Skip to main content
Log in

Passivation of grain boundary electronic activity in polycrystalline silicon thin films by heat treatment and hydrogenation

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The polycrystalline silicon (poly-Si) thin films are widely used in photovoltaic applications. However, the main drawback is the electronic activity of the grain boundaries which affects the performance of solar cells based on this material. In order to reduce the impact of this phenomenon, which affects the photovoltaic conversion efficiency, heat treatments before doping and annealing under hydrogen were carried out on phosphorus-doped poly-Si thin films. The obtained results showed that the heat treatments before doping allow an improvement in the free carriers concentration of 15 to 55% for temperatures ranging from 1000 to 1150 °C. In addition, an increase in the carriers mobility and a reduction in the resistivity of the studied thin films were observed. On the other hand, the annealing under hydrogen allowed an improvement of 10 to 18% on the free carriers concentration, a reduction of the resistivity, and an increase of the carriers mobility. Therefore, it can be deduced that heat treatments followed by annealing under hydrogen allow the passivation of the grain boundaries and thus lead to an improvement of the electrical characteristics, and consequently, the efficiency of solar cells made from poly-Si thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Tavkhelidze A, Jangidze L, Taliashvili Z, Gorj NE (2021) G-doping-based metal-semiconductor junction. Coatings 11:945. https://doi.org/10.3390/coatings11080945

    Article  Google Scholar 

  2. Leonardi AA, Faro MJL, Irrera A (2021) Silicon nanowires synthesis by metal-assisted chemical etching: a review. Nanomaterials 11:383. https://doi.org/10.3390/nano11020383

    Article  Google Scholar 

  3. Lei Q, He L, Tang C, Liu S, Zhou L (2021) Impact of silicon melt infiltration on the quality of cast crystalline silicon. Solar Energy 225:569–576. https://doi.org/10.1016/j.solener.2021.07.062

    Article  Google Scholar 

  4. Lei Q, He L, Rao S, Tang C, Ming L, Xu Y, Mao W, Zhou C, Luo H, Li J, Zhou L (2020) Production of high performance multi-crystalline silicon ingot by using composite nucleant. Journal of Crystal Growth 542:125666. https://doi.org/10.1016/j.jcrysgro.2020.125666

    Article  Google Scholar 

  5. Shariah A, Bataineh M (2023) Electrical and structural properties of crystallized amorphous silicon thin films. Silicon 15:2727–2735. https://doi.org/10.1007/s12633-022-02208-2

    Article  Google Scholar 

  6. Rosalba M, Stefano LD, Terracciano M, Rea I (2021) Porous silicon optical devices: recent advances in biosensing applications. Sensors 21:1336. https://doi.org/10.3390/s21041336

    Article  Google Scholar 

  7. Rostan NF, Hamid SNFA, Ahir ZFM, Ibrahim MA, Sopian K, Seapeai S (2022) Morphological, optical and electrical analysis of Ag polymer-nickel low temperature top electrode in silicon solar cell for tandem application. Silicon 14:12421–12435. https://doi.org/10.1007/s12633-022-01950-x

    Article  Google Scholar 

  8. Hong WE, Ro JS (2015) Polycrystalline silicon thin-film transistors fabricated by Joule-heating-induced crystallization. Solid-State Electron 103:178–183. https://doi.org/10.1016/j.sse.2014.07.016

    Article  Google Scholar 

  9. Becker C, Amkreutz D, Sontheimer T, Preidel V, Lockau D, Haschke J, Jogschies L, Klimm C, Merkel JJ, Plocica P, Steffens S, Rech B (2013) Polycrystalline silicon thin-film solar cells: status and perspectives. Sol Energy Mater Sol Cells 119:112–123. https://doi.org/10.1016/j.solmat.2013.05.043

    Article  Google Scholar 

  10. Römer U, Peibst R, Ohrdes T, Lim B, Krügener J, Wietler T, Brendel R (2015) Ion implantation for poly-Si passivated back-junction back-contacted solar cells. IEEE J Photovolt 5:507–514. https://doi.org/10.1109/JPHOTOV.2014.2382975

    Article  Google Scholar 

  11. Morisset A, Cabal R, Grange B, Marchat C, Alvarez J, Gueunier-Farret ME, Dubois S, Kleider JP (2019) Conductivity and surface passivation properties of boron-doped poly-silicon passivated contacts for c-Si solar cells. Phys Status Solidi A 216:1800603. https://doi.org/10.1002/pssa.201800603

    Article  Google Scholar 

  12. Liu A, Yan D, Wong-Leung J, Li L, Phang SP, Cuevas A, Macdonald D (2018) Direct observation of the impurity gettering layers in polysilicon-based passivating contacts for silicon solar cells. ACS Appl Energy Mater 1:2275–2282. https://doi.org/10.1021/acsaem.8b00367

    Article  Google Scholar 

  13. Iacona ST, Clarson SJ (2014) Silicon and energy. Silicon 6:211–213. https://doi.org/10.1007/s12633-014-9205-3

    Article  Google Scholar 

  14. Stodolny MK, Anker J, Geerligs BL, Janssen GJ, Van De Loo BW, Melskens J, Santbergen R, Isabella O, Schmitz J, Lenes M, Luchies JM, Kessels WM, Romijn I (2017) Material properties of LPCVD processed n-type polysilicon passivating contacts and its application in PERPoly industrial bifacial solar cells. Energy Procedia 124:635–642. https://doi.org/10.1016/j.egypro.2017.09.250

    Article  Google Scholar 

  15. Park H, Bae S, Park SJ, Hyun JY, Lee CH, Choi D, Kang D, Han H, Kang Y, Lee HS, Kim D (2019) Role of polysilicon in poly-Si/SiOx passivating contacts for high-efficiency silicon solar cells. RSC Adv 9:23261–23266. https://doi.org/10.1039/C9RA03560E

    Article  Google Scholar 

  16. Feldmann F, Reichel C, Müller R, Hermle M (2017) The application of poly-Si/SiOx contacts as passivated top/rear contacts in Si solar cells. Sol Energy Mater Sol Cells 159:265–271. https://doi.org/10.1016/j.solmat.2016.09.015

    Article  Google Scholar 

  17. Costa EC, Dos Santos CP, Carvalho VA, Xavier FA (2022) Study on surface integrity and ductile cutting of PV polycrystalline silicon and wear mechanisms of electroplated diamond wire. Int J Adv Manuf Technol 122:1539–1553. https://doi.org/10.1007/s00170-022-09990-8

    Article  Google Scholar 

  18. Yin Y, Gao Y, Li X, Pu T, Wang L (2020) Study on cutting PV polysilicon with a new type of diamond abrasives-helix-distribution saw wire based on controlling the subsurface microcrack damage depth. Int J Adv Manuf Technol 110:2389–2406. https://doi.org/10.1007/s00170-020-06019-w

    Article  Google Scholar 

  19. Pu T, Gao Y, Wang L, Yin Y (2020) Experimental investigation on the machining characteristics of fixed-free abrasive combined wire sawing PV polycrystalline silicon solar cell. Int J Adv Manuf Technol 107:843–858. https://doi.org/10.1007/s00170-020-05099-y

    Article  Google Scholar 

  20. Kang D, Sio HC, Stuckelberger J, Liu R, Yan D, Zhang X, Macdonald D (2021) Optimum hydrogen injection in phosphorus-doped polysilicon passivating contacts. ACS Appl Mater Interfaces 13:55164. https://doi.org/10.1021/acsami.1c17342

    Article  Google Scholar 

  21. Nemeth B, Young DL, Page MR, LaSalvia V, Johnston S, Reedy R, Stradins P (2016) Polycrystalline silicon passivated tunneling contacts for high efficiency silicon solar cells. J Mater Res 31:671–681. https://doi.org/10.1557/jmr.2016.77

    Article  Google Scholar 

  22. Pham DP, Oh D, Dao VA, Kim Y, Yi J (2022) Enhanced energy conversion performance of silicon solar cells by quantum-confinement effect of polysilicon oxide. Appl Mater Today 29:101604. https://doi.org/10.1016/j.apmt.2022.101604

    Article  Google Scholar 

  23. Schnabel M, Van de Loo BWH, Nemeth W, Macco B, Stradins P, Kessels WMM, Young DL (2018) Hydrogen passivation of poly-Si/SiOx contacts for Si solar cells using Al2O3 studied with deuterium. Appl Phys Lett 112:203901. https://doi.org/10.1063/1.5031118

    Article  Google Scholar 

  24. Steffens S, Becker C, Zollondz JH, Chowdhury A, Slaoui A, Lindekugel S, Schubert U, Evans R, Rech B (2013) Defect annealing processes for polycrystalline silicon thin-film solar cells. Mater Sci Eng B 178:670–675. https://doi.org/10.1016/j.mseb.2012.11.002

    Article  Google Scholar 

  25. Hwang JD, Yan WJ (2015) Using aluminum-induced polycrystalline silicon to enhance ultraviolet to visible rejection ratio of ZnO/Si heterojunction photodetectors. Sol Energy Mater Sol Cells 134:227–230. https://doi.org/10.1016/j.solmat.2014.12.001

    Article  Google Scholar 

  26. Zaidi B, Hadjoudja B, Shekhar C, Chouial B, Li R, Madhava Rao MV, Gagui S, Chibani A (2016) Dopant segregation and heat treatment effects on the electrical properties of polycrystalline silicon thin films. Silicon 8:513–516. https://doi.org/10.1007/s12633-015-9359-7

    Article  Google Scholar 

  27. Truong TN, Yan D, Chen W, Tebyetekerwa M, Young M, Al-Jassim M, Cuevas A, Macdonald D, Nguyen HT (2020) Hydrogenation mechanisms of poly-Si/SiOx passivating contacts by different capping layers. RRL Solar 4:1900476. https://doi.org/10.1002/solr.201900476

    Article  Google Scholar 

  28. Tutsch L, Feldmann F, Macco B, Bivour M, Kessels E, Hermle M (2020) Improved passivation of n-type poly-Si based passivating contacts by the application of hydrogen-rich transparent conductive oxides. IEEE J Photovolt 10:986–991. https://doi.org/10.1109/JPHOTOV.2020.2992348

    Article  Google Scholar 

  29. Mekhalfa M, Zaidi B, Hadjoudja B, Chouial B, Chibani A (2020) Investigation of hydrogen effect on phosphorus doped polysilicon thin films. Surface Eng 36:29–32. https://doi.org/10.1080/02670844.2018.1536377

    Article  Google Scholar 

  30. Zaidi B, Hadjoudja B, Chouial B, Gagui S, Felfli H, Chibani A (2015) Hydrogenation effect on electrical behavior of polysilicon thin films. Silicon 7:275–278. https://doi.org/10.1007/s12633-014-9186-2

    Article  Google Scholar 

  31. Seto JYW (1975) The electrical properties of polycrystalline silicon. J Appl Phys 46:5247. https://doi.org/10.1063/1.321593

    Article  Google Scholar 

  32. Murota J, Sawai T (1983) Electrical characteristics of heavily arsenic and phosphorous doped polycrystalline silicon. J Appl Phys 53:3702–3708. https://doi.org/10.1016/0042-207X(83)90202-6

    Article  Google Scholar 

  33. Truong TN, Yan D, Samundsett C, Basnet R, Tebyetekerwa M, Li L, Kremer F, Cuevas A, Macdonald D, Nguyen HT (2019) Hydrogenation of phosphorus-doped polycrystalline silicon films for passivating contact solar cells. ACS Appl Mater Interfaces 11:5554–5560. https://doi.org/10.1021/acsami.8b19989

    Article  Google Scholar 

  34. Loz’ach M, Nunomura S, Umishio H, Matsui T, Matsubara K (2019) Roles of hydrogen atoms in p-type poly-Si/SiOx passivation layer for crystalline silicon solar cell applications. Jpn J Appl Phys 58:050915. https://doi.org/10.7567/1347-4065/ab14fe

    Article  Google Scholar 

  35. Honda S, Mates T, Ledinsky M, Oswald J, Fejfar A, Kocka J, Yamazaki T, Uraoka Y, Fuyuki T (2005) Effect of hydrogen passivation on polycrystalline silicon thin films. Thin Solid Films 487:152–156. https://doi.org/10.1016/j.tsf.2005.01.056

    Article  Google Scholar 

  36. Stuckelberger J, Yan D, Phang SP, Samundsett C, Wang J, Antognini L, Haug FJ, Wang Z, Yang J, Zheng P, Zhang X, Macdonald D (2023) Pre-annealing for improved LPCVD deposited boron-doped poly-Si hole-selective contacts. Sol Energy Mater Sol Cells 251:112123. https://doi.org/10.1016/j.solmat.2022.112123

    Article  Google Scholar 

  37. Rui Z, Zeng Y, Guo X, Yang Q, Wang Z, Shou C, Ding W, Yang J, Zhang X, Wang Q, Jin H, Liao M, Huang S, Yan B, Ye J (2019) On the passivation mechanism of poly-silicon and thin silicon oxide on crystal silicon wafers. Sol Energy 194:18–26. https://doi.org/10.1016/j.solener.2019.10.064

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouzid Hadjoudja.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magramene, A., Moumene, M., Hadjoudja, H. et al. Passivation of grain boundary electronic activity in polycrystalline silicon thin films by heat treatment and hydrogenation. Int J Adv Manuf Technol 128, 4331–4337 (2023). https://doi.org/10.1007/s00170-023-12172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-12172-9

Keywords

Navigation