Skip to main content
Log in

Microalgae-mediated brewery wastewater treatment: effect of dilution rate on nutrient removal rates, biomass biochemical composition, and cell physiology

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae have been used to remove nitrogen, phosphorus, and chemical oxygen demand (COD) from brewery wastewater (BWW). The microalga Scenedesmus obliquus was grown on BWW, using bubble column photobioreactors that operated under batch and continuous regimes. For the first time, the cell physiological status cell membrane integrity and enzymatic activity was monitored during the microalgae based BWW treatment, using flow cytometry. All the cultivations batch and continuous displayed a proportion of cells with intact membrane > 87%, although the continuous cultivations displayed a lower proportion of cells with enzymatic activity (20–40%) than the batch cultivations (97%). The dilution rate of 0.26 day−1 was the most favorable condition, since the microalgae cultivation attained the maximum biomass productivity (0.2 g ash-free dry weight day−1) and the total nitrogen and COD removal rates were the highest (97 and 74%, respectively), while the phosphorous removal rate was the third (23%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • APHA Standard Methods for the Examination of Water and Wastewater (1998) 20th ed. American Public Health Association, Washington, DC

    Google Scholar 

  • Adler NE, Schmitt-Jansen M, Altenburger R (2007) Flow cytometry as a tool to study phytotoxic modes of action. Environ Toxicol Chem 26:297–306

    Article  PubMed  CAS  Google Scholar 

  • Barata A, Gouveia L, Batista AP, Oliveira AC (2017) Scenedesmus obliquus in poultry wastewater bioremediation. J Clean Prod In press

  • Batista AP, Ambrosano L, Graça S, Sousa C, Marques PASS, Ribeiro B, Botrel EP, Neto PC, Gouveia L (2015) Combining urban wastewater treatment with biohydrogen production—an integrated microalgae-based approach. Bioresour Technol 184:230–235

    Article  PubMed  CAS  Google Scholar 

  • Batista AP, Moura P, Marques PASS, Ortigueira J, Alves L, Gouveia L (2014) Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel 117:537–543

    Article  CAS  Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  PubMed  CAS  Google Scholar 

  • Cid A, Fidalgo P, Herrero C, Abalde J (1996) Toxic action of cooper on the membrane system of a marine diatom measured by flow cytometry. Cytometry 25:32–36

    Article  PubMed  CAS  Google Scholar 

  • Davey H (2011) Life, death and in-between: meanings and methods in microbiology. Appl Environ Microbiol 77:5571–5576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darpito C, Shin WS, Jeon S, Lee H, Nam K, Kwon JH, Yang JW (2015) Cultivation of Chlorella protothecoides in anaerobically treated brewery wastewater for cost-effective biodiesel production. Bioprocess Biosyst Eng 38:523–530

    Article  PubMed  CAS  Google Scholar 

  • Doria E, Longoni P, Scibilia L, Iazzi N, Cella R, Nielsen E (2012) Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastewater. J Appl Phycol 24:375–383

    Article  CAS  Google Scholar 

  • Fan G, Liu D, Lin Q (2013) Fluorescein diacetate and propidium iodide FDA-PI double staining detect the viability of Microcystis sp. after ultrasonic irradiation. J. Food Agri Environ 11:2419–2421

    Google Scholar 

  • Franklin NM, Adams MS, Satuber JL, Lim RP (2001) Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry. Arch Environ Contam Toxicology 40:469–480

    Article  CAS  Google Scholar 

  • Gonzalez-Barreiro O, Rioboo C, Herrero C, Cid A (2006) Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms. Environ Pollut 144:266–271

    Article  PubMed  CAS  Google Scholar 

  • Gouveia L, Graça S, Sousa C, Ambrosano L, Ribeiro B, Botrel E, Neto P, Ferreira A, Silva C (2016) Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Res 16:167–176

    Article  Google Scholar 

  • Hodaifa G, Martínez ME, Sánchez S (2008) Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour Technol 99:1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Hong Y, Xu K, Zhan J (2014) Growth relationships of a lipid-producing Chlorella-alga with common microalgae in laboratory co-cultures. Microbiology 83:366–337

    Article  CAS  Google Scholar 

  • Hyka P, Lickova S, Přibyl P, Melzoch K, Kovar K (2013) Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 31:2–16

    Article  PubMed  CAS  Google Scholar 

  • Jia Q, Xiang W, Yang F, Hu Q, Tang M, Chen C, Wang G, Dai S, Wu H, Wu H (2016) Low-cost cultivation of Scenedesmus sp. with filtered anaerobically digested piggery wastewater: biofuel production and pollutant remediation. J Appl Phycol 28:727–736

    Article  CAS  Google Scholar 

  • Jiménez C, Capasso JM, Edelstein CL, Rivard CJ, Lucia S, Breusegem S, Berl T, Segovia M (2009) Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J Exp Bot 60:815–828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kong W-B, Hua S, Yang H, Yang Q, Xia C (2012) Enhancement of biomass and hydrocarbon productivities of Botryococcus braunii by mixotrophic cultivation and its application in brewery wastewater treatment. Afr J Microbiol Res 6:1489–1496

  • Lepage G, Roy C (1986) Direct transesterification of all classes of lipids in a one-step reaction. J Lipid Res 27:114–119

    PubMed  CAS  Google Scholar 

  • López CV, Fernández FG, Bustos CY, Sevilla JM (2011) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591

    Article  CAS  Google Scholar 

  • Martínez M, Sánchez S, Jiménez JM, Yousfi F, Muñoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272

    Article  Google Scholar 

  • Mata TM, Martins A, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Res 14:217–232

    Article  CAS  Google Scholar 

  • Mata TM, Melo AC, Simões M, Caetano NS (2012) Parametric study of a brewery effluent treatment by microalgae Scenedesmus obliquus. Bioresour Technol 107:151–158

    Article  PubMed  CAS  Google Scholar 

  • Mata TM, Mendes AM, Caetano N, Martins A (2014a) Sustainability and economic evaluation of microalgae grown in brewery wastewater. Bioresour Technol 168:151–158

    Article  PubMed  CAS  Google Scholar 

  • Mata TM, Santos J, Mendes AM, Caetano N, Martins A (2014b) Sustainability evaluation of biodiesel produced from microalgae Chlamydomonas sp. grown in brewery wastewater. Chem Eng Trans 37:823–828

    Google Scholar 

  • McGinn PJ, Dickinson KE, Park CK, Crystal GW, MacQuarrie PS, Black JF, Frigon J-C, Guiot RS, O'Leary JBS (2012) Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res 1:155–165

    Article  Google Scholar 

  • Olguín EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotech Adv 22:81–91

    Article  CAS  Google Scholar 

  • Olsen R, Hess-Erga O, Larsen A, Hoffmann F, Thuestad G, Hoell I (2016) Dual staining with CFGA-AM and SYTOX blue in flow cytometry analysis of UV-irradiated Tetraselmis suecica to evaluate vitality. Aquat Biol 25:39–51

    Article  Google Scholar 

  • Raposo MF, Oliveira SE, Castro PM, Bandarra N, Morais R (2010) On the utilization of microalgae for brewery effluent treatment and possible applications of the produced biomass. J Inst Brew 116:285–292

    Article  CAS  Google Scholar 

  • Rioboo C, O'Connor JE, Prado R, Herrero C, Cid A (2009) Cell proliferation alterations in Chlorella cells under stress conditions. Aquat Toxicol 94:229–237

    Article  PubMed  CAS  Google Scholar 

  • Ritchie RJ (2008) Universal chlorophyll equations for estimating chlorophylls a, b, c and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol or ethanol solvents. Photosynthetica 46:115–126

    Article  CAS  Google Scholar 

  • Ruiz J, Álvarez P, Arbib Z, Garrido C, Barragán J, Perales JA (2011) Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris. Int J Phytoremed 13:884–896

    Article  CAS  Google Scholar 

  • Silveira MG, Romão MV, Loureiro-Dias MC, Rombouts F, Abee T (2002) Flow cytometric assessment of membrane integrity of ethanol-stressed Oenococcus oeni cells. Appl Environ Microbiol 69:6087–6093

    Article  CAS  Google Scholar 

  • Tang H, Chen M, Ng KY, Salley SO (2012) Continuous microalgae cultivation in a photobioreactor. Biotechnol Bioeng 109:2468–2474

    Article  PubMed  CAS  Google Scholar 

  • Teixeira J, Fonseca MM, Vicente A (2007) Geometry and modes of operation. In: Biological reactors-fundamentals and applications. Lisbon, Lidel, pp 27–63

    Google Scholar 

  • Umamaheswari J, Shanthakumar S (2016) Efficacy of microalgae for industrial wastewater treatment: a review on operating conditions, treatment efficiency and biomass productivity. Rev Environ Sci Biotechnol 15:265–284

    Article  CAS  Google Scholar 

  • Veloso V, Reis A, Gouveia L, Novais J (1991) Lipid production by Phaeodactylum tricornutum. Bioresour Technol 38:115–119

    Article  CAS  Google Scholar 

  • Xiao X, Han Z-Y, Chen Y-X, Liang X (2011) Optimization of FDA–PI method using flow cytometry to measure metabolic activity of the cyanobacteria, Microcystis aeruginosa. Phys Chem Earth   Parts A/B/C 36:424–429

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sociedade Central Cervejas e Bebidas (SCC), Portugal, for the brewery effluent supply. The authors also acknowledge Dr. Cristina Oliveira (LNEG) for the fatty acid analysis assistance, Belina Ribeiro (LNEG), Graça Gomes LNEG), Natércia Santos (LNEG) and Margarida Monteiro (LNEG) for microalgae culture maintenance and laboratorial support.

Funding

This work was supported by the project ERANetLAC/0001/2014 (ELAC2014/BEE0357) GREENBIOREFINERY-Processing of brewery wastes with microalgae for producing valuable compounds and COST Action 1408 EUALGAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Lopes da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchão, L., da Silva, T.L., Gouveia, L. et al. Microalgae-mediated brewery wastewater treatment: effect of dilution rate on nutrient removal rates, biomass biochemical composition, and cell physiology. J Appl Phycol 30, 1583–1595 (2018). https://doi.org/10.1007/s10811-017-1374-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1374-1

Keywords

Navigation