Skip to main content
Log in

Mechanism for phosphorus deactivation in silicon-based Schottky diodes submitted to MW-ECR hydrogen plasma

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Current work reveals the deactivation mechanism of phosphorus in silicon-based Schottky diodes. Microwave plasma power (PMW) was fixed at 650 W to observe the variation in different operational parameters of diodes such as initial phosphorus concentration, flux and hydrogenation temperature (TH) and process time (tH). The analysis of variation in concentration of phosphorus by hydrogenation has been carried out by capacitance–voltage (C–V) measurements to monitor the doping activation/deactivation. The results clearly show that the atomic species H+ is dominant in the reactors MW-ECR plasma. Therefore, the rates and depth of neutralization were obtained in the low phosphorus-doped silicon sample. The H+ becomes H0 and prefers an interaction with another H0 instead of gaining an electron to become a negative ion. The hydrogenation temperature study indicates that the deactivation rate of phosphorus is achieved in a complex manner. Indeed, as the hydrogenation temperature increases, deactivation of phosphorus also increases till saturation at 250 °C. At higher temperature, low or even no phosphorus–hydrogen complex exists due to their thermal dissociation. The same behavior was confirmed by long hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Zundel, A. Mesli, J.C. Muller, P. Siffert, Appl. Phys. A 48, 31–40 (1989)

    Article  ADS  Google Scholar 

  2. T. Schutz-Kuchly, A. Slaoui, Appl. Phys. A 112, 863–867 (2013)

    Article  ADS  Google Scholar 

  3. V. Emil, S. Jelenković, B. To, G. Sundaravel, X.H. Huang, Appl. Phys. A 122, 708 (2016)

    Article  ADS  Google Scholar 

  4. K. Carstens, M. Dahlinger, J. Appl. Phys. 119, 185303 (2016)

    Article  ADS  Google Scholar 

  5. J.I. Pankove, N.M. Johnson, Hydrogen in Semiconductors (Academic, New York, 1991), pp. 1–15

    Book  Google Scholar 

  6. P. Prathap, O. Tuzun, D. Madi, A. Slaoui, Sol. Energy Mater. Sol. Cells 95, 44–52 (2011)

    Article  Google Scholar 

  7. G. Béaucarne, S. Bourdais, A. Slaoui, J. Poortmans, Appl. Phys. A 79, 469–480 (2004)

    Article  ADS  Google Scholar 

  8. D. Madi, A. Focsa, S. Roques, S. Schmitt, A. Slaoui, B. Birouk, Energy Procedia 2, 151–157 (2009)

    Article  Google Scholar 

  9. D. Madi, P. Prathap, A. Focsa, A. Slaoui, B. Birouk, Appl. Phys. A 99, 729–734 (2010)

    Article  ADS  Google Scholar 

  10. C. Ghica, L.C. Nistor, M. Stefan, D. Ghica, B. Mironov, S. Vizireanu, A. Moldovan, M. Dinescu, Appl. Phys. A 98, 777–785 (2010)

    Article  ADS  Google Scholar 

  11. D. Madi, P. Prathap, A. Slaoui, Appl. Phys. A 118, 231–237 (2015)

    Article  ADS  Google Scholar 

  12. S.K. Estreicher, L. Throckmorton, D.S. Marynick, Phys. Rev. B 39, 13241–13251 (1989)

    Article  ADS  Google Scholar 

  13. N.M. Johnson, C. Herring, D.J. Chadi, Phys. Rev. Lett. 56, 769–772 (1986)

    Article  ADS  Google Scholar 

  14. K. Bergman, M. Stavola, S.J. Pearton, J. Lopata, Phys. Rev. B 37, 2770–2773 (1988)

    Article  ADS  Google Scholar 

  15. N.H. Nickel, Microelectron. Reliab. 47, 899–902 (2007)

    Article  Google Scholar 

  16. N. Fukata, S. Sato, H. Morihiro, K. Murakami, K. Ishioka, M. Kitajima, J. Appl. Phys. 101, 461071–461073 (2007)

    Article  Google Scholar 

  17. Y. Ma, Y.L. Huang, W. Düngen, R. Job, W.R. Fahrner, Phys. Rev. B 72, 085321 (2005)

    Article  ADS  Google Scholar 

  18. A. Royal, F. Mazen, F. Gonzatti, M. Veillerot, A. Claverie, Mater. Sci. Semicond. Process. 67, 118–123 (2017)

    Article  Google Scholar 

  19. R.E. Pritchard, M.J. Ashwin, J.H. Tucker, R.C. Newman, E.C. Lightowlers, M.J. Binns, S.A. McQuaid, R. Falster, Phys. Rev. B 56, 13118–13125 (1997)

    Article  ADS  Google Scholar 

  20. K. Murakami, N. Fukata, S. Sasaki, K. Ishioka, M. Kitajima, S. Fujimura, J. Kikuchi, H. Haneda, Phys. Rev. Lett. 77, 3161–3164 (1996)

    Article  ADS  Google Scholar 

  21. J. Zhu, N.M. Johnson, C. Herring, Phys. Rev. B 41, 12354–12357 (1990)

    Article  ADS  Google Scholar 

  22. A.J. Tavendale, S.J. Pearton, A.A. Williams, Appl. Phys. Lett. 56, 949–951 (1990)

    Article  ADS  Google Scholar 

  23. L. Carnel, H. Dekkers, I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, G. Beaucarne, J. Poortmans, IEEE Electron. Device Lett. 27, 163–165 (2006)

    Article  ADS  Google Scholar 

  24. L. Carnel, I. Gordon, D. Van Gestel, G. Béaucarne, J. Poortmans, Appl. Phys. 100, 063702 (2006)

    Article  Google Scholar 

  25. N.M. Johnson, Phys. Rev. B 31, 5525–5528 (1985)

    Article  ADS  Google Scholar 

  26. N.M. Johomson, M.D. Moyer, Appl. Phys. Lett. 46, 787–789 (1985)

    Article  ADS  Google Scholar 

  27. D. Madi, B. Birouk, IJSRP 4, 1–6 (2014)

    Google Scholar 

  28. D. Belfennache, N. Brihi, D. Madi, Proceeding of the IEEE xplore, 8th (ICMIC), pp. 497–502 (2016)

  29. R. Rizk, P. Mierry, D. Ballutand, M. Aucouturier, D. Mathiot, Phys. Rev. B 44, 6141–6151 (1991)

    Article  ADS  Google Scholar 

  30. D.K. Schroder, Semiconductor Material and Device Characterization, 2nd edn. (Wiley, New York, 1998)

    Google Scholar 

  31. A. Slaoui, E. Pihan, I. Ka, N.A. Mbow, S. Roques, J.M. Koebel, Sol. Energy Mater Sol. Cells 90, 2087–2098 (2006)

    Article  Google Scholar 

  32. N.M. Johnson, Appl. Phys. Lett. 47, 874–876 (1985)

    Article  ADS  Google Scholar 

  33. E. Hyman, K. Tsang, A. Drobot, B. Lane, J. Casey, R. Post, J. Vac. Sci. Technol. A 12, 1474–1479 (1994)

    Article  ADS  Google Scholar 

  34. S.F. Yoon, K.H. Tan, Q. Zhang, M. Rusli, J. Ahn, L. Valeri, Vacuum 61, 29–35 (2001)

    Article  ADS  Google Scholar 

  35. C. Herring, N.M. Johnson, C.G. Van de Walle, Phys. Rev. B 64, 125209 (2001)

    Article  ADS  Google Scholar 

  36. N.M. Johnson, C. Herring, Phys. Rev. B 42, 14297–14299 (1991)

    Article  ADS  Google Scholar 

  37. K.J. Chang, D.J. Chadi, Phys. Rev. Lett. 60, 1422–1425 (1998)

    Article  ADS  Google Scholar 

  38. C.G. Van de Walle, Y. Bar-Yam, S.T. Pentelides, Phys. Rev. Lett. 60, 2761–2764 (1988)

    Article  ADS  Google Scholar 

  39. P. Deák, L.C. Snyder, J.W. Corbett, Phys. Rev. B 37, 6887–6892 (1988)

    Article  ADS  Google Scholar 

  40. P. Deák, L.C. Snyder, J.L. Lindström, J.W. Corbett, S.J. Pearton, A.J. Tavendale, Phys. Lett. A 126, 427–430 (1988)

    Article  ADS  Google Scholar 

  41. N.H. Nickel, G.B. Anderson, N.M. Johnson, G. Walker, Phys. Rev. B 62, 8012–8015 (2000)

    Article  ADS  Google Scholar 

  42. Y.L. Huang, Y. Ma, R. Job, W.R. Fahrner, Appl. Phys. Lett. 86, 131911–1319113 (2005)

    Article  ADS  Google Scholar 

  43. N.M. Johnson, C. Herring, G. Chris, Van de Wall, Phys. Rev. Lett. 73, 130–133 (1994)

    Article  ADS  Google Scholar 

  44. N. Fukata, S. Sato, S. Fukuda, K. Ishioka, M. Kitajima, S. Hishita, K. Murakami, Phys. B 401402, 175–178 (2007)

    Article  ADS  Google Scholar 

  45. A.W.R. Leitch, V. Alex, J. Weber, Phys. Rev. Lett. 81, 421–424 (1998)

    Article  ADS  Google Scholar 

  46. N. Fukata, S. Sasaki, K. Murakami, K. Ishioka, K.G. Nakamura, M. Kitajima, S. Fujimura, J. kikuchi, H. Haneda, Phys. Rev. B 56, 6642–6647 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to the personnel of the ICUBE (Formerly InESS) Laboratory for their help and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Belfennache.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belfennache, D., Madi, D., Brihi, N. et al. Mechanism for phosphorus deactivation in silicon-based Schottky diodes submitted to MW-ECR hydrogen plasma. Appl. Phys. A 124, 697 (2018). https://doi.org/10.1007/s00339-018-2118-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2118-z

Navigation