Skip to main content
Log in

An Effective Producing Method of Nanocomposites of Ag, Au, and Pd Nanoparticles with Poly(N-vinylpyrrolidone) and Nanocellulose

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The preparation of Ag, Au, and Pd nanoparticles (NPs) by methylviologen (MV2+) was investigated—mediated electrochemical reduction of 1.5 mM Ag(I), Au(I), and Pd(II), respectively, in the presence of poly(N-vinylpyrrolidone) (PVP) and nanocellulose (NC) at the controlled potential of MV·+ radical cation generation in aqueous medium at room temperature. Au(I) and Pd(II) ions were added to the solutions as chloride salts and Ag(I) by in situ dissolving of the Ag-anode during electrolysis. Metal ions are reduced quantitatively to M0 when the theoretical amount of electricity was passed. Dispersion of the Ag anode along with dissolution results in a current yield of Ag0 166%. The result of the synthesis is the nanocomposites of spherical Ag (28 ± 8 nm), Au (10 ± 3 nm), and Pd (5 ± 1 nm) NPs encapsulated in the PVP shell, which are bound on the NC surface and dispersed in the solution volume. The dimensions of the Ag, Au, and Pd crystallites are in the range of values 7.14 ÷ 14.4, 5.7 ÷ 9.0, and 4.5 ÷ 6.2 nm, respectively. The Pd nanocomposite shows a high catalytic activity increasing in time; the Ag and Au nanocomposites are significantly less active in the test reaction of p-nitrophenol reduction with sodium borohydride in an aqueous medium. When cetyltrimethylammonium chloride (CTAC) is added to the nanocomposites, the catalytic reaction rate increases by 57, 2.5, and 1.2 times for Ag, Pd, and Au nanocomposites, respectively.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Astruc, Nanoparticles and Catalysis (Wiley-VCH, Weinheim, 2008), p. 640

    Google Scholar 

  2. M. Beller, C. Bolm, Transition Metals for Organic Synthesis (Wiley-VCH, Weinheim, 1998), p. 577

    Book  Google Scholar 

  3. P. Lara, K. Philippot, The hydrogenation of nitroarenes mediated by platinum nanoparticles: an overview. Catal. Sci. Technol. 4, 2445 (2014)

    Article  CAS  Google Scholar 

  4. A. de Meijere, F. Diederich, Metal-Catalyzed Cross-Coupling Reactions (Wiley-VCH, Weinheim, 2008), p. 938

    Google Scholar 

  5. T.H. Meyer, L.H. Finger, P. Gandeepan, L. Ackermann Resource Economy by Metallaelectrocatalysis: Merging Electrochemistry and C–H Activation. Trends. Chem. 1, 63 (2019)

  6. V.P. Ananikov, L.L. Khemchyan, Y.V. Ivanova, V.I. Bukhtiyarov, A.M. Sorokin, I.P. Prosvirin, S.Z. Vatsadze, A.V. Medved’ko, V.N. Nuriev, A.D. Dilman, V.V. Levin, I.V. Koptyug, K.V. Kovtunov, V.V. Zhivonitko, V.A. Likholobov, A.V. Romanenko, P.A. Simonov, V.G. Nenajdenko, O.I. Shmatova, V.M. Muzalevskiy, M.S. Nechaev, A.F. Asachenko, O.S. Morozov, P.B. Dzhevakov, S.N. Osipov, D.V. Vorobyeva, M.A. Topchiy, M.A. Zotova, S.A. Ponomarenko, O.V. Borshchev, Y.N. Luponosov, A.A. Rempel, A.A. Valeeva, A.Y. Stakheev, O.V. Turova, I.S. Mashkovsky, S.V. Sysolyatin, V.V. Malykhin, G.A. Bukhtiyarova, A.O. Terent’ev, I.B. Krylov, Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision. Russ. Chem. Rev. 83, 885 (2014)

    Article  Google Scholar 

  7. V.V. Yanilkin, G.R. Nasretdinova, V.A. Kokorekin, Mediated electrochemical synthesis of metal nanoparticles. Russ. Chem. Rev. 87, 1080 (2018)

    Article  CAS  Google Scholar 

  8. V.V. Yanilkin, R.R. Fazleeva, G.R. Nasretdinova, Y.N. Osin, A.T. Gubaidullin, A.Y. Ziganshina, Two-step one-pot electrosynthesis and catalytic activity of the CoO–CoO∙xH2O supported silver nanoparticles. J. Solid State Electrochem. 24, 829 (2020)

    Article  CAS  Google Scholar 

  9. V.V. Yanilkin, R.R. Fazleeva, G.R. Nasretdinova, Y.N. Osin, N.A. Zhukova, V.A. Mamedov, Benzimidazo[1’,2’:1,2]quinolino[4,3-b][1,2,5]oxodiazolo[3,4-f]quinoxaline — new mediator for electrosynthesizing metal nanoparticles. Russ. J. Electrochem. 56, 646 (2020)

    Article  CAS  Google Scholar 

  10. R.R. Fazleeva, G.R. Nasretdinova, Y.N. Osin, A.I. Samigullina, A.T. Gubaidullin, V.V. Yanilkin, CoO-xCo(OH)2 supported silver nanoparticles: electrosynthesis in acetonitrile and catalytic activity. Mendeleev. Commun. 30, 456 (2020)

    Article  CAS  Google Scholar 

  11. R.R. Fazleeva, G.R. Nasretdinova, Y.N. Osin, A.Y. Ziganshina, V.V. Yanilkin, Two-step electrosynthesis and catalytic activity of CoO−CoO • xH2O-supported Ag, Au, and Pd nanoparticles. Russ. Chem. Bull. 69, 241 (2020)

    Article  CAS  Google Scholar 

  12. V.V. Yanilkin, R.R. Fazleeva, G.R. Nasretdinova, Y.N. Osin, N.A. Zhukova, A.T. Gubaidullin, A.I. Samigullina, V.A. Mamedov, Mediated electrosynthesis and catalytic activity of metal nanoparticles nanocomposites with poly(N-vinylpyrrolidone) and nanocellulose, Russ. J. Electrochem. (2021) https://doi.org/10.31857/S0424857021010114

  13. V.V. Yanilkin, N.V. Nastapova, G.R. Nasretdinova, Y.N. Osin, V.G. Evtugyn, A.Y. Ziganshina, A.T. Gubaidullin, Structure and catalytic activity of ultrasmall Rh, Pd and (Rh + Pd) nanoparticles obtained by mediated electrosynthesis. New J. Chem. 43, 3931 (2019)

    Article  CAS  Google Scholar 

  14. G.R. Nasretdinova, R.R. Fazleeva, Y.N. Osin, V.G. Evtugyn, A.T. Gubaidullin, A.Y. Ziganshina, V.V. Yanilkin, Methylviologen mediated electrochemical synthesis of catalytically active ultrasmall bimetallic PdAg nanoparticles stabilized by CTAC. Electrochim. Acta 285, 149 (2018)

    Article  CAS  Google Scholar 

  15. M.P. Suh, Metal-organic frameworks and porous coordination polymers: properties and applications. Bull. Jpn Soc. Coord. Chem. 65, 9 (2015)

    Article  Google Scholar 

  16. X. Caia, X. Denga, Z. Xiea, Y. Shia, M. Panga, J. Lina, Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@polypyrrole core-shell nanohybrids for cancer therapy. Chem. Eng. J. 358, 369 (2018)

    Article  Google Scholar 

  17. X.W. Gao, J. Yang, K. Song, W.B. Luo, S.X. Dou, Y.M. Kang, Robust FeCo nanoparticles embedded in a N-doped porous carbon framework for high oxygen conversion catalytic activity in alkaline and acidic media. J. Mater. Chem. A 6, 23445 (2018)

    Article  CAS  Google Scholar 

  18. Q. Sun, W. Zhai, G. Hou, J. Feng, L. Zhang, P. Si, S. Guo, L. Ci, In situ synthesis of a lithiophilic Ag-nanoparticles-decorated 3D porous carbon framework toward dendrite-free lithium metal anodes. ACS Sustainable Chem. Eng. 6, 15219 (2018)

    Article  CAS  Google Scholar 

  19. S. Zhang, Q. Wu, L. Tang, Y. Hu, M. Wang, J. Zhao, M. Li, J. Han, X. Liu, H. Wang, Individual high-quality N-doped carbon nanotubes embedded with nonprecious metal nanoparticles toward electrochemical reaction. ACS Appl. Mater. Interfaces 10, 39757 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. Y. Wu, X. Qiu, F. Liang, Q. Zhang, A. Koo, Y. Dai, Y. Lei, X. Sun, A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries. Appl. Catal. B 241, 407 (2019)

    Article  CAS  Google Scholar 

  21. T. Wu, J. Ma, X. Wang, Y. Liu, H. Xu, J. Gao, W. Wang, Y. Liu, J. Yan, Graphene oxide supported Au–Ag alloy nanoparticles with different shapes and their high catalytic activities. Nanotechnol. 24, 125301 (2013)

    Article  Google Scholar 

  22. T. Gan, Z. Wang, Z. Shi, D. Zheng, J. Sun, Y. Liu, Graphene oxide reinforced core–shell structured Ag@Cu2O with tunable hierarchical morphologies and their morphology–dependent electrocatalytic properties for bio-sensing applications. Biosens. Bioelectron 112, 23 (2018)

    Article  CAS  PubMed  Google Scholar 

  23. L. Wang, L. Wang, J. Zhang, H. Wang, F.S. Xiao, Enhancement of the activity and durability in CO oxidation over silica-supported Au nanoparticle catalyst via CeOx modification. Chin. J. Catal. 39, 1608 (2018)

    Article  CAS  Google Scholar 

  24. S. Fedorenko, M. Jilkin, N. Nastapova, V. Yanilkina, O. Bochkova, V. Buriliov, I. Nizameev, G. Nasretdinova, M. Kadirov, A. Mustafina, Y. Budnikova, Surface decoration of silica nanoparticles by Pd(0) deposition for catalytic application in aqueous solutions. Colloids Surf. A 486, 185 (2015)

    Article  CAS  Google Scholar 

  25. K. An, G.A. Somorjai, Nanocatalysis I: synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies. Catal. Lett. 145, 233 (2015)

    Article  CAS  Google Scholar 

  26. A. Eremenko, N. Smirnova, I. Gnatiuk, O. Linnik, N. Vityuk, Y. Mukha, A. Korduban, in Nanocomposites and polymers with analytical methods. ed. by J. Cuppoletti (InTech, Rijeka, 2011), p. 51

    Google Scholar 

  27. S.M. Majhi, G.K. Naik, H.J. Lee, H.G. Song, C.R. Lee, I.H. Lee, Y.T. Yu, Au@NiO core-shell nanoparticles as a p-type gas sensor: novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sens. Actuators B 268, 223 (2018)

    Article  CAS  Google Scholar 

  28. J. Liu, S. Zou, S. Li, X. Liao, Y. Hong, L. Xiao, J. Fan, A general synthesis of mesoporous metal oxides with well-dispersed metal nanoparticles via a versatile sol–gel process. J. Mater. Chem. A 1, 4038 (2013)

    Article  CAS  Google Scholar 

  29. R.P. Padbury, J.C. Halbur, P.J. Krommenhoek, J.B. Tracy, J.S. Jur, Thermal stability of gold nanoparticles embedded within metal oxide frameworks fabricated by hybrid modifications onto sacrificial textile templates. Langmuir 31, 1135 (2015)

    Article  CAS  PubMed  Google Scholar 

  30. M. Kaushik, A. Moores, Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem. 18, 622 (2016)

    Article  CAS  Google Scholar 

  31. K.R. Reddy, N.S. Kumar, P.S. Reddy, B. Sreedhar, M.L. Kantam, Cellulose supported palladium(0) catalyst for Heck and Sonogashira coupling reactions. J. Mol. Catal. A Chem. 252, 12 (2006)

    Article  CAS  Google Scholar 

  32. H. Koga, E. Tokunaga, M. Hidaka, Y. Umemura, T. Saito, A. Isogai, T. Kitaoka, Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers. Chem. Commun. 46, 8567 (2010)

    Article  CAS  Google Scholar 

  33. C.M. Cirtiu, A.F. Dunlop-Brière, A. Moores, Cellulose nanocrystallites as an efficient support for nanoparticles of palladium: application for catalytic hydrogenation and Heck coupling under mild conditions. Green Chem. 13, 288 (2011)

    Article  CAS  Google Scholar 

  34. E. Lam, S. Hrapovic, E. Majid, J.H. Chong, J.H.T. Luong, Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale 4, 997 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. J. Tang, Z. Shi, R.M. Berry, K.C. Tam, Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind. Eng. Chem. Res. 54, 3299 (2015)

    Article  CAS  Google Scholar 

  36. L. Chen, W. Cao, P.J. Quinlan, R.M. Berry, K.C. Tam, Sustainable catalysts from gold-loaded polyamidoamine dendrimer-cellulose nanocrystals. ACS Sustain. Chem. Eng. 3, 978 (2015)

    Article  CAS  Google Scholar 

  37. J. Tang, J. Sisler, N. Grishkewich, K.C. Tam, Functionalization of cellulose nanocrystals for advanced applications. J. Colloid Interface Sci. 494, 397 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. W.H. Eisa, A.M. Abdelgawad, O.J. Rojas, Solid-state synthesis of metal nanoparticles supported on cellulose nanocrystals and their catalytic activity. ACS Sustain. Chem. Eng. 6, 3974 (2018)

    Article  CAS  Google Scholar 

  39. H. Liu, D. Wang, S. Shang, Z. Song, Synthesis and characterization of Ag-Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites. Carbohydr. Polym. 83, 38 (2011)

    Article  CAS  Google Scholar 

  40. H. Liu, D. Wang, Z. Song, S. Shang, Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose 18, 67 (2011)

    Article  CAS  Google Scholar 

  41. M. Schlesinger, M. Giese, L.K. Blusch, W.Y. Hamad, M.J. MacLachlan, Chiral nematic cellulose-gold nanoparticle composites from mesoporous photonic cellulose. Chem. Commun. 51, 530 (2015)

    Article  CAS  Google Scholar 

  42. T. Zhang, W. Wang, D. Zhang, X. Zhang, Y. Ma, Y. Zhou, L. Qi, Biotemplated synthesis of gold nanoparticle-bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv. Funct. Mater. 20, 1152 (2010)

    Article  CAS  Google Scholar 

  43. W. Wang, T.J. Zhang, D.W. Zhang, H.Y. Li, Y.R. Ma, L.M. Qi, Y.L. Zhou, X.X. Zhang, Amperometric hydrogen peroxide biosensor based on the immobilization of heme proteins on gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Talanta 84, 71 (2011)

    Article  CAS  PubMed  Google Scholar 

  44. N. Drogat, R. Granet, V. Sol, A. Memmi, N. Saad, C.K. Koerkamp, P. Bressollier, P. Krausz, Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J. Nanopart. Res. 13, 1557 (2011)

    Article  CAS  Google Scholar 

  45. S. Berndt, F. Wesarg, C. Wiegand, D. Kralisch, F.A. Mu¨ller, Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles, Cellulose 20, 771 (2013)

  46. V.V. Yanilkin, N.V. Nastapova, G.R. Nasretdinova, S.V. Fedorenko, M.E. Jilkin, A.R. Mustafina, A.T. Gubaidullin, Y.N. Osin, Methylviologen mediated electrosynthesis of gold nanoparticles in the solution bulk. RSC Advances 6, 1851 (2016)

    Article  CAS  Google Scholar 

  47. G.R. Nasretdinova, Y.N. Osin, A.T. Gubaidullin, V.V. Yanilkin, Methylviologen mediated electrosynthesis of palladium nanoparticles stabilized with CTAC. J. Electrochem. Soc. 163, G99 (2016)

    Article  CAS  Google Scholar 

  48. V.V. Yanilkin, R.R. Fazleeva, G.R. Nasretdinova, N.V. Nastapova, Y.N. Osin, The role of solvent in methylviologen mediated electrosynthesis of silver nanoparticles stabilized with polyvinylpyrrolidone. Butlerov. Commun. 46, 128 (2016)

    Google Scholar 

  49. V.V. Yanilkin, N.V. Nastapova, G.R. Nasretdinova, Y.N. Osin, Electrosynthesis of gold nanoparticles mediated by methylviologen using a gold anode in single compartment cell. Mendeleev Commun. 27, 274 (2017)

    Article  CAS  Google Scholar 

  50. V.V. Yanilkin, R.R. Fazleeva, G.R. Nasretdinova, N.V. Nastapova, Y.N. Osin, Methylviologen mediated electrosynthesis of silver nanoparticles in a water medium. Effect of chain length and concentration of poly(N-vinylpyrrolidone) on particle size, New Materials Compounds and Applications 2, 28 (2018)

  51. V.V. Yanilkin, N.V. Nastapova, E.D. Sultanova, G.R. Nasretdinova, R.K. Mukhitova, A.Y. Ziganshina, I.R. Nizameev, M.K. Kadirov, Electrochemical synthesis of nanocomposite of palladium nanoparticles with polymer viologen-containing nanocapsule. Russ. Chem. Bull. 65, 125 (2016)

    Article  CAS  Google Scholar 

  52. V.V. Yanilkin, N.V. Nastapova, R.R. Fazleeva, G.R. Nasretdinova, E.D. Sultanova, A.Y. Ziganshina, A.T. Gubaidullin, A.I. Samigullina, V.G. Evtugin, V.V. Vorobev, Y.N. Osin, Electrochemical synthesis of metal nanoparticles using a polymeric mediator, whose reduced form is adsorbed (deposited) on an electrode. Russ. Chem. Bull. 67, 215 (2018)

    Article  CAS  Google Scholar 

  53. V.V. Yanilkin, R.R. Fazleeva, N.V. Nastapova, G.R. Nasretdinova, A.T. Gubaidullin, N.B. Berezin, Y.N. Osin, Studies of cobalt(III) and chromium(III) complexes as mediators in the silver nanoparticle electrosynthesis in aqueous media. Russ. J. Electrochem. 54, 650 (2018)

    Article  CAS  Google Scholar 

  54. I.P. Suzdalev, Nanotechnology. Physicochemistry of nanoclusters, nanostructures and nanomaterials (KomKniga, Moscow, 2006), p. 592

  55. B.I. Kharisov, O.V. Kharissova, U. Ortiz-Mendez, Handbook of Less-Common Nanostructures (CRC Press, New York, 2012), p. 828

    Book  Google Scholar 

  56. P. Hervés, M. Pérez-Lorenzo, L.M. Liz-Marzán, J. Dzubiella, Y. Lu, M. Ballauff, Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem. Soc. Rev. 41, 5577 (2012)

    Article  PubMed  Google Scholar 

  57. S. Gu, S. Wunder, Y. Lu, M. Ballauff, K. Rademann, R. Fenger, B. Jaquet, A. Zaccone, Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J. Phys. Chem. C 118, 18618 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The X-ray analysis was carried out on the equipment of the Assigned Spectral-Analytical Center of FRC Kazan Scientific Center of RAS.

Funding

Partial financial support was received from the Russian Foundation for Basic Research (grant no. 20-03-00007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rezeda R. Fazleeva.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazleeva, R.R., Nasretdinova, G.R., Osin, Y.N. et al. An Effective Producing Method of Nanocomposites of Ag, Au, and Pd Nanoparticles with Poly(N-vinylpyrrolidone) and Nanocellulose. Electrocatalysis 12, 225–237 (2021). https://doi.org/10.1007/s12678-021-00645-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-021-00645-y

Keywords

Navigation