Skip to main content
Log in

Tuning of passivation efficiency of defects in emitter region of polysilicon solar cells using hydrogen plasma

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Using thin polycrystalline silicon (poly-Si) films reduces the cost of photovoltaic cells. Although hydrogenation treatments of poly-Si films are necessary to obtain high-energy conversion, the role of the n+ emitter on defects passivation via hydrogen diffusion in n+pp+ polysilicon solar cells has not yet been understood thoroughly. In this connection, the influence of hydrogenation temperature and doping level of the n+ emitter on open-circuit voltage (Voc) was analyzed. It was found that Voc greatly improved by a factor of 2.9 and reached up to 430 mV at a microwave plasma power and hydrogenation temperature of 650 W and 400 °C, respectively, for 60 min. Moreover, slow cooling is more advantageous for high Voc than rapid cooling. However, etching of the emitter region was observed, and this degradation is similar for both cooling methods. Furthermore, annealing of the hydrogenated cells in inert gas for 30 min revealed a slight increase in Voc, which reached 40–80 mV, depending on the annealing temperature. These results were explained by hydrogen atoms diffusing into the bulk of the material from subsurface defects generated during the plasma hydrogenation process. Also, our findings show that Voc values are much higher for a less doped phosphorus emitter than for a heavily doped one. The origin of these behaviors is clarified in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S Dawn, P K Tiwari, A K Goswami and M K Mishra Renew. Sustain. Energy Rev. 62 215 (2016)

    Article  Google Scholar 

  2. J C R Kumar and M A Majid Energy. Sustain. Soc. 10 1 (2020)

    Google Scholar 

  3. P Kartikay et al. J. Phys. Energy 3 034018 (2021)

    Article  ADS  CAS  Google Scholar 

  4. V V Garita, L R Elizondo, N Narayan and P Bauer Prog. Photovolt. Res. Appl. 27 346 (2019)

    Article  Google Scholar 

  5. M Wang, C Jiang, S Zhang, X Song, Y Tang and H M Cheng Nat. Chem. 10 667 (2018)

    Article  CAS  PubMed  Google Scholar 

  6. U Yu, Y Chen, W Wei, X Ji and L Chen ACS Nano 16 9736 (2022)

    Article  CAS  PubMed  Google Scholar 

  7. Q Liu, Q Chen, Y Tang and H M Cheng Electrochem. Energy Rev. 6 1 (2023)

    CAS  Google Scholar 

  8. M K Hasan, M Mahmud, A K M A Habib, S M A Motakabber and S Islam J. Energy Storage 41 102940 (2021)

    Article  Google Scholar 

  9. K Namsheer and C S Rout J. Mater. Chem. A 9 8248 (2021)

    Article  Google Scholar 

  10. C Liu, Z G Neale and G Cao Mater. Today 19 109 (2016)

    Article  CAS  Google Scholar 

  11. L Kouchachvili, W Yaïci and E Entchev J. Power Sources 374 237 (2018)

    Article  ADS  CAS  Google Scholar 

  12. B Kale and S Chatterjee Bull. Mater. Sci. 43 1 (2020)

    Article  Google Scholar 

  13. X M Huang, N Chen, D N Ye, A G Zhong, H Liu, Z Li and S Y Liu Sol. RRL 7 2300143 (2023)

    Article  CAS  Google Scholar 

  14. B Yadagiri, K Narayanswamy, T H Chowdhury, A Islam, V Gupta and S P Singh Mater. Chem. Front. 4 2168 (2020)

    Article  CAS  Google Scholar 

  15. P Goel, S Sundriyal, V Shrivastav, S Mishra, D P Dubal, K H Kim and A Deep Nano Energy 80 105552 (2021)

    Article  CAS  Google Scholar 

  16. P Dey, H Singh, R K Gupta, D Goswami and T Maiti J. Phys. Chem. Solids 144 109518 (2020)

    Article  CAS  Google Scholar 

  17. S S Nemala, S Prathapani, P Kartikay, P Bhargava, S Mallick and S Bohm IEEE J. Photovolt. 8 1252 (2018)

    Article  Google Scholar 

  18. S S Nemala, P Kartikay, K S Aneja, P Bhargava, H L M Bohm, S Bohm and S Mallick ACS Appl. Energy Mater. 1 2512 (2018)

    Article  CAS  Google Scholar 

  19. C Battaglia, A Cuevas and S Wolf Energy Environ. Sci. 9 1552 (2016)

    Article  CAS  Google Scholar 

  20. B J Hallam, P G Hamer, A M Ciesla, C E Chan, B V Stefani and S Wenham Prog. Photovolt. Res. Appl. 28 1217 (2020)

    Article  CAS  Google Scholar 

  21. A El Amrani, A Bekhtari, A El Kechai, H Menari, L Mahiou and M Maoudj Vacuum 120 95 (2015)

    Article  ADS  Google Scholar 

  22. T N Truong et al. ACS Appl. Energy Mater. 2 8783 (2019)

    Article  CAS  Google Scholar 

  23. Y V Gorelkinskii, V O Sigle and Z S Takibaev Phys. Status Solidi A 22 55 (1974)

    Article  ADS  Google Scholar 

  24. D Barakel, A Ulyashin, I Perichaud and S Martinuzzi Sol. Energy Mater. Sol. Cells 72 285 (2002)

    Article  CAS  Google Scholar 

  25. J Li, M Chong, J Zhu, Y Li, J Xu, P Wang, Z Shang, Z Yang, R Zhu and X Cao Appl. Phys. Lett. 60 2240 (1992)

    Article  ADS  CAS  Google Scholar 

  26. C Summonte, M Biavati, E Gabilli, F L Galloni, S Guerri and R Rizzoli Appl. Phys. Lett. 63 785 (1993)

    Article  ADS  CAS  Google Scholar 

  27. J C Li, J C Muller and P Siffert J. Nat. Sci. 4 295 (1999)

    CAS  Google Scholar 

  28. J H Brett, P G Hamer, A M Ciesla, C E Chan, B V Stefani and S Wenham Prog. Photovolt. Res Appl. 1 22 (2020)

    Google Scholar 

  29. N Nickel, N M Johnson and W B Jackson Appl. Phys. Lett. 62 3285 (1993)

    Article  ADS  CAS  Google Scholar 

  30. W Paul, A Lewis, G A N Connell and T D Moustakas Solid State Commun. 20 969 (1976)

    Article  ADS  CAS  Google Scholar 

  31. J I Pankove Appl. Phys. Lett. 32 12 (1978)

    Google Scholar 

  32. C H Seager, D S Ginley and J D Zook Appl. Phys. Lett. 36 10 (1980)

    Article  Google Scholar 

  33. B Sopori, Y Zhang and N M Ravindra J. Electron. Mater. 30 1616 (2001)

    Article  ADS  CAS  Google Scholar 

  34. L Carnel, H Dekkers, I Gordon, D V Gestel, K V Nieuwenhuysen, G Beaucarne and J Poortmans IEEE Electron Device Lett. 27 3 (2006)

    Article  Google Scholar 

  35. K Madhavi, M Ghosh, R G Mohan and R P Suvarna J. Mater. Sci.: Mater. Electron. 31 1904 (2020)

    CAS  Google Scholar 

  36. D Madi, A Focsa, S Roques, S Schmitt, A Slaoui and B Birouk Energy Proced. 2 151 (2010)

    Article  CAS  Google Scholar 

  37. D Madi, P Prathap, A Focsa and A Slaoui Appl. Phys. A 118 231 (2015)

    Article  ADS  CAS  Google Scholar 

  38. D R Kim, C H Lee, J M Weisse, I S Cho and X Zheng Nano Lett. 12 6485 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. A Slaoui, E Pihan, I Ka, N A Mbow, S Roques and J M Koebel Sol. Energy Mater. Sol. Cells 90 2087 (2006)

    Article  CAS  Google Scholar 

  40. D Mathiot, A Lachiq, A Slaoui, S Noel, J C Muller and C Dubois Mater. Sci. Semicond. Process. 1 231 (1998)

    Article  CAS  Google Scholar 

  41. A Moussi, D Bouhafs, L Mahiou and M S Belkaid Sol. Energy Mater. Sol. Cells 93 1663 (2009)

    Article  CAS  Google Scholar 

  42. S Bourdais, G Beaucarne, A Slaoui, J Poortmans, B Semmache and C Dubois Sol. Energy Mater. Sol. Cells 65 487 (2001)

    Article  CAS  Google Scholar 

  43. D Belfennache, D Madi, R Yekhlef, L Toukal, N Maouche, M S Akhtar and S Zahra Semicond. Phys. Quantum Electron. Optoelectron. 24 378 (2021)

    Article  Google Scholar 

  44. S Wilking, S Ebert, A Herguth and G Hahn J. Appl. Phys. 114 194512 (2013)

    Article  ADS  Google Scholar 

  45. Y M Pokotilo, A M Petuh, O Y Smirnova, G F Stelmakh, V P Markevich, O V Korolik, I A Svito and A M Saad J. Appl. Spectrosc. 86 822 (2019)

    Article  ADS  CAS  Google Scholar 

  46. M Tang et al. IEEE J. Photovolt. 6 10 (2016)

    Article  CAS  Google Scholar 

  47. D Madi and B Birouk Int. J. Sci. Res. Publ. 4 1 (2014)

    Google Scholar 

  48. H P Gillis, D A Choutov, P A Steiner, J D Piper, J H Crouch, P M Dove and K P Martin Appl. Phys. Lett. 66 2475 (1995)

    Article  ADS  CAS  Google Scholar 

  49. H F Winters J. Appl. Phys. 49 5165 (1978)

    Article  ADS  CAS  Google Scholar 

  50. S F Yoon, K H Tan, Q Zhang, M Rusli, J Ahn and L Valeri Vacuum 61 29 (2000)

    Article  ADS  Google Scholar 

  51. W Beyer, P Hapke and U Zastrow Mater. Res. Soc. Symp. Proc. 467 343 (1997)

    Article  CAS  Google Scholar 

  52. H T Nguyen, S Mokkapati and D Macdonald IEEE J. Photovolt. 7 598 (2017)

    Article  Google Scholar 

  53. Z Wang et al. Sol. Energy Mater. Sol. Cells 206 110256 (2020)

    Article  CAS  Google Scholar 

  54. D Belfennache, D Madi, N Brihi, M S Aida and M A Saeed Appl. Phys. A 124 697 (2018)

    Article  ADS  Google Scholar 

  55. N H Nickel and I E Beckers Phys. Rev. B 66 075211 (2002)

    Article  ADS  Google Scholar 

  56. C Herring, N M Johnson and C G Van de Walle Phys. Rev. B 12 125209 (2001)

    Article  ADS  Google Scholar 

  57. B J Hallam, D Chen, M Kim, B Stefani, B Hoex, M Abbott and S Wenham Phys. Status Solidi A 214 1700305 (2017)

    Article  ADS  Google Scholar 

  58. R H Doremus Mat. Res. Innovat. 4 49 (2000)

    Article  CAS  Google Scholar 

  59. R Rizk, P de Mierry, D Ballutaud, M Aucouturier and D Mathiot Phys. Rev. B 44 6141 (1991)

    Article  ADS  CAS  Google Scholar 

  60. S J Pearton, J W Corbett and T S Shi Appl. Phys. A 43 153 (1987)

    Article  ADS  Google Scholar 

  61. P Deak, L C Snyder and J W Corbett Phys. Rev. B 37 6887 (1988)

    Article  ADS  CAS  Google Scholar 

  62. Y Ma, Y L Huang, W Düngen, R Job and W R Fahrner Phys. Rev. B 72 085321 (2005)

    Article  ADS  Google Scholar 

  63. C Ghica, L C Nistor, B Mironov and S Vizireanu Rom. Rep. Phys. 62 329 (2010)

    CAS  Google Scholar 

  64. E V Lavrov and J Weber Phys. B Condens. Matter 308–310 151 (2001)

    Article  ADS  Google Scholar 

  65. N H Nickel, G B Anderson, N M Johnson and G Walker Phys. Rev. B 62 8012 (2000)

    Article  ADS  CAS  Google Scholar 

  66. Y L Huang, Y Ma, R Job and W R Fahrner Appl. Phys. Lett. 86 131911 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mahdid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdid, S., Madi, D., Samah, M. et al. Tuning of passivation efficiency of defects in emitter region of polysilicon solar cells using hydrogen plasma. Indian J Phys 98, 1313–1321 (2024). https://doi.org/10.1007/s12648-023-02911-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02911-9

Keywords

Navigation