Skip to main content
Log in

Two-step electrosynthesis and catalytic activity of CoO−CoO • xH2O-supported Ag, Au, and Pd nanoparticles

  • Full Article
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Two-step electrosynthesis of CoO-CoO•xH2O-supported metal nanoparticles (MNPs, M = Au, Ag, Pd) was carried out in N,N-dimethylformamide in the absence and in presence of poly(N-vinylpyrrolidone) (PVP) using atmospheric oxygen as both a reagent and a mediator at potentials of its reduction to a superoxide radical anion. In the first step, oxygen reduction in the presence of Co2+ ions added to the solution as a salt or generated by dissolving the Co-anode during electrolysis produces a mixture of cobalt oxide CoO and its hydrated form CoO-CoO • xH2O (CoOxHy ). When Ag+, Au+, Pd2+ ions are added to the obtained solution of CoOx H y, a redox reaction between CoO and the metal ion gives the MNPs and CoO+. In the second step, oxygen-mediated electroreduction of CoO+ serving as the second mediator is carried out, and the redox reaction is completely shifted towards the formation of MNPs. In the absence of PVP, AgNPs (18±4 nm) bind and stabilize completely in the CoOxHy matrix, PdNPs (6±1 nm) stabilize only partially, and AuNPs (21±10 nm) do not bind and, therefore, only their agglomerates are obtained (~200 nm). In the presence of PVP, individual AgNPs (5±2 nm), AuNPs (13±5 nm), PdNPs (3±1 nm) are stabilized in the PVP shell and are bound by the matrix. The obtained nanocomposites M/CoOx H y and M@PVP/CoOxHy catalyze the reduction of p-nitrophenol with sodium borohydride in an aqueous medium. Their catalytic activity is due to MNPs; CoOx H y acts as an inert matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Eremenko, N. Smirnova, I. Gnatiuk, O. Linnik, N. Vityuk, Y. Mukha, A. Korduban, in Nanocomposites and Polymers with Analytical Methods, Ed. J. Cuppoletti, InTech, Rijeka, 2011, p. 51; DOI: 10.5772/18252.

  2. S. M. Majhi, G. K. Naik, H.-J. Lee, H.-G. Song, C.-R. Lee, I.-H. Lee, Y.-T. Yu, Sensors and Actuators, B, 2018, 268, 223.

    Article  CAS  Google Scholar 

  3. J. Liu, S. Zou, S. Li, X. Liao, Y. Hong, L. Xiao, J. Fan, J. Mater. Chem. A, 2013, 1, 4038.

    Article  CAS  Google Scholar 

  4. R. P. Padbury, J. C. Halbur, P. J. Krommenhoek, J. B. Tracy, J. S. Jur, Langmuir, 2015, 31, 1135.

    Article  CAS  Google Scholar 

  5. D. Han, Z. Zhang, Z. Bao, H. Xing, Q. Ren, Front. Chem. Sci. Eng., 2018, 12, 24.

    Article  CAS  Google Scholar 

  6. T. Hu, Y. Wang, Q. Liu, L. Zhang, H. Wang, T. Tang, W. Chen, M. Zhao, J. Jia, Int. J. Hydrogen Energy, 2017, 42, 25951.

    Article  CAS  Google Scholar 

  7. F.-Z. Song, Q.-L. Zhu, X. Yang, W.-W. Zhan, P. Pachfule, N. Tsumori, Q. Xu, Adv. Energy Mater., 2018, 8, 1701416.

    Article  Google Scholar 

  8. A. B. Kuriganova, I. N. Leontyev, A. S. Alexandrin, O. A. Maslova, A. I. Rakhmatullin, N. V. Smirnova, Mendeleev Commun., 2017, 27, 67.

    Article  CAS  Google Scholar 

  9. A. B. Kuriganova, D. V. Leontyeva, S. Ivanov, A. Bund, N. V. Smirnova, J. Appl. Electrochem., 2016, 46, 1245.

    Article  CAS  Google Scholar 

  10. A. B. Kuriganova, N. V. Smirnova, Mendeleev Commun., 2014, 24, 351.

    Article  CAS  Google Scholar 

  11. D. E. Doronkin, A. B. Kuriganova, I. N. Leontyev, S. Baier, H. Lichtenberg, N. V. Smirnova, J.-D. Grunwaldt, Catal. Lett., 2016, 146, 452.

    Article  CAS  Google Scholar 

  12. P. S. Solmanov, N. M. Maximov, N. N. Tomina, A. A. Pimerzin, Mendeleev Commun., 2018, 28, 562.

    Article  CAS  Google Scholar 

  13. A. V. Rassolov, G. N. Baeva, I. S. Mashkovsky, A. Yu. Sta-kheev, Mendeleev Commun., 2018, 28, 538.

    Article  CAS  Google Scholar 

  14. S. W. Lee, J. T. Song, J. Kim, J. Oh, J. Y. Park, Nanoscale, 2018, 10, 3911.

    Article  CAS  Google Scholar 

  15. Z. Zhang, Q. Wu, X. Bu, Z. Hang, Z. Wang, Q. Wang, Y. Ma, Bull. Korean Chem. Soc., 2018, 39, 71.

    Article  CAS  Google Scholar 

  16. M. Liu, W. Tang, Y. Xu, H. Yu, H. Yin, S. Zhao, S. Zhou, Appl. Catal. A, 2018, 549, 273.

    Article  CAS  Google Scholar 

  17. P. Supriya, B. T. V. Srinivas, K. Chowdeswari, N. V. S. Naidu, B. Sreedhar, Mater. Chem. Phys., 2018, 204, 27.

    Article  CAS  Google Scholar 

  18. M. Gilanizadeh, B. Zeynizadeh, Res. Chem. Intermed., 2018, 44, 6053.

    Article  CAS  Google Scholar 

  19. F. Aryanasab, RSC Adv., 2016, 6, 32018.

    Article  CAS  Google Scholar 

  20. S. Jammi, S. Sakthivel, L. Rout, T. Mukherjee, S. Mandal, R. Mitra, P. Saha, T. Punniyamurthy, J. Org. Chem., 2009, 74, 1971.

    Article  CAS  Google Scholar 

  21. V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, R. R. Fazleeva, Yu. N. Osin, Electrochem. Commun., 2016, 69, 36.

    Article  CAS  Google Scholar 

  22. V. V. Yanilkin, G. R. Nasretdinova, V. A. Kokorekin, Russ. Chem. Rev., 2018, 87, 1080.

    Article  CAS  Google Scholar 

  23. V. V. Yanilkin, N. V. Nastapova, R. R. Fazleeva, G. R. Nasretdinova, E. D. Sultanova, A. Yu. Ziganshina, A. T. Gubaidullin, A. I. Samigullina, V. G. Evtyugin, V. V. Vorob’ev, Yu. N. Osin, Russ. J. Electrochem., 2018, 54, 265.

    Article  CAS  Google Scholar 

  24. G. R. Nasretdinova, R. R. Fazleeva, Yu. N. Osin, V. G. Evtugin, A. T. Gubaidullin, A. Yu. Ziganshina, V. V. Yanilkin, Electrochim. Acta, 2018, 285, 149.

    Article  CAS  Google Scholar 

  25. V. V. Yanilkin, N. V. Nastapova, E. D. Sultanova, G. R. Nasret dinova, R. K. Mukhitova, A. Yu. Ziganshina, I. R. Nizameev, M. K. Kadirov, Russ. Chem. Bull., 2016, 65, 125.

    Article  CAS  Google Scholar 

  26. V. V. Yanilkin, N. V. Nastapova, G. R. Nasretdinova, G. M. Fazleeva, L. N. Islamova, Yu. N. Osin, A. T. Gubaidullin, ECS J. Solid State Sci. Technol., 2017, 6, M143.

    Article  CAS  Google Scholar 

  27. L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, N. G. Khlebtsov, Zolotye nanochastitsy. Sintez, svoystva, biomedit-sinskoye primenenie [Gold Nanoparticles. Synthesis, Properties, Biomedical Application], Nauka, Moscow, 2008, 319 pp. (in Russian).

    Google Scholar 

  28. V. V. Yanilkin, R. R. Fazleeva, G. R. Nasretdinova, N. V. Nas tapova, Yu. N. Osin, Butlerov Commun., 2016, 46, 128.

    Google Scholar 

  29. V. V. Yanilkin, R. R. Fazleeva, G. R. Nasretdinova, N. V. Nastapova, Yu. N. Osin, New Mater., Compd. Appl., 2018, 2, 28.

    Google Scholar 

  30. V. V. Yanilkin, R. R. Fazleeva, G. R. Nasretdinova, N. V. Nastapova, Yu. N. Osin, ECS J. Solid State Sci. Technol., 2018, 7, M55.

    Article  CAS  Google Scholar 

  31. V. V. Yanilkin, R. R. Fazleeva, N. V. Nastapova, G. R. Nasretdinova, A. T. Gubaidullin, N. B. Berezin, Yu. N. Osin, Russ. J. Electrochem., 2018, 54, 650.

    Article  CAS  Google Scholar 

  32. I. P. Suzdalev, Nanotekhnologiya: fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov [Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials], 2nd ed., Librokom, Moscow, 2009, 589 pp. (in Russian).

    Google Scholar 

  33. B. I. Kharisov, O. V. Kharissova, U. Ortiz-Méndez, Handbook of Less-Common Nanostructures, CRC Press, Taylor and Francis Group, Boca Raton, 2012, 836 pp.

    Book  Google Scholar 

  34. A. M. Tafesh, J. Weiguny, Chem. Rev., 1996, 96, 2035.

    Article  CAS  Google Scholar 

  35. D. Astruc, Nanoparticles and Catalysis, Wiley-VCH, Weinheim, 2008, 663 pp.

    Google Scholar 

  36. P. Lara, K. Philippot, Catal. Sci. Technol., 2014, 4, 2445.

    Article  CAS  Google Scholar 

  37. V. V. Yanilkin, N. V. Nastapova, R. R. Fazleeva, G. R. Nasretdinova, E. D. Sultanova, A. Yu. Ziganshina, A. T. Gubaidullin, A. I. Samigullina, V. G. Evtugin, V. V. Vorobev, Yu. N. Osin, Russ. Chem. Bull., 2018, 67, 215.

    Article  CAS  Google Scholar 

  38. P. Babji, V. L. Rao, Int. J. Chem. Stud., 2016, 4, 123.

    CAS  Google Scholar 

  39. M. Yaseen, Z. Shah, R. C. Veses, S. L. P. Dias, É. C. Lima, G. S. dos Reis, J. C. P. Vaghetti, W. S. D. Alencar, K. Meh-mood, J. Anal. Bioanal. Technol., 2017, 8, 1.

    Article  Google Scholar 

  40. N. Pradhan, A. Pal, T. Pal, Colloids Surf., A, 2002, 196, 247.

    Article  CAS  Google Scholar 

  41. P. Hervés, M. Pérez-Lorenzo, L. M. Liz-Marzán, J. Dzubiella, Y. Lu, M. Ballauff, Chem. Soc. Rev., 2012, 41, 5577.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Yanilkin.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 0241–0254, February, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazleeva, R.R., Nasretdinova, G.R., Osin, Y.N. et al. Two-step electrosynthesis and catalytic activity of CoO−CoO • xH2O-supported Ag, Au, and Pd nanoparticles. Russ Chem Bull 69, 241–254 (2020). https://doi.org/10.1007/s11172-020-2752-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-020-2752-4

Key words

Navigation