Skip to main content
Log in

Electrochemical synthesis of metal nanoparticles using a polymeric mediator, whose reduced form is adsorbed (deposited) on an electrode

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Efficient mediated electrosynthesis of nanocomposite Au@р(MVCA8+-co-St) (~6 nm), in which ultrasmall Au nanoparticles (Au-NP) were bound in nanocapsules of water-soluble nanoparticles of соpolymer р(MVCA8+-co-St) of tetraviologen calix[4]resorcinol (MVCA8+) with styrene (St), was accomplished by the reduction of AuI in aqueous medium. The quanti- tative reduction of AuI was carried out using the theoretically necessary amount of electricity and was not accompanied by the deposition of metal on the electrode. Radical cations of viologen units MV•+ of the molecule р(MVCA4•+-co-St) adsorbed on the electrode and π-dimers MV•+···MV•+ of π-polymers [р(MVCA4•+-co-St)] n deposited on the electrode act- ed as the reducing agents with respect to AuI. During electrolysis, the nanoparticles agglo- merated to 37—50 nm. The nanocomposite particles dispersed in ethanol had sizes of 72±16 nm and also contained Au-NP with sizes of 51±8 and 19±3 nm. The catalytic activity of the nanocomposite in the reduction of p-nitrophenol with sodium borohydride was demon- strated. A similar reduction of AgCl nanoparticles (~250 nm) led to the formation of silver nanoparticles with crystallite sizes in the range of 7—11 nm, the process was inefficient, however, even when using 250% of electricity, an incomplete reduction of AgCl was still observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Pomogaylo, A. S. Rozenberg, I. E. Uflyand, Nano-chastitsy metallov v polimerakh [Metal Nanoparticles in Poly-mers], Khimiya, Moscow, 2000, 672 pp. (in Russian).

    Google Scholar 

  2. V. I. Roldughin, Russ. Chem. Rev., 2000, 69, 821.

    Article  CAS  Google Scholar 

  3. M. C. Daniel, D. Astruc, Chem. Rev., 2004, 104, 293.

    Article  CAS  Google Scholar 

  4. I. P. Suzdalev, Nanotekhnologiya: Fiziko-khimiya nanoklas-terov, nanostruktur i nanomaterialov [Nanotechnology: Phys-ical Chemistry of Nanoclusters, Nanostructures and Nanoma-terials], 2nd ed., Librocom, 2009, 589 pp. (in Russian).

    Google Scholar 

  5. V. V. Volkov, T. A. Kravchenko, V. I. Roldughin, Russ. Chem. Rev., 2013, 82, 465.

    Article  Google Scholar 

  6. L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, N. G. Khlebtsov, Zolotye nanochastitsy. Sintez, svoystva, biomed-itsinskoe primenenie [Gold Nanoparticles. Synthesis, Proper-ties, Biomedical Application], Nauka, Moscow, 2008, 319 pp. (in Russian).

    Google Scholar 

  7. B. I. Kharisov, O. V. Kharissova, U. Ortiz-Méndez, Hand-book of Less-Common Nanostructures, CRC Press, Taylor and Francis Group, 2012, 828 pp.

    Google Scholar 

  8. Spravochnik po elektrokhimii [Handbook of Electrochemis-try], Ed. A. M. Sukhotin, Khimiya, Leningrad, 1981, 488 pp. (in Russian).

    Google Scholar 

  9. O. A. Petrii, Russ. Chem. Rev., 2015, 84, 159.

    Article  CAS  Google Scholar 

  10. V. Saez, T. J. Mason, Molecules, 2009, 14, 4284.

    Article  CAS  Google Scholar 

  11. J. Zhu, S. Liu, O. Palchik, Y. Koltypin, A. Gedanken, Lang-muir, 2000, 16, 6396.

    Article  CAS  Google Scholar 

  12. J. Reisse, T. Caulier, C. Deckerkheer, O. Fabre, J. Vander-cammen, J. L. Delplancke, R. Winand, Ultrason. Sono-chem., 1996, 3, 147.

    Article  Google Scholar 

  13. M. T. Reetz, W. Helbig, J. Am. Chem. Soc., 1994, 116, 7401.aaa

    Article  CAS  Google Scholar 

  14. J. A. Becker, R. Schäfer, R. Festag, W. Ruland, J. H. Wen-dorff, J. Pebler, S. A. Quaiser, W. Helbig, M. T. Reetz, J. Chem. Phys., 1995, 103, 2520.

    Article  CAS  Google Scholar 

  15. M. T. Reetz, S. A. Quaiser, C. Merk, Chem. Ber., 1996, 129, 741.

    Article  CAS  Google Scholar 

  16. M. T. Reetz, W. Helbig, S. A. Quaiser, U. Stimming, N. Breuer, R. Vogel, Science, 1995, 267, 367.

    Article  CAS  Google Scholar 

  17. M. T. Reetz, M. Winter, R. Breinbauer, T. Thurn-Albre-cht, W. Vogel, Chem.–Eur. J., 2001, 7, 1084.

    Article  CAS  Google Scholar 

  18. V. V. Yanilkin, G. R. Nasybullina, A. Yu. Ziganshina, I. R. Nizamiev, M. K. Kadirov, D. E. Korshin, A. I. Konovalov, Mendeleev Commun., 2014, 24, 108.

    Article  CAS  Google Scholar 

  19. V. V. Yanilkin, G. R. Nasybullina, E. D. Sultanova, A. Yu. Ziganshina, A. I. Konovalov, Russ. Chem. Bull., 2014, 63, 1409.

    Article  CAS  Google Scholar 

  20. V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, R. K. Mukhitova, A. Yu. Ziganshina, I. R. Nizameev, M. K. Ka-dirov, Russ. J. Electrochem., 2015, 51, 951.

    Article  CAS  Google Scholar 

  21. S. Fedorenko, M. Jilkin, N. Nastapova, V. Yanilkin, O. Bochkova, V. Buriliov, I. Nizameev, G. Nasretdinova, M. Kadirov, A. Mustafina, Y. Budnikova, Colloids Surf., 2015, 486, 185.

    Article  CAS  Google Scholar 

  22. G. R. Nasretdinova, Y. N. Osin, A. T. Gubaidullin, V. V. Yanilkin, J. Electrochem. Soc., 2016, 163, G99.

    Article  CAS  Google Scholar 

  23. G. R. Nasretdinova, R. R. Fazleeva, R. K. Mukhitova, I. R. Nizameev, M. K. Kadirov, A. Yu. Ziganshina, V. V. Yanilkin, Electrochem. Commun., 2015, 50, 69.

    Article  CAS  Google Scholar 

  24. G. R. Nasretdinova, R. R. Fazleeva, R. K. Mukhitova, I. R. Nizameev, M. K. Kadirov, A. Yu. Ziganshina, V. V. Yanilkin, Russ. J. Electrochem., 2015, 51, 1029.

    Article  CAS  Google Scholar 

  25. V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, R. R. Fazleeva, А.V. Toropchina, Y. N. Osin, Electrochem. Com-mun., 2015, 59, 60.

    Article  CAS  Google Scholar 

  26. G. R. Nasretdinova, R. R. Fazleeva, Y. N. Osin, A. T. Gubaidullin, V. V. Yanilkin, Russ. J. Electrochem., 2017, 53, 31.

    Article  Google Scholar 

  27. V. V. Yanilkin, R. R. Fazleeva, G. R. Nasretdinova, N. V. Nastapova, Y. N. Osin, Butlerov Commun., 2016, 46, 128.

    Google Scholar 

  28. V. V. Yanilkin, G. R. Nasretdinova, Y. N. Osin, V. V. Salni-kov, Electrochim. Acta, 2015, 168, 82.

    Article  CAS  Google Scholar 

  29. V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, S. V. Fedorenko, M. Е. Jilkin, A. R. Mustafina, A. T. Gubaidul-lin, Y. N. Osin, RSC Adv., 2016, 6, 1851.

    Article  CAS  Google Scholar 

  30. V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, R. R. Fazleeva, Y. N. Osin, Electrochem. Commun., 2016, 69, 36.

    Article  CAS  Google Scholar 

  31. V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, Y. N. Osin, A. T. Gubaidullin, ECS J. Solid State Sci. Technol., 2017, 6, M19.

    Article  CAS  Google Scholar 

  32. V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, R. R. Fazleeva, S. V. Fedorenko, A. R. Mustafina, Yu. N. Osin, Russ. J. Electrochem., 2017, 53, 509.

    Article  CAS  Google Scholar 

  33. E. D. Sultanova, E. G. Krasnova, S. V. Kharlamov, G. R. Nasybullina, V. V. Yanilkin, I. R. Nizameev, M. K. Kad-irov, R. K. Mukhitova, L. Y. Zakharova, A. Y. Ziganshina, A. I. Konovalov, ChemPlusChem, 2015, 80, 217.

    Article  CAS  Google Scholar 

  34. E. D. Sultanova, V. V. Salnikov, R. K. Mukhitova, Yu. F. Zuev, Yu. N. Osin, L. Ya. Zakharova, A. Y. Ziganshina, A. I. Konovalov, Chem. Commun., 2015, 51, 13317.

    Article  CAS  Google Scholar 

  35. V. V. Yanilkin, G. R. Nasybullina, E. D. Sultanova, A. Yu. Ziganshina, A. I. Konovalov, Russ. Chem. Bull., 2014, 63, 1409.

    Article  CAS  Google Scholar 

  36. P. C. Lee, D. Meisel, J. Phys. Chem., 1982, 86, 3391.

    Article  CAS  Google Scholar 

  37. P. Yang, W. Zhang, Y. Du, X. Wang, J. Mol. Catal. A: Chem., 2006, 260, 4.

    Article  CAS  Google Scholar 

  38. E. J. Kim, J. H. Yeum, H. D. Ghim, S. G. Lee, G. H. Lee, H. J. Lee, S. I. Han, J. H. Choi, Polymer, 2011, 35, 161.

    CAS  Google Scholar 

  39. S. V. Vasilyeva, M. A. Vorotyntsev, I. Bezverkhyy, E. Lesniewska, O. Heintz, R. Chassagnon, J. Phys. Chem. C, 2008, 112, 19878.

    Article  CAS  Google Scholar 

  40. V. A. Zinovyeva, M. A. Vorotyntsev, I. Bezverkhyy, D. Chaumont, J.-C. Hierso, Adv. Funct. Mater., 2011, 21, 1064.

    Article  CAS  Google Scholar 

  41. M. A. Vorotyntsev, M. Skompska, A. Rajchowska, J. Bory-siuk, M. Donten, J. Electroanal. Chem., 2011, 662, 105.

    Article  CAS  Google Scholar 

  42. T. V. Magdesieva, O. M. Nikitin, O. A. Levitsky, V. A. Zinovyeva, I. Bezverkhyy, E. V. Zolotukhina, M. A. Voro-tyntsev, J. Mol. Cat. A, 2012, 353–354, 50.

    Article  Google Scholar 

  43. T. V. Magdesieva, O. M. Nikitin, E. V. Zolotukhina, V. A. Zinovyeva, M. A. Vorotyntsev, Mendeleev Commun., 2012, 22, 305.

    Article  CAS  Google Scholar 

  44. T. V. Magdesieva, O. M. Nikitin, E. V. Zolotukhina, M. A. Vorotyntsev, Electrochim. Acta, 2014, 122, 289.

    Article  CAS  Google Scholar 

  45. Nanotechnology Research Directions: IWGN Workshop Re-port, Eds M. C. Roco, R. S. Williams, P. Alivisatos, Kluwer Acad. Publ., Dordrecht–Boston–London, 2000, 316 pp.

    Google Scholar 

  46. X. H. Peng, Q. M. Pan, G. L. Rempel, Chem. Soc. Rev., 2008, 37, 1619.

    Article  Google Scholar 

  47. R. M. Croks, M. Zhao, L. Sun, V. Chechik, L. K. Yeung, Acc. Chem. Res., 2009, 34.

    Google Scholar 

  48. DIFFRAC Plus Evaluation Package EVA, Version 11, User´s Manual, Bruker AXS, Karlsruhe, Germany, 2005, 258 pp.

  49. TOPAS V3: General Profile and Structure Analysis Software for Powder Diffraction Data, Technical Reference, Bruker AXS, Karlsruhe, Germany, 2005, 117 pp.

  50. G. R. Nasybullina, V. V. Yanilkin, A. Yu. Ziganshina, V. I. Morozov, E. D. Sultanova, D. E. Korshin, V. A. Milyukov, R. P. Shekurov, A. I. Konovalov, Russ. J. Electrochem., 2014, 50, 756.

    Article  CAS  Google Scholar 

  51. R. He, Y.-Ch. Wang, X. Wang, Zh. Wang, Liu G., W. Zhou, L. Wen, Q. Li, X. Wang, X. Chen, J. Zeng, J. G. Hou, Nat. Commun., 2014, 5, 4327.

    CAS  Google Scholar 

  52. J. Zeng, Q. Zhang, J. Chen, Y. Xia, Nano Lett., 2010, 10, 30.

    Article  CAS  Google Scholar 

  53. T. Ma, W. Yang, S. Liu, H. Zhang, F. Liang, Catalysts, 2017, 7, 38.

    Article  Google Scholar 

  54. Y. S. Seo, E.-Y. Ahn, J. Park, T. Y. Kim, J. E. Hong, K. Kim, Y. Park, Nanoscale Res. Lett., 2017, 12, 7.

    Article  Google Scholar 

  55. H. Tan, R. Santbergen, A. H. M. Smets, M. Zeman, Nano Lett., 2012, 12, 4070.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Yanilkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yanilkin, V.V., Nastapova, N.V., Fazleeva, R.R. et al. Electrochemical synthesis of metal nanoparticles using a polymeric mediator, whose reduced form is adsorbed (deposited) on an electrode. Russ Chem Bull 67, 215–229 (2018). https://doi.org/10.1007/s11172-018-2062-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-018-2062-2

Key words

Navigation