Skip to main content

Advertisement

Log in

Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production

  • Bioenergy and Biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antolin G, Tinaut FV, Briceno Y, Castano V, Perez C, Ramirez AI (2002) Optimization of biodiesel production by sunflower oil transesterification. Bioresour Technol 83:111–114

    Article  CAS  Google Scholar 

  • Bouterfas R, Belkoura M, Dauta A (2006) The effects of irradiance and photoperiod on the growth rate of three freshwater green algae isolated from a eutrophic lake. Limnetica 25:647–656

    Google Scholar 

  • Brányiková I, Marsálková B, Doucha J, Brányik T, Bisová K, Zachleder V, Vítová M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108:766–776

    Article  Google Scholar 

  • Choi J-A, Hwang J-H, Dempsey BA, Abou-Shanab RAI, Min B, Song H, Lee DS, Kim JR, Cho Y, Hongi S, Jeon BH (2011) Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energ Environ Sci 4:3513–3520

    Article  CAS  Google Scholar 

  • Dauta A (1982) Conditions de développement du phytoplankton. Etude comparative du comportement de huit espèces en culture. Ann Limnol 18:217–226

    Article  Google Scholar 

  • Dermoun D (1987) Ecophysiologie de Porphyridium cruentum: validation expérimentale d’un modèle de croissance. Etude de la production de polysaccharide, PhD Dissertation, Université de Technologie de Compiègne, France, 211 p

  • Drapcho CM, Nhuan NP, Walker TH (2008) Biofuels engineering process technology. Mc Graw Hill, New York

    Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Eshaq FS, Ali MN, Mohd MK (2010) Spirogyra biomass a renewable source for biofuel (bioethanol) production. Int J Eng Sci Technol 2:7045–7054

    Google Scholar 

  • Eshaq FS, Ali MN, Mohd MK (2011) Production of bioethanol from next generation feedstock alga Spirogyra species. Int J Eng Sci Technol 3:1749–1755

    Google Scholar 

  • Foy RH, Gibson CE (1993) The influence of irradiance, photoperiod and temperature on the growth kinetic of three planktonic diatoms. Eur J Phycol 28:203–212

    Article  Google Scholar 

  • Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

    Article  CAS  Google Scholar 

  • Gouveia L (2011) Microalgae as a feedstock for biofuels. Springer Berlin Heidelberg Publisher, Berlin, pp 73

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  CAS  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microbial biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85:199–203

    CAS  Google Scholar 

  • Hirano A, Ryohei U, Shin H, Yasuyuki O (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142

    Article  CAS  Google Scholar 

  • Ho SH, Chen WM, Chang JS (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol 101:8725–8730

    Article  CAS  Google Scholar 

  • Ho SH, Chen CH, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252

    Article  CAS  Google Scholar 

  • Krauss RW, Thomas WH (1954) The growth and inorganic nutrition of Scenedesmus obliquus in mass culture. Plant Physiol 29:205–214

    Article  CAS  Google Scholar 

  • Laval D, Mazliak PM (1995) Nutrition et métabolisme (Physiologie végétale). Hermann (ed), Paris, 539 pp

  • Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352

    CAS  Google Scholar 

  • Mandal S, Malick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291

    Article  CAS  Google Scholar 

  • Matsumoto M, Hiroko Y, Nobukazu S, Hiroshi O, Tadashi M (2003) Saccharification of marine microalgae using marine bacteria for ethanol production. Appl Biochem Biotechnol 105:247–254

    Article  Google Scholar 

  • Miranda J, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus biomass for bioethanol production. Bioresour Technol 104:342–348

    Article  CAS  Google Scholar 

  • Mussatto SI, Dragone G, Guimarães P, Silva JP, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    Article  CAS  Google Scholar 

  • Nguyen MT, Choi SP, Lee J, Lee JH, Sim SJ (2009) Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. J Microb Biotechnol 19:161–166

    Article  CAS  Google Scholar 

  • Nicklish A (1998) Growth and light absorption of some planktonic cyanobacteria, diatoms and chlorophyceae under simulated natural light fluctuations. J Plankton Res 20:105–119

    Article  Google Scholar 

  • Olguin EJ, Galicia S, Angulo-Guerrero O, Hernández E (2001) The effect of low light flux and nitrogen deficiency on the chemical composition of Spirulina sp. (Arthrospira) grown on digested pig waste. Bioresour Technol 77:19–24

    Article  CAS  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  CAS  Google Scholar 

  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquacult 211:195–214

    Article  CAS  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Biotechnol 19:430–436

    CAS  Google Scholar 

  • Schenk PM, Skye R, Thomas-Hall Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Senger H, Bishop NI (1979) Observations on the photohydrogen producing activity during the synchronous cell cycle of Scenedesmus obliquus. Planta 145:53–62

    Article  CAS  Google Scholar 

  • Silva TL, Reis A, Medeiros R, Oliveira C, Gouveia L (2009) Oil production towards biofuel from autotrophic microalgae semi-continuous cultivations monitorized by flow cytometry. Appl Biochem Biotechnol 159:568–578

    Article  Google Scholar 

  • Sousa JM, Gouveia L (2009) Design and study of a thermo efficient closed-loop vertical photobioreactor for microalgae production. Proceedings of the MicroBiotec09 Conference. Vilamoura, Portugal

  • Starr RC, Zeikus JA (1987) UTEX-the culture collection of algae at the University of Texas at Austin. J Phycol 29:1–106

    Article  Google Scholar 

  • Sulfahri MS, Sunarto E, Irvansyah MY, Utami RS, Mangkoedihardjo S (2011) Ethanol production from algae Spirogyra with fermentation by Zymomonas mobilis and Saccharomyces cerevisiae. J Basic Appl Sci Res 1:589–593

    Google Scholar 

  • Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:701–708

    Article  CAS  Google Scholar 

  • Takeda H (1996) Cell wall sugars of some Scenedesmus species. Phytochem 42:673–675

    Article  CAS  Google Scholar 

  • Tang D, Han W, Li P, Miao X, Zhong J (2011) CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour Technol 102:3071–3076

    Article  CAS  Google Scholar 

  • Ueda R, Hirayama S, Sugata K, Nakayama H (1996) Process for the production of ethanol from microalgae. US Patent 5:578,472

    Google Scholar 

  • Ueno Y, Kurano N, Miyachi S (1998) Ethanol production by dark fermentation in the marine green alga Chlorococcum littorale. J Ferment Bioeng 86:38–43

    Article  CAS  Google Scholar 

  • Yang Z, Guo R, Xu X, Fan X, Li X (2010) Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int J Hydrogen Energy 35:9618–9623

    Article  CAS  Google Scholar 

  • Yang Z, Guo R, Xu X, Fan X, Luo S (2011) Fermentative hydrogen production from lipid-extracted microalgal biomass residues. Appl Energy 88:3468–3472

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of a research project “Microalgae as a sustainable raw material for biofuels production (Biodiesel, Bioethanol, Bio-H2 And Biogas)” (PTDC/AAC-AMB/100354/2008) sponsored by the Portuguese Foundation for the Science and Technology (“Fundação para a Ciência e a Tecnologia”—FCT). The authors wish to thank Dr. Stephanie Seddon-Brown for the English revision and the reviewers for their valuable comments to improve the manuscript quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gouveia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miranda, J.R., Passarinho, P.C. & Gouveia, L. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Appl Microbiol Biotechnol 96, 555–564 (2012). https://doi.org/10.1007/s00253-012-4338-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4338-z

Keywords

Navigation