Skip to main content
Log in

Herbaspirillum-plant interactions: microscopical, histological and molecular aspects

  • Review Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Diazotrophic species in the genus Herbaspirillum (e.g. H. frisingense, H. rubrisubalbicans and H. seropedicae) associate with several economically important crops in the family Poaceae, such as maize (Zea mays), Miscanthus, rice (Oryza sativa), sorghum (Sorghum bicolor) and sugarcane (Saccharum sp.), and can increase their growth and productivity by a number of mechanisms, including nitrogen fixation. Hence, the improvement and use of these plant growth-promoting bacteria could provide economic and environmental benefits. We review the colonization processes of host plants by Herbaspirillum spp., including histological aspects and molecular mechanisms involved in these interactions, which may be epiphytic, endophytic, and even occasionally pathogenic. Herbaspirillum can recognize plant signals that modulate the expression of colonization traits and plant growth-promoting factors. Although a large proportion of herbaspirilla remain rhizospheric and epiphytic, plant-associated species in this genus are noted for their ability to colonize the plant internal tissues. Endophytic colonization by herbaspirilla begins with the attachment of the bacteria to root surfaces, followed by colonization at the emergence points of lateral roots and penetration through discontinuities of the epidermis; this appears to involve bacterial envelope structures, such as lipopolysaccharide (LPS), exopolysaccharide (EPS), adhesins and the type three secretion system (T3SS), but not necessarily the involvement of cell wall-degrading enzymes. Intercellular spaces are then rapidly occupied, proceeding to colonization of xylem and the aerial parts of the host plants. The response of the host plant includes both the recognition of the bacteria as non-pathogenic and the induction of systemic resistance to pathogens. Phytohormone signaling cascades are also activated, regulating the plant development. This complex molecular communication between some Herbaspirillum spp. and plant hosts can result in plant growth-promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7:601–611

    Article  PubMed  CAS  Google Scholar 

  • Alfano JR, Collmer A (1997) The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins and death. J Bacteriol 179:5655–5662

    PubMed  CAS  Google Scholar 

  • Alves BJR, Boddey RM, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252:1–9

    Article  CAS  Google Scholar 

  • Aragno M, Schlegel HG (1978) Aquaspirillum autotrophicum, a new species of hydrogen-oxidizing, facultatively autotrophic bacteria. Int J Syst Bacteriol 28:112–116

    Article  Google Scholar 

  • Arencibia AD, Vinagre F, Estevez Y, Bernal A, Perez J, Cavalcanti J, Santana I, Hemerly AS (2006) Gluconacetobacter diazotrophicus elicits a sugarcane defense response against a pathogenic bacteria Xanthomonas albilineans. Plant Signal Behav 1:265–273

    Article  PubMed  Google Scholar 

  • Bae HS, Yamagishi T, Suwa Y (2004) An anaerobic continuous-flow fixed-bed reactor sustaining a 3-chlorobenzoate-degrading denitrifying population utilizing versatile electron donors and acceptors. Chemosphere 55:93–100

    Article  PubMed  CAS  Google Scholar 

  • Baldani JI, Baldani VLD, Seldin L, Dobereiner J (1986) Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen fixing bacterium. Int J Sys Bacteriol 36:86–93

    Article  CAS  Google Scholar 

  • Baldani VLD, Baldani JI, Olivares FL, Dobereiner J (1992) Identification and ecology of Herbaspirillum seropedicae and closely related Pseudomonas rubrisubalbicans. Symbiosis 13:65–73

    Google Scholar 

  • Baldani JI, Pot B, Kirchhof G, Falsen E, Baldani VLD, Olivares FL, Hoste B, Kersters K, Hartmann A, Gillis M, Dobereiner J (1996) Emended description of Herbaspirillum; inclusion of [Pseudomonas] rubrisubalbicans, a mild plant pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and classification of a group of clinical isolates (EF Group 1) as Herbaspirillum Species 3. Int J Syst Bacteriol 46:802–810

    Article  PubMed  CAS  Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD, Goi SR, Dobereiner J (1997) recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Baldani VLD, Baldani JI, Dobereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia sp. Biol Fertil Soils 30:485–491

    Article  Google Scholar 

  • Balsanelli E, Serrato RV, de Baura VA, Sassaki G, Yates MG, Rigo LU, Pedrosa FO, de Souza EM, Monteiro RA (2010) Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 12:2233–2244

    PubMed  CAS  Google Scholar 

  • Bashan Y, De-Bashan LE (2005) Fresh-weight measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth: a critical examination. Soil Biol Biochem 37:1795–1804

    Article  CAS  Google Scholar 

  • Bashan Y, Levanony H, Klein E (1986) Evidence for a weak active external adsorption of Azospirillum brasilense Cd to wheat roots. J Gen Microbiol 132:3069–3073

    Google Scholar 

  • Bashan Y, Holguin G, de-Bashan L (2004) Azospirillum-plant relationships: physiological molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  PubMed  CAS  Google Scholar 

  • Bastián F, Cohen A, Piccoli P, Luna V, Baraldi R, Bottini R (1998) Production of indole-3-acetic acid and gibberellins A1 and A3 by Acetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regul 24:7–11

    Article  Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53

    Article  CAS  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  PubMed  CAS  Google Scholar 

  • Bertalan M, Albano R, Pádua V, Rouws L et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209

    Article  PubMed  CAS  Google Scholar 

  • Boddey R (1999) Green energy from sugar cane. Chem Ind 17:355–358

    Google Scholar 

  • Boddey RM, de Oliveira OC, Urquiaga S, Reis VM, Olivares FL, Baldani VLD, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174:195–209

    Article  CAS  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of gibberellins A1, A3 and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47

    Article  PubMed  CAS  Google Scholar 

  • Büttner D, Bonas U (2002) Getting across – bacteria type III effector proteins on their way to the plant cell. EMBO J 21:5313–5322

    Article  PubMed  Google Scholar 

  • Canuto EL, Oliveira ALM, Reis VM, Baldani JI (2003) Evaluation of the biological nitrogen fixation contribution in sugarcane plants originated from seeds and inoculated with nitrogen-fixing endophytes. Braz J Microbiol 34:62–64

    Article  Google Scholar 

  • Carro L, Rivas R, León-Barrios M, González-Tironte M, Velásquez E, Valverde A (2011) Herbaspirillum canariense sp. nov., Herbaspirillum aurantiacum sp. nov. and 2 Herbaspirillum soli sp. nov., three new species isolated in Tenerife (Canary Islands). IJSEM doi:10.1099/ijs.0.031336-0

  • Cavalcante JJV, Vargas C, Nogueira EM, Vinagre F, Schwarcz K, Baldani JI, Ferreira PCG, Hemerly AS (2007) Members of the ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. J Exp Bot 58:673–686

    Article  PubMed  CAS  Google Scholar 

  • Chahboune A, Decaffmeyer M, Brasseur R, Joris B (2005) Membrane topology of the Escherichia coli AmpG permease required for recycling of cell wall anhydromuropeptides and AmpC-lactamase induction. Antimicrob Agents Chemother 49:1145–1149

    Article  PubMed  CAS  Google Scholar 

  • Chaves DF, de Souza EM, Monteiro RA, Pedrosa FO (2009) A two-dimensional electrophoretic profile of the proteins secreted by Herbaspirillum seropedicae strain Z78. J Proteomics 73:50–56

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Su Z, Liu Y, Sandoghchian S, Zheng D, Wang S, Xu (2011) Herbaspirillum species: A potential pathogenic bacteria isolated from acute lymphoblastic leukemia patient. Curr Microbiol 62:331–333

    Article  PubMed  CAS  Google Scholar 

  • Collmer A, Berman P, Mount MS (1982) Pectate lyase regulation and bacterial soft-rot pathogenesis. In: Mount MS, Lacy GH (eds) Phytopathogenic prokaryotes. Academic Press, New York, pp 395–422

    Google Scholar 

  • Cruz LM, Souza EM, Weber OB, Baldani JI, Döbereiner J, Pedrosa FO (2001) 16S Ribosomal DNA characterization of nitrogen-fixing Bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril). Appl Environ Microbiol 67:2375–2379

    Article  CAS  Google Scholar 

  • da Silva LG, Miguens FC, Olivares FL (2003) Herbaspirillum seropedicae and sugarcane endophytic interaction investigated by using high pressure freezing electron microscopy. Braz J Microbiol 34:69–71

    Article  Google Scholar 

  • da Silva RM, Caugant DA, Eribe ERK, Jorn A, Lingaas PS, Geiran O, Tronstad L, Olsen I (2006) Bacterial diversity in aortic aneurysms determined by 16S ribosomal RNA gene analysis. J Vasc Surg 44:1055–1060

    Article  Google Scholar 

  • Dardanelli MS, de Cordoba FJF, Espuny MR, Carvajal MAR, Díaz MES, Serrano AMG, Okon Y, Megias M (2008) Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biol Biochem 40:2713–2721

    Article  CAS  Google Scholar 

  • Dean RA, Timberlake WA (1989) Production of cell wall-degrading enzymes by Aspergillus nidulans: a model system for fungal pathogenesis of plants. Plant Cell 1:265–273

    PubMed  CAS  Google Scholar 

  • Ding L, Yokota A (2004) Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int J Syst Evol Microbiol 54:2223–2230

    Article  PubMed  CAS  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. CRC Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Dobereiner J, Baldani VLD, Olivares FL, Reis VM (1994) Endophytic diazotrophs: the key to BNF in gramineous plants. In: Hegazani NA, Fayez M, Monib M (eds) Nitrogen fixation with non-legumes. American University in Cairo Press, Cairo

    Google Scholar 

  • Dobereiner J, Baldani VLD, Reis VM (1995) Endophytic occurrence of diazotrophic bacteria in non-leguminous crops. In: Fendrik J, del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms. Springer-Verland, Berlin, pp 3–14

    Chapter  Google Scholar 

  • Döbereiner J, Pimentel JP, Olivares FL, Urquiaga S (1990) Bactérias diazotróficas podem ser endofíticas ou fitopatogênicas? An Acad Bras Cienc 62:319

    Google Scholar 

  • Dobritsa AP, Reddy MCS, Samadpour M (2010) Reclassification of Herbaspirillum putei as a later heterotypic synonym of Herbaspirillum huttiense, with the description of H. huttiense subsp. huttiense subsp. nov. and H. huttiense subsp. putei subsp. nov., comb. nov., and description of Herbaspirillum aquaticum sp. nov. Int J Syst Evol Microbiol 60:1418–1426

    Article  PubMed  Google Scholar 

  • Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66:2804–2810

    Article  PubMed  CAS  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T (2001) Endophytic colonization and in plant nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293

    Article  PubMed  CAS  Google Scholar 

  • Fouts DE, Abramovitch RB, Alfano JR, Baldo AM, Robin Buell C, Cartinhour S, Chatterjee AK, D’ascenzo M, Gwinn ML, Lazarowitz SG, Lin N, Martin GB, Rehm AH, Schneider DJ, Dijk K, Tang X, Collmer A (2002) Genome-wide identification of Pseudomonas syringae pv. Tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc Natl Acad Sci USA 99:2275–2280

    Article  PubMed  CAS  Google Scholar 

  • Galli F, Carvalho PCT, Tokeshi H, Balmer F, KimatI H, Cardoso CO, Salgaso CL, Krugner TL, Cardoso EJBN, Bergamin FA (1980) Manual de fitopatologia: doenças de plantas cultivadas. Agronômica Ceres, São Paulo

    Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Gopalan S, Bauer DW, Alfano JR, Loniello AO, He SY, Collmer A (1996) Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell 8:1095–1105

    PubMed  CAS  Google Scholar 

  • Gough C, Galera C, Vasse J, Webster G, Cocking EC, Dénarié J (1997) Root colonization of Arabidopsis thaliana by Azorhizobium caulinodans ORS571. Mol Plant Microbe Interact 10:560–570

    Article  PubMed  CAS  Google Scholar 

  • Grant SR, Fisher E, Chang JH, Mole BM, Dangl JL (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60:425–449

    Article  PubMed  CAS  Google Scholar 

  • Greef JM, Deuter M (1993) Syntaxonomy of Miscanthus giganteus. Angew Bot 67:87–90

    Google Scholar 

  • Guimarães SL, Baldani JI, Baldani VLD (2003) Efeito da inoculação de bactérias diazotróficas endofíticas em arroz de sequeiro. Revista Agronomia 37(2):25–30

    Google Scholar 

  • Gyaneshwar P, James EK, Reddy PM, Ladha JK (2002) Herbaspirillum colonization increases growth and nitrogen accumulation in aluminium-tolerant rice varieties. New Phytol 154:131–145

    Article  CAS  Google Scholar 

  • Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity. EMBO Rep 2:376–381

    PubMed  CAS  Google Scholar 

  • Hale CN, Wilkie JP (1972) Bacterial leaf stripe of sorghum in New Zealand. N Z J Agricul Res 15:457–460

    Article  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • He SY, Nomura K, Whittam TS (2004) Type III protein secretion mechanism in mammalian and plant pathogens. Biochim Biophys Acta 1694:181–206

    Article  PubMed  CAS  Google Scholar 

  • Hense BA, Kuttler C, Muller J, Rothballer M, Hartmann A, Kreft JU (2007) Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239

    Article  PubMed  CAS  Google Scholar 

  • Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433

    PubMed  CAS  Google Scholar 

  • Im WT, Bae HS, Yokota A, Lee ST (2004) Herbaspirillum chlorophenolicum sp. nov., a 4-chlorophenol-degrading bacterium. Int J Syst Evol Microbiol 54:851–855

    Article  PubMed  CAS  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant Microbe Interact 17:1078–1085

    Article  PubMed  CAS  Google Scholar 

  • Isawa T, Yasuda M, Awazaki H, Minamisawa K, Shinozaki S, Nakashita H (2010) Azospirillum sp. strain B510 enhances rice growth and yield. Microbes Environm 25(1):58–61

    Article  Google Scholar 

  • Islam MR, Madhaiyan M, Boruah HPD, Yim W, Lee G, Saravanan VS, Fu Q, Hu H, Sa T (2009) Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. J Microbiol Biotechnol 19:1213–1222

    Article  PubMed  CAS  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crops Res 65:197–209

    Article  Google Scholar 

  • James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. CRC Crit Rev Plant Sci 17:77–119

    Article  Google Scholar 

  • James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot 45:757–766

    Article  CAS  Google Scholar 

  • James EK, Olivares FL, Baldani JI, Dobereiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L. Moench J Exp Bot 48:785–797

    Article  CAS  Google Scholar 

  • James EK, Gyaneshwar G, Barraquio WL, Ladha JK (1999) Endophytic diazotrophs associated with rice. In: Ladha JK, Reddy PN (eds) The quest for nitrogen fixation in rice. International Rice Research Institute, Manila

    Google Scholar 

  • James EK, Gyaneshwar P, Mathan N (2002) Infection and colonization of rice seedlings by the plant growth-promotion bacterium Herbaspirillum seropedicae Z67. Mol Plant Microbe Interact 15:894–906

    Article  PubMed  CAS  Google Scholar 

  • Jofré E, Lagares A, Mori G (2004) Disruption of dTDP-rhamnose biosynthesis modifies lipopolysaccharide core, exopolysaccharide production and root colonization in Azospirillum brasilense. FEMS Microbiol 231:267–275

    Article  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 44:323–329

    Article  CAS  Google Scholar 

  • Jung SY, Lee MH, Oh TK, Yoon JH (2007) Herbaspirillum rhizosphaerae sp. nov., isolated from rhizosphere soil of Allium victorialis var. platyphyllum. Int J Syst Evol Microbiol 57:2284–2288

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T, Nakatsukasa H et al (2010) Complete Genomic Structure of the Cultivated Rice Endophyte Azospirillum sp. B510. DNA Res 17:37–50

    Article  PubMed  CAS  Google Scholar 

  • Kannenberg EL, Reuhs BL, Forsberg LS, Carlson RW (1998) Lipopolysaccharides and K-antigens: their structure, biosynthesis and functions. In: Spaink HP, Kondorosi A, Hooykaas PJJ (eds) The Rhizobiacea. Kluwer Academic Publisher, Dordrecht, p 154

    Google Scholar 

  • Kirchhof G, Eckert B, Stoffels M, Baldani JI, Reis VM, Hartmann A (2001) Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Int J Syst Evol Microbiol 51:157–168

    PubMed  CAS  Google Scholar 

  • Kloepper JW, Tuzun S, Kuc JA (1992) Proposed definitions related to induced disease resistance. Biocontrol Sci Technol 2:349–351

    Article  Google Scholar 

  • Klug E, Orth WD (1997) Renewable raw materials out of reposition plants on contaminated and on devastated grounds. In: Sustainable Agriculture for Food, Energy and Industry, Book of Abstracts. Bassam NEL, Bacher W, Korte AM, Prochnow B. Braunschweig: Federal Agriculture Research Centre

  • Koebnik R (2005) TonB-dependent trans-envelope signalling: the exception or the rule? Trends Microbiol 13:343–347

    Article  PubMed  CAS  Google Scholar 

  • Kovtunovych G, Lar O, Kamalova S, Kordyum V, Kleiner D, Kozyrovska N (1999) Correlation between pectate lyase activity and ability of diazotrophic Klebsiella oxytoca VN 13 to penetrate into plant tissues. Plant Soil 215:1–6

    Article  CAS  Google Scholar 

  • Krause A, Ramakumar A, Bartels D, Battistoni F, Bekel T, Boch J, Boehm M, Friedrich F, Hurek T, Krause L et al (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Kuklinsky-Sobral J, Araujo WL, Mendes R, Pizzirani-Kleiner AA, Azevedo JL (2005) Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant Soil 273:91–99

    Article  CAS  Google Scholar 

  • Lanham PG, McIlravey KI, Perombelon MCM (1991) Production of cell wall dissolving enzymes by Erwinia carotovora subsp. atroseptica in vitro at 27°C and 30.5°C. J Appl Bacteriol 70:20–24

    Article  CAS  Google Scholar 

  • Leifson E (1962) The bacterial flora of distilled and stored water. III. New species of the genera Corynebacterium, Flavobacterium, Spirillum and Pseudomonas. Int Bull Bacteriol Nomencl Taxon 12:161–170

    Article  Google Scholar 

  • Leister RT, Ausubel FM, Katagiri F (1996) Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1. Proc Natl Acad Sci USA 93:15497–15502

    Article  PubMed  CAS  Google Scholar 

  • Lindgren PB, Peet RC, Panopoulos NJ (1986) Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity of bean plants and hypersensitivity on nonhost plants. J Bacteriol 168:512–522

    PubMed  CAS  Google Scholar 

  • Malik KA, Rakhshanda B, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant-growth-promoting rhizobacteria (PGPR) with kallar Grass and rice. Plant Soil 194:37–44

    Article  CAS  Google Scholar 

  • Mathesius U, Mulders S, Gao M, TeplitskI M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449

    Article  PubMed  CAS  Google Scholar 

  • McCully ME (2001) Niches for bacterial endophytes in crop plants: a plant biologist’s view. Aust J Plant Physiol 28:983–990

    Google Scholar 

  • Mehdipour-Moghaddam MJ, Emtiazi G, Bouzari M, Mostajeran A, Salehi Z (2010) Novel phytase and cellulase activities in endophytic Azospirilla. W Appl Sci J 10(10):1129–1135

    CAS  Google Scholar 

  • Michiels KW, Croes CL, Vanderleyden J (1991) Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137:2241–2246

    CAS  Google Scholar 

  • Monteiro RA, Schmidt MA, de Baura VA, Balsanelli E, Wassem R, Yates MG, Randi MAF, Pedrosa FO, de Souza EM (2008) Early colonization pattern of maize (Zea mays L. Poales, Poaceae) roots by Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae). Genet Mol Biol 31:932–937

    Article  Google Scholar 

  • Mota LJ, Sorg I, Cornelis GR (2005) Type III secretion: the bacteria-eukaryotic cell express. FEMS Microbiol Lett 252:1–10

    Article  PubMed  CAS  Google Scholar 

  • Mount MS (1978) Tissue is disintegrated. In: Horsfall JG, Cowling EB (eds) Plant disease, an advanced treatise. Academic, New York, pp 279–297

    Google Scholar 

  • Nogueira EM, Vinagre F, Masuda HP, Vargas C, Padua VLM, Silva FR, Santos RV, Baldani JI, Ferreira PCG, Hemerly AS (2001) Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Genet Mol Biol 24:199–206

    Article  CAS  Google Scholar 

  • Olivares FL, Baldani VLD, Reis VM, Baldani JI, Döbereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems and leaves predominantly of Gramineae. Biol Fertil Soils 21:197–200

    Article  Google Scholar 

  • Olivares FL, James EK, Baldani JI, Döbereiner J (1997) Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirillum. New Phytol 135:575–597

    Article  Google Scholar 

  • Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002) The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242:205–215

    Article  CAS  Google Scholar 

  • Oliveira ALM, de Lima CE, Urquiaga S, Reis VM, Baldani JI (2006) Yield of micropropagated sugarcane varieties in different soil types following inoculation with diazotrophic bacteria. Plant Soil 284:23–32

    Article  CAS  Google Scholar 

  • Oliveira ALM, Stoffels M, Schmid M, Reis VM, Baldani JI, Hartmann A (2009) Colonisation of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur J Soil Biol 45:106–113

    Article  CAS  Google Scholar 

  • Ormeño-Orrilo E, Rosenblueth M, Luyten E, Vanderleyden J, Martinez-Romero E (2008) Mutations in lipopolysaccharides biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899. Environ Microbiol 10:1271–1284

    Article  CAS  Google Scholar 

  • Palleroni NJ (1984) Genus I. Pseudomonas. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol. 1. The Williams & Wilkins Co, Baltimore, pp 141–199

    Google Scholar 

  • Patriquin DG, Gracioli LA, Ruschel AP (1980) Nitrogenase activity of sugar cane propagated from stem cuttings in sterile vermiculite. Soil Biol Biochem 12:413–417

    Article  CAS  Google Scholar 

  • Patriquin DG, Döbereiner J, Jain DK (1983) Sites and processes of association between diazotrophs and grasses. Can J Microbiol 29:900–915

    Article  Google Scholar 

  • Paulsen IT et al (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa FO, Teixeira KRS, Machado IMP, Steffens MBR, Klassen G, Benelli EM, Machado HB, Funayama S, Rigo LU, Ishida ML, Yates MG, Souza EM (1997) Structural organization and regulation of the nif genes of Herbaspirillum seropedicae. Soil Biol Biochem 29:843–846

    Article  CAS  Google Scholar 

  • Pedrosa FO, Monteiro RA, Wassem R, Cruz LM et al (2011) Genome of Herbaspirillum seropedicae strain SmR1, a specialized diazotrophic endophyte of tropical grasses. PLoS Genetics. doi:10.1371/journal.pgen.1002064

  • Pimentel JP, Olivares FL, Pitard R, Urquiaga S, Akiba F, Döbereiner J (1991) Dinitrogen fixation and infection of grass leaves by Pseudomonas rubrisubalbicans and Herbaspirillum seropedicae. Plant Soil 137:61–65

    Article  Google Scholar 

  • Plazinski J, Rolfe BG (1985) Analysis of the pectolytic activity of Rhizobium and Azospirillum strains isolated from Trifolium repens. J Plant Physiol 120:181–187

    Article  CAS  Google Scholar 

  • Reddy PM, James EK, Ladha JK (2002) Nitrogen fixation in rice. In: Leigh GJ (ed) Nitrogen fixation at the millennium. Elsevier, Amsterdam, pp 421–445

    Chapter  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    Article  PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Gillis M, Hoste B, Vancanneyt M, Kersters K, de Ley J (1993) Azoarcus gen. nov., nitrogen fixing proteobacteria associated with roots of kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov., and Azoarcus communis sp. nov. Int J Syst Bacteriol 43:574–584

    Article  Google Scholar 

  • Reis VM, Baldani JI, Baldani VLD, Döbereiner J (2000) Biological dinitrogen fixation in gramineae and palm tree. Crit Rev Pl Sc 19:227–247

    Article  CAS  Google Scholar 

  • Rocha FR, Papini-Terzi FS, Nishiyama MY, Vêncio RZN, Vicentini R, Duarte RDC, de Rosa JRVE, Vinagre F, Barsalobres C, Medeiros AH, Rodrigues FA, Ulian EC, Zingaretti SM, Galbiatti JA, Almeida RS, Figueira AVO, Hemerly AS, Silva-Filho MC, Menossi M, Souza GM (2007) Signal transduction-related responses to phytohormones and environmental challenges in sugarcane. BMC Genomics 71:2164–2168

    Google Scholar 

  • Rombouts FM, Pilnik W (1972) Research on pectin depolymerases in the sixties-a literature review. Crit Rev Food Technol 3:1–26

    CAS  Google Scholar 

  • Roncato-Maccari LDB, Ramos HJO, Pedrosa FO, Alquini Y, Chubatsu LS, Yates MG, Rigo LU, Steffens MBR, Souza EM (2003a) Root colonization, systemic spreading and contribution of Herbaspirillum seropedicae to growth of rice seedlings. Symbiosis 35:01–10

    Google Scholar 

  • Roncato-Maccari LDB, Ramos HJO, Pedrosa FO, Alquini Y, Chubatsu LS, Yates MG, Rigo LU, Steffens MBR, Souza EM (2003b) Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microbiol Ecol 45:39–47

    Article  PubMed  CAS  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interac 19:827–837

    Article  CAS  Google Scholar 

  • Rothballer M, Schmid M, Klein I, Gattinger A, Grundmann S, Hartmann A (2006) Herbaspirillum hiltneri sp. nov., isolated from surface-sterilized wheat roots. Int J Syst Evol Microbiol 56:1341–1348

    Article  PubMed  CAS  Google Scholar 

  • Rothballer M, Eckert B, Schmid M, Fekete A, Schloter M, Lehner A, Pollmann S, Hartmann A (2008) Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. FEMS Microbiol Ecol 66:85–95

    Article  PubMed  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    Article  PubMed  CAS  Google Scholar 

  • Scala F, Zoina A (1983) Production of pectolytic and cellulolytic enzymes by Corynebacterium michiganense (E. F. Smith) Jensen. Ann Fac Sci Agrar Univ Studl Napoli Portici 17:68–76

    CAS  Google Scholar 

  • Schaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8(11):1867–1880

    Article  CAS  Google Scholar 

  • Schloter M, Hartmann A (1998) Endophytic and surface colonization of wheat roots (Triticum aestivum) by different Azospirillum brasilense strains studied with strain specific monoclonal antibodies. Symbiosis 25:159–179

    Google Scholar 

  • Schmidt MA, Souza EM, Baura VA, Wassem R, Yates MG, Pedrosa FO, Monteiro RA (2011) Evidence for the endophytic colonization of Phaseolus vulgaris (common bean) roots by the diazotroph Herbaspirillum seropedicae. Braz J Med Biol Res 44:182–185

    Article  PubMed  CAS  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  PubMed  CAS  Google Scholar 

  • Schwab S, Ramos HJ, Souza EM, Chubatsu LS, Yates MG, Pedrosa FO, Rigo LU (2007) Identification of NH4 + -regulated genes of Herbaspirillum seropedicae by random insertional mutagenesis. Arch Microbiol 187:379–386

    Article  PubMed  CAS  Google Scholar 

  • Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmor ERW, Staskawicz BJ (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Sci 274:2063–2065

    Article  CAS  Google Scholar 

  • Sessitsch A, Howieson JG, Perret X, Antoun H, Martínez-Romero E (2002) Advances in rhizobium research. Crit Ver Plant Sci 21:323–378

    Article  CAS  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15N2 incorporation following inoculation os sterile plants with Acetobacter diazotrophicus wild-type and nif-mutant strains. Mol Plant-Microbe Interact 14:358–366

    Article  PubMed  CAS  Google Scholar 

  • Shiu SH, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci STKE 113:1–13

    Google Scholar 

  • Shulz B, Boyle C (2005) What are endophytes? Soil Biol 9:1–13

    Article  Google Scholar 

  • Solheim B, Fjellheim KE (1984) Rhizobial polysaccharidedegrading enzymes from roots of legumes. Physiol Plant 62:11–17

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  PubMed  CAS  Google Scholar 

  • Spilker T, Uluer AZ, Marty FM, Yeh WW, Levison JH, Vandamme P, Lipuma JJ (2008) Recovery of Herbaspirillum species from persons with cystic fibrosis. J Clin Microbiol 46:2774–2777

    Article  PubMed  Google Scholar 

  • Sprent JI (2009) Legume nodulation: a global perspective. Wiley, Oxford

    Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  PubMed  CAS  Google Scholar 

  • Stoltzfus JR, So R, Malarvizhi PP, Ladha JK, de Bujin FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potencial for supplying rice with biologically fixed nitrogen. Plant Soil 194:25–36

    Article  CAS  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. CRC Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136

    Article  PubMed  CAS  Google Scholar 

  • Tadra-Sfeir MZ, Souza EM, Faoro H, Müller-Santos M, Baura VA, Tuleski TR, Rigo LU, Yates MG, Wassem R, Pedrosa FO, Monteiro RA (2011) Naringenin regulates expression of genes involved in cell wall synthesis in Herbaspirillum seropedicae. Appl Environ Microbiol 77:2180–2183

    Article  PubMed  CAS  Google Scholar 

  • Tan ZQ, Men R, Zhang RY, Huang Z (2010) First report of Herbaspirillum rubrisubalbicans causing mottled stripe disease on sugarcane in China. Am Phytopathol Soc 94:379.2–379.2

    Google Scholar 

  • Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y, Martin GB (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Sci 274:2060–2062

    Article  CAS  Google Scholar 

  • Triplett EW (1996) Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186:29–38

    Article  CAS  Google Scholar 

  • Tsuge S, Nakayama T, Terashima S, Ochiai H, Furutani A, Oku T, Tsuno K, Kubo Y, Kaku H (2006) Gene involved in transcriptional activation of the hrp regulatory gene hrpG in Xanthomonas oryzae pv. oryzae. J Bacteriol 188:4158–4162

    Article  PubMed  CAS  Google Scholar 

  • Umali-Garcia M, Hubbell DH, Gashins MH, Dazzo FB (1980) Association of Azospirillum with grass roots. Appl Environ Microbiol 39:219–226

    PubMed  CAS  Google Scholar 

  • Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: nitrogen-15 and nitrogen-balance estimates. Soil Sci Soc Am J 56:105–114

    Article  Google Scholar 

  • Valverde A, Velázquez E, Gutiérrez C, Cervantes E, Ventosa A, Igual JM (2003) Herbaspirillum lusitanum sp. nov., a novel nitrogen-fixing bacterium associated with root nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 53:1979–1983

    Article  PubMed  CAS  Google Scholar 

  • Vandevivere P, Kirchman DL (1993) Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl Environ Microbiol 59:3280–3286

    PubMed  CAS  Google Scholar 

  • Vinagre F, Vargas C, Schwarcz K, Cavalcanti J, Nogueira EM, Baldani JI, Ferreira PCG, Hemerly AS (2006) SHR5: a novel plant receptor kinase involved in plant-N2-fixing endophytic bacteria association. J Exp Bot 57:559–569

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:131–151

    Google Scholar 

  • Warren RAJ (1996) Microbiol hydrolysis of polysaccharides. Annu Rev Microbiol 50:183–212

    Article  PubMed  CAS  Google Scholar 

  • Weber OB, Cruz LM, Baldani JI, Döbereiner J (2001) Herbaspirillum-like bacteria in banana plants. Braz J Microbiol 32:201–205

    Article  Google Scholar 

  • Weber OB, Muniz CR, Vitor AO, Freire FCO, Oliveira VM (2007) Interaction of endophytic diazotrophic bactéria and Fusarum oxysporum f. sp. cubense on plantlets of banana ‘Maça’. Plant Soil 298:47–56

    Article  CAS  Google Scholar 

  • Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microbial Biotec 2:428–440

    Article  CAS  Google Scholar 

  • Xiao Y, Hutcheson SW (1994) A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J Bacteriol 176:3089–3091

    PubMed  CAS  Google Scholar 

  • Xu HX, Wu HY, Qiu YP, Shi XQ, He GH, Zhang JF, Wu JC (2011) Degradation of fluoranthene by a newly isolated strain of Herbaspirillum chlorophenolicum from activated sludge. Biodegradation 22:335–345

    Article  PubMed  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Corish V, Squartini A, Ninke K, Philip-Hollingsworth S, Orgambide G, de Brujin FD, Stoltzfus J, Buckley D, Schmidt TM, Mateos PF, Ladha JK, Dazzo FB (1997) Natural endophytic associations between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potencial of promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Zakria M, Njoloma J, Saeki Y, Akao S (2007) Colonization and nitrogen-fixing ability of Herbaspirillum sp. strain B501 gfp1 and assesment of its growth-promoting ability in cultivated rice. Microbes Environ 22:197–206

    Article  Google Scholar 

  • Ziga ED, Druley T, Burnham Carey-Ann D (2010) Herbaspirillum species bacteremia in a pediatric oncology patient. J Clin Microbiol 48:4320–4321

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M.G. Yates for critical reading of the manuscript. We also thank the anonymous reviewers who have contributed substantially to improve this work. We thank Euan James for kindly providing Fig. 3. We thank the financial support of National Institute of Science and Technology on Biological Nitrogen Fixation (INCT-FBN/CNPq-MCT), CAPES and Fundação Araucária.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rose Adele Monteiro.

Additional information

Responsible Editor: Euan K. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteiro, R.A., Balsanelli, E., Wassem, R. et al. Herbaspirillum-plant interactions: microscopical, histological and molecular aspects. Plant Soil 356, 175–196 (2012). https://doi.org/10.1007/s11104-012-1125-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1125-7

Keywords

Navigation