Silva A, Coimbra RN, Escapa C, Figueiredo SA, Freitas OM, Otero M (2020) Green microalgae Scenedesmus obliquus utilization for the adsorptive removal of nonsteroidal anti-inflammatory drugs (NSAIDs) from water samples. Int J Environ Res Public Heal 17(3707):1–24. https://doi.org/10.3390/ijerph17103707

    Article  Google Scholar 

  69. Sudhakar MP, Merlyn R, Arunkumar K, Perumal K (2016) Biomass and bioenergy characterization, pretreatment and saccharification of spent seaweed biomass for bioethanol production using baker ’ s yeast. Biomass Bioenerg 90:148–154. https://doi.org/10.1016/j.biombioe.2016.03.031

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge BGI Ethiopia for providing access to brewery wastewater from its wastewater treatment plant.

Funding

The authors would like to acknowledge the Center for Environmental Science of Addis Ababa University and Wolaita-Sodo University for financial support.

Author information

Authors and Affiliations

Authors

Contributions

M.M.K. and Z.Y. isolated and identified Scenedesmus sp., designed the study, conducted the experiments, collected and analyzed the data, and wrote the manuscript. S.L. and A.H. designed the experiments, supervised the research, analyzed and interpreted the data, and wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Zenebe Yirgu.

Ethics declarations

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yirgu, Z., Leta, S., Hussen, A. et al. Pretreatment and optimization of reducing sugar extraction from indigenous microalgae grown on brewery wastewater for bioethanol production. Biomass Conv. Bioref. 13, 6831–6845 (2023). https://doi.org/10.1007/s13399-021-01779-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-021-01779-1

Keywords

Navigation