Skip to main content

Advertisement

Log in

Isolation, characterization and plant growth promotion effects of putative bacterial endophytes associated with sweet sorghum (Sorghum bicolor (L) Moench)

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Sweet sorghum (Sorghum bicolor) is cultivated in Uruguay in complementation with sugarcane (Saccharum officinarum) as a feedstock for bioethanol production. It requires the application of high levels of chemical fertilizer for optimal growth, which causes environmental degradation. Plant growth-promoting (PGP) bacteria are of biotechnological interest since they can improve the growth of several important agronomical crops. Of particular interest are endophytes, which are those bacteria that can be detected at a particular moment within the internal tissues of healthy plants from where they can promote their growth. The aims of this work were to isolate and characterize, as well as identify putatively endophytic bacteria associated with sweet sorghum (cv-M81E), and also to study the inoculation effects of selected isolates on sorghum growth. A collection of 188 putative endophytes from surface-sterilized stems and roots was constructed and characterized. Bacterial isolates were shown to belong to different genera including Pantoea, Enterobacter, Pseudomonas, Acinetobacter, Stenotrophomonas, Ralstonia, Herbaspirillum, Achromobacter, Rhizobium, Chryseobacterium, Kocuria, Brevibacillus, Paenibacillus, Bacillus and Staphylococcus. PGP and infection features were investigated in vitro, and revealed some promising biotechnological candidates. In addition, isolates UYSB13 and UYSB45 showed PGP effects in greenhouse assays. This work provides the basis for further studies under field conditions, with the final aim of developing an effective inoculant for sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    Article  CAS  PubMed  Google Scholar 

  • Almodares A, Hadi MR (2009) Production of bioethanol from sweet sorghum: A review. Afr J Agric Res 4:772–780

    Google Scholar 

  • Ambrosini A, Beneduzi A, Stefanski T, Pinheiro FG, Vargas LK, Passaglia LMP (2012) Screening of plant growth promoting Rhizobacteria isolated from sunflower (Helianthus annuus L.) Plant Soil DOI 10.1007/s11104-011-1079-1

  • Araújo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PA, Saridakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236

    Article  PubMed  Google Scholar 

  • Asraful Islam SM, Math RK, Kim JM, Yun MG, Cho JJ, Kim EJ, Lee YH, Yun HD (2010) Effect of plant age on endophytic bacterial diversity of balloon flower (Platycodon grandiflorum) root and their antimicrobial activities. Curr Microbiol 61:346–56. doi:10.1007/s00284-010-9618-1

    Article  CAS  PubMed  Google Scholar 

  • Baldani JI, Massena Reis VM, Sampaio Videira SS, Boddey LH, Baldani VL (2014) The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant Soil (in press)

  • Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–16. doi:10.1007/s00248-006-9164-3

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, Luz E (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth — a critical assessment, 1st edn. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Beneduzi A, Moreira F, Costa PB, Vargas LK, Lisboa BB, Favreto R, Baldani JI, Passaglia LMP (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the south of Brazil. Appl Soil Ecol 63:94–104. doi:10.1016/j.apsoil.2012.08.010

    Article  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18. doi:10.1007/s00253-009-2092-7

    Article  CAS  PubMed  Google Scholar 

  • Bertrand H, Nalin R, Bally R, Cleyet-Marel JC (2001) Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biol Fertil Soils 33:152–156

    Article  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    Article  CAS  PubMed  Google Scholar 

  • Brown SD, Utturkar SM, Klingeman DM, Johnson CM, Martin SL, Land ML, Lu TY, Schadt CW, Doktycz MJ, Pelletier DA (2012) Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides. J Bacteriol 194:5991–3. doi:10.1128/JB.01243-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–50

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cavalcante V, Dobereiner J (1998) A new acid-tolerant nitrogen fixing bacterium associated with sugarcane. Plant Soil 108:23–31

    Article  Google Scholar 

  • Chiarini L, Bevivino A, Dalmastri C, Nacamulli C, Tabacchioni S (1998) Influence of plant development, cultivar and soil type on microbial colonization of maize roots. Appl Soil Ecol 8:11–18

    Article  Google Scholar 

  • Christensen G, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a staphylococci to medical devices. J Clin Micrbiol 22:996–1006

    CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Grönemeyer JL, Burbano CS, Hurek T, Reinhold-Hurek B (2011) Isolation and characterization of root-associated bacteria from agricultural crops in the Kavango region of Namibia. Plant Soil 356:67–82. doi:10.1007/s11104-011-0798-7

    Article  Google Scholar 

  • Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. In: Boyle C, Sieber T, Schulz B (eds) Microbial root endophytes. Springer, Berlin, pp 15–32

    Chapter  Google Scholar 

  • Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Boyle C, Sieber T, Schulz B (eds) Microbial root endophytes Springer, Berlin, pp 299–320

    Chapter  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Micorbiol 43:895–914

    Article  CAS  Google Scholar 

  • Hofrichter M, Fritsche W (1997) Depolymerization of low-rank coal by extracellular fungal enzyme systems. II. The ligninolytic enzymes of the coal-humic-acid-depolymerizing fungus Nematoloma frowardii b19. Appl Microbiol Biotechnol 47:419–424

    Article  CAS  Google Scholar 

  • InfoStat (2008) InfoStat versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Cordóba, Argentina

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209

    Article  Google Scholar 

  • Kim M, Day DF (2011) Composition of sugar cane, energy cane, and sweet sorghum suitable for ethanol production at Louisiana sugar mills. J Ind Microbiol Biotechnol 38:803–7. doi:10.1007/s10295-010-0812-8

    Article  CAS  PubMed  Google Scholar 

  • Kim S-J, Lee C-M, Han B-R, Kim MY, Yeo YS, Yoon SH, Koo BS, Jun HK (2008) Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett 282:44–51

    Article  CAS  PubMed  Google Scholar 

  • Kuklinsky-Sobral J, Araújo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99

    Article  CAS  Google Scholar 

  • Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS ONE 3:e2702. doi:10.1371/journal.pone.0002702

    Article  PubMed Central  PubMed  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1–25. doi:10.1023/B:ANTO.0000024903.10757.6e

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–56

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Absalon SC, del Orozco-Mosqueda CM, Martinez-Pacheco MM, Farias-Rodriguez R, Govindappa M, Santoyo G (2012) Isolation and molecular characterization of a novel strain of Bacillus with antifungal activity from the sorghum rhizosphere. Genet Mol Res 11:2665–73. doi:10.4238/2012.July.10.15

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Rosales C, Castro-Sowinsky S (2011) Antartic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature. Polar Res 30:1–8

    Article  Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3:1–7

    Article  CAS  Google Scholar 

  • Mei C, Flinn BS (2010) The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol 4:81–95

    Article  CAS  PubMed  Google Scholar 

  • Montañez A, Blanco AR, Barlocco C, Barlocco C, Beracochea M (2012) Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Appl Soil Ecol 58:21–28. doi:10.1016/j.apsoil.2012.02.009

    Article  Google Scholar 

  • Monteiro RA, Balsanelli E, Wassem R, Marin AM, Brusamarello-Santos LCC, Schmidt MA, Tadra-Sfeir MZ, Pankievicz VCS, Cruz LM, Chubatsu LS, Pedrosa FO, Souza EM (2012) Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil 356:175–196

    Article  CAS  Google Scholar 

  • Olivares FL, Baldani VLD, Reis VM, Baldani JI, Döbereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils 21:197–200

    Article  Google Scholar 

  • Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72:157–65

    Article  CAS  PubMed  Google Scholar 

  • Penrose DM, Glick BR (2003) Technical focus methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    Article  CAS  PubMed  Google Scholar 

  • Pereira JAR, Cavalcante VA, Baldani JI, Dobereiner J (1988) Field inoculation of sorghum and rice with Azospirillum spp. and Herbaspirillum seropedicae. Plant Soil 110:269–274

    Article  Google Scholar 

  • Perin L, Martínez-Aguilar L, Paredes-Valdez J, Baldani JI, Estrada-de Los Santos P, Reis VM, Caballero-Mellado J (2006) Burkholderia silvatlantica sp. nov., a diazotrophic bacterium associated with sugar cane and maize. Int J Syst Evol Microbiol 56:1931–1937. doi:10.1099/ijs.0.64362-0

    Article  CAS  PubMed  Google Scholar 

  • Poly F, Ranjard L, Nazaret S, Gourbière F, Monrozier LJ (2001) Comparison of nifH gene pools in soils and soil microenvironments with contrasting properties. Appl Environ Microbiol 67:2255–2262. doi:10.1128/AEM.67.5.2255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quecine MC, Araújo WL, Rossetto PB, Ferreira A, Tsui S, Lacava PT, Mondin M, Azevedo JL, Pizzirani-Kleiner AA (2012) Sugarcane growth promotion by the endophytic bacterium Pantoea agglomerans 33.1. Appl Environ Microbiol 78:7511–8. doi:10.1128/AEM.00836-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rashad M, Ragab A, Salem S (2001) The influence of some Bradyrhizobium and Rhizobium strains as plant growth promoting rhizobacteria on the growth and yield of sorghum (Sorghum bicolor L.) plants under drought stress. In: Horst WJ, Schenk MK, Bürkert A, Claassen N, Flessa H, Frommer WB, et al. (eds) Plant nutrition: food security and sustainability of agro-ecosystems through basic and applied research. Springer, Dordrecht, pp 664–665

  • Ratnavathi CV, Chakravarthy SK, Komala VV, Chavan UD, Patil JV (2011) Sweet sorghum as feedstock for Biofuel Production: A Review. Sugar Tech 13:399–407. doi:10.1007/s12355-011-0112-2

    Article  CAS  Google Scholar 

  • Reis VM, Olivares F, Dobereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:101–104

    Article  Google Scholar 

  • Rivas R, Velázquez E, Valverde A, Mateos PF, Martínez-Molina E (2001) A two primers random amplified polymorphic DNA procedure to obtain polymerase chain raction fingerprints of bacterial species. Electrophoresis 22:1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Rosconi F, Davyt D, Martínez V, Martínez M, Abin-Carriquiry JA, Zane H, Butler A, de Souza EM, Fabiano E (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae. Environ Microbiol 15:916–27. doi:10.1111/1462-2920.12075

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Sarig S, Okon Y, Blum A (1990) Promotion of leaf area development and yield in Sorghum bicolor with Azospirillum brasilense. Symbiosis 9:235–245

    Google Scholar 

  • Sarwar M, Kremer RJ (1995) Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol 20:282–285

    Article  CAS  Google Scholar 

  • Schulz B, Boyle C, Schulz BJE (2006) What are endophytes? Soil Biol 9:1–13. doi:10.1007/3-540-33526-9

    Article  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for detection and determination of siderophores. Anal Biochem 47–56

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2007) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24:955–960. doi:10.1007/s11274-007-9558-5

    Article  Google Scholar 

  • Sergeeva E, Hirkala DLM, Nelson LM (2007) Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates. Plant Soil 297:1–13. doi:10.1007/s11104-007-9314-5

    Article  CAS  Google Scholar 

  • Shoemaker CE, Bransby DI (2010) The role of sorghum as a bioenergy feedstock. In: Braun R, Karlen DL, Johnson D (eds) Sustainable alternative fuel feedstock opportunities, challenges and roadmaps for six U.S. regions. Soil and Water Conservation Society, Ankeny, pp 149–159

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Sturz AV, Kimpinski J (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant Soil 262:241–249. doi:10.1023/B:PLSO.0000037046.86670.a3

    Article  CAS  Google Scholar 

  • Surette MA, Sturz A V, Lada RR, Nowak J (2003) Bacterial endophytes in processing carrots (Daucus carota L. var. sativus): their localization, population density, biodiversity and their effects on plant growth. Plant Soil 253:381–390

  • Sylvester-Bradley R, Askawa N, La Torraca S, Magalhaes FMM, Oliveira LA, Pereira RM (1982) Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amaz 12:15–22

    Google Scholar 

  • Taulé C, Mareque C, Barlocco C, Hackembruch F, Reis V, Sicardi M, Battistoni F (2012) The contribution of nitrogen fixation to sugarcane (Saccharum officinarum L.), and the identification and characterization of part of the associated diazotrophic bacterial community. Plant Soil 356:35–49

    Article  Google Scholar 

  • Velázquez E, Rojas M, Lorite MJ, Rivas R, Zurdo-Piñeiro JL, Heydrich M, Bedmar EJ (2008) Genetic diversity of endophytic bacteria which could be found in the apoplastic sap of the medullary parenchym of the stem of healthy sugarcane plants. J Basis Microbiol 48:118–124. doi:10.1002/jobm.200700161

    Article  Google Scholar 

  • Verma SC, Ladha JK, Tripathi AK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–41

    Article  CAS  PubMed  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Sectorial Energy Fund (Project FSE_2011_1_5911), of the Uruguayan National Agency for Innovation and Research (Agencia Nacional de Innovación e Investigación-ANII), and the Uruguayan Program for the Development of the Basic Sciences (Programa de Desarrollo de las Ciencias Básicas-PEDECIBA). The authors are very grateful to Ing. Agr. Fernando Hackembruch from the Agriculture Department of the Alcoholes Uruguay S.A. (ALUR S.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Battistoni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 93 kb)

Table S2

(DOC 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mareque, C., Taulé, C., Beracochea, M. et al. Isolation, characterization and plant growth promotion effects of putative bacterial endophytes associated with sweet sorghum (Sorghum bicolor (L) Moench). Ann Microbiol 65, 1057–1067 (2015). https://doi.org/10.1007/s13213-014-0951-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0951-7

Keywords

Navigation