Skip to main content

Advertisement

Log in

Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In a present study, nutrient removal from municipal wastewater by Chlorella vulgaris and Nannochloropsis oculata was investigated by using mixotrophic cultivation with glycerol (0 to 5 g/L). Performance parameters were assessed by estimating the removal of total nitrogen, total phosphorus, chemical oxygen demand (COD), biomass growth, chlorophyll content, lipid yield, and fatty acids. With the addition of 2 g/L glycerol, a maximum biomass productivity of 56 mg/L/day was achieved in the mixotrophic culture of C. vulgaris within 12 days. The mixotrophic culture showed a 30-fold increase in biomass productivity compared to the wastewater without any glycerol. However, the highest total nitrogen removal (80.62 %), total phosphate removal (60.72 %), and COD removal (96.3 %) was observed in the N. oculata culture supplemented with 3, 5, and 1 g/L glycerol, respectively. These results suggest that mixotrophic cultivation using glycerol offers great potential in the production of renewable biomass, waste water treatment, and consequent production of high-value microalgal oil.

Simultaneous biomass production and nutrient removal using microalgae cultivated in wastewater supplemented with glycerol

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353. doi:10.1016/j.biotechadv.2012.02.005

    Article  Google Scholar 

  • Singh A, Nigam PS, Rathore D (2015) Commercialization of marine algae-derived biofuels. In: Kim S-K, Lee C-G (eds) Marine bioenergy. CRC Press, Boca Raton, p 641–652

  • APHA (1998) APHA Standard Methods for the Examination of Water and Wastewater, Washington DC

  • Beuckels A, Smolders E, Muylaert K (2015) Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res 77:98–106. doi:10.1016/j.watres.2015.03.018

    Article  CAS  Google Scholar 

  • Bhatnagar A, Chinnasamy S, Singh M, Das KC (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88:3425–3431. doi:10.1016/j.apenergy.2010.12.064

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. doi:10.1139/o59-099

    Article  CAS  Google Scholar 

  • Cardozo KHM, Guaratini T, Barros MP et al (2007) Metabolites from algae with economical impact. Comp Biochem Physiol Part C Toxicol Pharmacol 146:60–78. doi:10.1016/j.cbpc.2006.05.007

    Article  Google Scholar 

  • Carreau JP, Dubacq JP (1978) Adaptation of a macro-scale method to the micro-scale for fatty acid methyl transesterification of biological lipid extracts. J Chromatogr A 151:384–390. doi:10.1016/S0021-9673(00)88356-9

    Article  CAS  Google Scholar 

  • Cerón-García MC, Macías-Sánchez MD, Sánchez-Mirón A et al (2013) A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Appl Energy 103:341–349. doi:10.1016/j.apenergy.2012.09.054

    Article  Google Scholar 

  • Cheng Y, Lu Y, Gao C, Wu Q (2009) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuels 23:4166–4173. doi:10.1021/ef9003818

    Article  CAS  Google Scholar 

  • Chen Y-H, Walker TH (2011) Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Biotechnol Lett 33:1973–1983. doi:10.1007/s10529-011-0672-y

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105. doi:10.1016/j.biortech.2009.12.026

    Article  CAS  Google Scholar 

  • Chi Z, Pyle D, Wen Z et al (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545. doi:10.1016/j.procbio.2007.08.008

    Article  CAS  Google Scholar 

  • Choi HJ, Lee SM (2014) Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess Biosyst Eng 1–6. doi: 10.1007/s00449-014-1317-z

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702. doi:10.1016/j.biotechadv.2011.05.015

    Article  CAS  Google Scholar 

  • Costache TA, Fernández FGA, Morales MM et al (2013) Comprehensive model of microalgae photosynthesis rate as a function of culture conditions in photobioreactors. Appl Microbiol Biotechnol 97:7627–7637. doi:10.1007/s00253-013-5035-2

    Article  CAS  Google Scholar 

  • Dijkstra AJ (2006) Revisiting the formation of trans isomers during partial hydrogenation of triacylglycerol oils. Eur J Lipid Sci Technol 108:249–264. doi:10.1002/ejlt.200500335

    Article  CAS  Google Scholar 

  • EC (2009) Directive 2009/28/EC of the European Parliament of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union. Off J Eur Union L140:16–62

  • European Standard EN 14214 (2008) Automotive fuels. Fatty acid methylesters (FAME) for diesel engines. Requirements and test methods.

  • Feng X, Walker TH, Bridges WC et al (2014) Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Bioresour Technol 166:17–23. doi:10.1016/j.biortech.2014.03.120

    Article  CAS  Google Scholar 

  • Galhardo CX, Masini JC (2000) Spectrophotometric determination of phosphate and silicate by sequential injection using molybdenum blue chemistry. Anal Chim Acta 417:191–200. doi:10.1016/S0003-2670(00)00933-8

    Article  CAS  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274. doi:10.1007/s10295-008-0495-6

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella Nana Hustedt, and Detonula Confervacea (Cleve) Gran. Can J Microbiol 8:229–239. doi:10.1139/m62-029

    Article  CAS  Google Scholar 

  • Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162:1978–1995. doi:10.1007/s12010-010-8974-4

    Article  CAS  Google Scholar 

  • Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35:2245–2253. doi:10.1016/j.biombioe.2011.02.036

    Article  CAS  Google Scholar 

  • Huppe HC, Turpin DH (1994) Integration of carbon and nitrogen metabolism in plant and algal cells. Annu Rev Plant Physiol Plant Mol Biol 45:577–607. doi:10.1146/annurev.pp.45.060194.003045

    Article  CAS  Google Scholar 

  • Johnson X, Alric J (2013) Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch. Eukaryot Cell 12:776–793. doi:10.1128/EC.00318-12

    Article  CAS  Google Scholar 

  • Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties†. Energy Fuels 22:1358–1364. doi:10.1021/ef700639e

    Article  CAS  Google Scholar 

  • Koch FC, McMeekin TL (1924) A new direct nesslerization micro-Kjeldahl method and a modification of the Nessler-Folin reagent for ammonia. J Am Chem Soc 46:2066–2069. doi:10.1021/ja01674a013

    Article  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Mussgnug JH et al (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci Off J Eur Photochem Assoc Eur Soc Photobiol 4:957–970. doi:10.1039/b506923h

    CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049. doi:10.1007/s10529-009-9975-7

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Li T, Zheng Y, Yu L, Chen S (2013) High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour Technol 131:60–67. doi:10.1016/j.biortech.2012.11.121

    Article  CAS  Google Scholar 

  • Liu N, Li F, Ge F et al (2015) Mechanisms of ammonium assimilation by Chlorella vulgaris F1068: isotope fractionation and proteomic approaches. Bioresour Technol 190:307–314. doi:10.1016/j.biortech.2015.04.024

    Article  CAS  Google Scholar 

  • Li Y, Fei X, Deng X (2012) Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass Bioenergy 42:199–211. doi:10.1016/j.biombioe.2012.03.010

    Article  CAS  Google Scholar 

  • Meng X, Yang J, Xu X et al (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5. doi:10.1016/j.renene.2008.04.014

    Article  Google Scholar 

  • Neilson AH, Lewin RA (1974) The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia 13:227–264. doi:10.2216/i0031-8884-13-3-227.1

    Article  CAS  Google Scholar 

  • Ogawa T, Aiba S (1981) Bioenergetic analysis of mixotrophic growth in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng 23:1121–1132. doi:10.1002/bit.260230519

    Article  CAS  Google Scholar 

  • Ogbonna JC, Masui H, Tanaka H (1997) Sequential heterotrophic/autotrophic cultivation—an efficient method of producing Chlorella biomass for health food and animal feed. J Appl Phycol 9:359–366. doi:10.1023/A:1007981930676

    Article  Google Scholar 

  • Pancha I, Chokshi K, George B et al (2014) Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 156:146–154. doi:10.1016/j.biortech.2014.01.025

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36. doi:10.1016/j.watres.2010.08.037

    Article  CAS  Google Scholar 

  • Quispe CAG, Coronado CJR, Carvalho JA Jr (2013) Glycerol: production, consumption, prices, characterization and new trends in combustion. Renew Sustain Energy Rev 27:475–493. doi:10.1016/j.rser.2013.06.017

    Article  CAS  Google Scholar 

  • Rai MP, Nigam S, Sharma R (2013) Response of growth and fatty acid compositions of Chlorella pyrenoidosa under mixotrophic cultivation with acetate and glycerol for bioenergy application. Biomass Bioenergy 58:251–257. doi:10.1016/j.biombioe.2013.08.038

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96. doi:10.1263/jbb.101.87

    Article  CAS  Google Scholar 

  • Tompkins J, Culture Collection of Algae and Protozoa, Natural Environment Research Council (Great Britain) (1995) Catalogue of strains, 1995. Culture Collection of Algae and Protozoa, Ambleside, Cumbria, U.K., p 204

  • Wan M, Liu P, Xia J et al (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91:835–844. doi:10.1007/s00253-011-3399-8

    Article  CAS  Google Scholar 

  • Xiong W, Gao C, Yan D et al (2010) Double CO2 fixation in photosynthesis–fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 101:2287–2293. doi:10.1016/j.biortech.2009.11.041

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation (NRF) of Korea grant funded by the Korean Government (MEST) (2012R1A2A4A01001539).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Mok Lee.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 3004 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P.L., Choi, H.J. & Lee, SM. Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol. Environ Sci Pollut Res 23, 10114–10123 (2016). https://doi.org/10.1007/s11356-016-6224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6224-1

Keywords

Navigation