Skip to main content

Advertisement

Log in

Electrochemical energy storage systems: India perspective

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Design and fabrication of energy storage systems (ESS) is of great importance to the sustainable development of human society. Great efforts have been made by India to build better energy storage systems. ESS, such as supercapacitors and batteries are the key elements for energy structure evolution. These devices have attracted enormous attention due to their potential applications in future electric vehicles, smart electric grids, etc. This paper first addresses the fundamental principles, structure and classification of supercapacitors and batteries, and then focus on the recent advances on these devices made by India especially from Centre for Materials for Electronics Technology (C-MET), a scientific society under the ministry of electronics and information technology, government of India. Also the current global market scenario and market in India are also discussed in detail to recognize the most appropriate energy systems for the emerging economy like India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Holmberg S, Perebikovsky A, Kulinsky L and Madou M 2014 Micromachines5 171

    Google Scholar 

  2. Zuo W, Li R, Zhou C, Li Y, Xia J and Liu J 2017 Adv. Sci. 4 1600539

    Google Scholar 

  3. Wang Y and Xia Y 2013 Adv. Mater.25 5336

    CAS  Google Scholar 

  4. Miller J R and Burke A F 2008 The electrochemical society interface, Spring

    Google Scholar 

  5. Hadjipaschalis I, Poullikkas A and Efthimiou V 2009 Renew. Sustain. Energy Rev.13 1513

    Google Scholar 

  6. Salinas-Torres D, Sieben J M, Lozano-Castello D, Cazorla-Amoros D and Morallon E 2013 Electrochim. Acta89 326

    CAS  Google Scholar 

  7. Yan J, Fan Z, Wei T, Cheng J , Shao B, Wang K et al 2009 J. Power Sources194 1202

    CAS  Google Scholar 

  8. Cheng Q, Tang J, Ma J, Zhang H, Shinya N and Qin L C 2011 Carbon49 2917

    CAS  Google Scholar 

  9. Wang W, Guo S, Lee I, Ahmed K, Zhong J, Favors Z et al 2014 Sci. Rep.4 4452

    Google Scholar 

  10. Cho S, Kim J, Jo Y, Ahmed A T A, Chavan H S, Woo H et al 2017 J. Alloys Compd.725 108

    CAS  Google Scholar 

  11. Yang L, Hu J, Dong A and Yang D 2014 Electrochim. Acta144 235

    CAS  Google Scholar 

  12. Kundu S, Mogera U, George S J and Kulkarni G U 2019 Nano Energy61C 259

    Google Scholar 

  13. Boruaha B D, Maji A and Misra A 2018 ACS Appl. Mater. Interfaces10 15864

    Google Scholar 

  14. Kyeremateng N A, Brousse T and Pech D 2017 Nat. Nanotech.12 7

    CAS  Google Scholar 

  15. Oudenhoven J F M, Baggetto L and Notten P H L 2010 Adv. Energy Mater.1 10

    Google Scholar 

  16. Hao H, Chen K, Liu H, Wang H, Liu J, Yang K et al 2018 Int. J. Electrochem. Sci. 13 2329

    CAS  Google Scholar 

  17. Foudia M, Matrakova M and Zerroual L 2015 J. Power Sources279 146

    CAS  Google Scholar 

  18. Van der Kuijp T J, Huang L and Cherry C R 2013 Environ. Health12 61

    Google Scholar 

  19. Roh S H, Palanisamy G, Sadhasivam T, Jin J E, Shim J Y and Jung H Y 2019 ACS Sustain. Chem. Eng.79 8789

    Google Scholar 

  20. Espinosa D C R and Tenorio J A S 2006 J. Power Sources157 600

    CAS  Google Scholar 

  21. Huang K, Li J and Xu Z 2009 Environ. Sci. Technol.4323 8974

    Google Scholar 

  22. Yao Y, Farac N F and Azimi G 2018 ACS Sustain. Chem. Eng.61 1417

    Google Scholar 

  23. Xu X, Zhou D, Qin X, Lin K, Kang F, Li B et al 2018 Nat. Commun.9 1

    Google Scholar 

  24. Wang Y X, Zhang B, Lai W, Xu Y, Chou S L, Liu H K et al 2017 Adv. Energy Mater.7 1602829

    Google Scholar 

  25. Wei S, Xu S, Agrawral A, Choudhury S, Lu Y, Tu Z et al 2016 Nat. Commun. 7 11722

    Google Scholar 

  26. Li G, Lu X, Kim J Y, Meinhardt K D, Chang H J, Canfield N L et al 2016 Nat. Commun. 7 1

    Google Scholar 

  27. Sudworth J L 2001 J. Power Sources100 149

    CAS  Google Scholar 

  28. Weber A Z, Mench M M, Meyers J P, Ross P N, Gostick J T and Liu Q 2011 J. Appl. Electrochem. 41 1137

    CAS  Google Scholar 

  29. Wang W, Luo Q, Li B, Wei X, Li L and Yang Z 2013 Adv. Funct. Mater.23 970

    CAS  Google Scholar 

  30. Soloveichik G L 2015 Chem. Rev.115 11533

    CAS  Google Scholar 

  31. Munaiah Y, Suresh S, Dheenadayalan S, Pillai V K and Ragupathy P 2014 J. Phys. Chem. C118 14795

    CAS  Google Scholar 

  32. Zhou H, Zhang H, Zhao P and Yi B 2006 Electrochem. Commun.74 296

    CAS  Google Scholar 

  33. Zhou H, Zhang H, Zhao P and Yi B 2006 Electrochim. Acta51 6304

    CAS  Google Scholar 

  34. Gross M M and Manthiram A 2019 ACS Appl. Energy Mater.2 3445

    CAS  Google Scholar 

  35. Su L, Badel A F, Cao C, Hinricher J J and Brushett F R 2017 Ind. Eng. Chem. Res.56 9783

    CAS  Google Scholar 

  36. Zaffou R, Li W N and Perry N L 2012 ACS Symposium Series, 1096, Chapter 7, pp 107–127

  37. Weber S, Peters J F, Baumann M and Weil M 2018 Environ. Sci. Technol.52 10864

    CAS  Google Scholar 

  38. Cunha A, Brito F P, Martins J, Rodrigues N, Monteiro V, Afonso J L et al 2016 Energy115 1478

    CAS  Google Scholar 

  39. Arumugam D, Kalaignan G P, Vediappan K and Lee Lianhe Liu 2013 Mater. Sci. Eng. B178 736

    Google Scholar 

  40. Tarascon J M 2016 Electrochem. Soc. Interface3 79

    Google Scholar 

  41. https://www.economist.com/blogs/graphicdetail/2017/08/daily-chart-8

  42. Gan Y, Zhang L, Wen Y, Wang F and Su H 2008 Particuology6 81

    CAS  Google Scholar 

  43. Qiao Q Q, Qin L, Li G R, Wang Y L and Gao X P 2015 J. Mater. Chem. A3 17627

    CAS  Google Scholar 

  44. Nayak P K, Grinblat J, Levi M, Levi E, Kim S, Choi J W et al 2016 Adv. Energy Mater.6 1502398

    Google Scholar 

  45. Bensalah N and Dawood H 2016 J. Mater. Sci. Eng.5 258

    Google Scholar 

  46. Zhang D Y, Yi J, Wei Q, Liu K and Fan Z Z 2010 Adv. Mater. Res.158 256

    Google Scholar 

  47. Duraisamy S, Penki T R, Kishore B, Barpanda P, Nayak P K, Aurbach D et al 2017 Solid State Electrochem. 21 437

    CAS  Google Scholar 

  48. Ghanty C, Dahiya P P, Basu R N, Chang J K and Majumder S B 2015 J. Electrochem. Soc. 162 A1957

    CAS  Google Scholar 

  49. Chen Y, Zhang Y, Chen B, Wang Z and Lu C 2014 J. Power Sources256 20

    CAS  Google Scholar 

  50. Qin C, Cao J, Chen J, Dai G, Wu T, Chen Y et al 2016 Dalton Trans.45 9669

    CAS  Google Scholar 

  51. Cho W, Kim S M, Song J H, Yim T, Woo S G, Lee K W et al 2015 J. Power Sources282 45

    CAS  Google Scholar 

  52. Lee M J, Lee S, Oh P, Kim Y and Cho J 2014 Nano Lett.14 993

    CAS  Google Scholar 

  53. Zhang D, Popov B N and White R E 1998 J. Power Sources76 81

    CAS  Google Scholar 

  54. Arumugam D, Kalaignan G P, Vediappan K and Lee C W 2010 Electrochim. Acta55 8439

    CAS  Google Scholar 

  55. Sung-Wook K, Hyun-Wook L, Pandurangan M, Dong-Hwa S and Won-Sub Y 2011 Nano Res.4 505

    Google Scholar 

  56. Wang F X, Xiao S Y, Shi Y, Liu L L, Zhu Y S et al 2013 Electrochim. Acta93 301

    CAS  Google Scholar 

  57. Walz K A, Johnson C S, Genthe J, Stoiber L C, Zeltner W A, Anderson M A et al 2010 J. Power Sources195 4943

    CAS  Google Scholar 

  58. Liu X, Wang J, Zhang J and Yang S 2006 Mater. Sci. Eng. A430 248

    Google Scholar 

  59. Ding Y, Li J, Zhao Y and Guan L 2012. Mater. Lett.68 197

    CAS  Google Scholar 

  60. Lee J, Hong J, Jang D, Sun Y and Oh S M 2000 J. Power Sources89 7

    CAS  Google Scholar 

  61. Wang G X, Bradhurst D H, Liu H K and Dou S X 1999 Solid State Ionics120 95

    CAS  Google Scholar 

  62. Guo H J, Xiang K X, Cao X, Li X, Wang Z and Li L M 2009 Trans. Nonferr. Met. Soc. China19 166

    CAS  Google Scholar 

  63. Xing L Y, Hu M, Tang Q, Wei J P, Qin X and Zhou Z 2012 Electrochim. Acta59 172

    CAS  Google Scholar 

  64. Zhecheva E, Mladenov M, Zlatilova P, Koleva V and Stoyanova R 2010 J. Phys. Chem. Solids71 848

    CAS  Google Scholar 

  65. Gummow R J, Sharma N, Peterson V K and He Y 2012 J. Power Sources197 231

    CAS  Google Scholar 

  66. Gong Z L, Li Y X and Yang Y 2007 J. Power Sources174 524

    CAS  Google Scholar 

  67. Boucher A, Ducey M, McNeff N, Liu L, Zhang B and Huang X 2011 Prog. Nat. Sci.: Mater. Int.21 211

    Google Scholar 

  68. Ren X, Shi C, Zhang P, Jiang Y, Liu J and Zhang Q 2012 Mater. Sci. Eng. B177 929

    CAS  Google Scholar 

  69. Kannan A M and Manthiram A 2006 J. Power Sources159 1405

    CAS  Google Scholar 

  70. Semenenko D A, Itkis D M, Pomerantseva E A, Goodilin E A, Kulova T L, Skundin A M et al 2010 Electrochem. Commun.12 1154

    CAS  Google Scholar 

  71. Pomerantseva E, Gerasopoulos K, Chen X, Rubloff G and Ghodssi R 2012 J. Power Sources206 282

    CAS  Google Scholar 

  72. Cui L, Li J and Zhang X 2009 Mater. Lett.63 683

    CAS  Google Scholar 

  73. Liu Q, Liu H, Zhou X, Cong C and Zhang K 2005 Solid State Ionics176 1549

    CAS  Google Scholar 

  74. Prosini P, Fujieda T, Passerini S, Shikano M and Sakai T 2000 Electrochem. Commun.2 44

    CAS  Google Scholar 

  75. Xiong X, Wang Z, Li X and Guo H 2012 Mater. Lett.76 8

    CAS  Google Scholar 

  76. Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M and Cairns E J 2007 J. Power Sources165 870

    CAS  Google Scholar 

  77. Wang J, Yang J, Wan C, Du K, Xie J and Xu N 2003 Adv. Funct. Mater.13 487

    CAS  Google Scholar 

  78. NuLi Y, Guo Z, Liu H and Yang J 2007 Electrochem. Commun.9 1913

    CAS  Google Scholar 

  79. Yao M, Senoh H, Yamazaki S I, Siroma Z, Sakai T and Yasuda K 2010 J. Power Sources195 8336

    CAS  Google Scholar 

  80. Marom R, Amalraj S F, Leifer N, Jacob D and Aurbach D 2011 J. Mater. Chem.21 9938

    CAS  Google Scholar 

  81. Li C C and Wang Y W 2013 J. Power Sources227 204

    CAS  Google Scholar 

  82. Haik O, Ganin S, Gershinsky G, Zinigrad E, Markovsky B, Aurbach D et al 2011 J. Electrochem. Soc.158 A913

  83. Wang H, Yoshio M, Abe T and Ogumi Z 2002 J. Electrochem. Soc. 149 A499

    CAS  Google Scholar 

  84. Wang J, Liu J L, Wang Y G, Wang C X and Xia Y Y 2012 Electrochim. Acta74 1

    Google Scholar 

  85. Lv R, Zou L, Gui X, Kang F, Zhu Y, Zhu H et al 2008 Chem. Commun. 2046

  86. Zhou J, Song H, Fu B, Wu B and Chen X 2010 J. Mater. Chem.20 2794

    CAS  Google Scholar 

  87. Boyanov S, Annou K, Villevieille C, Pelosi M, Zitoun D and Monconduit L 2008 Ionics14 183

    CAS  Google Scholar 

  88. Casas C D L and Li W 2012 J. Power Sources208 74

    Google Scholar 

  89. Gu Y, Wu F and Wang Y 2013 Adv. Funct. Mater. 23 893

    CAS  Google Scholar 

  90. Xue L, Xu G, Li Y, Li S, Fu K, Shi Q et al 2012 ACS Appl. Mater. Interfaces5 21

    Google Scholar 

  91. Yoon T H and Park Y J 2012 Solid State Ionics225 498

    CAS  Google Scholar 

  92. Lian P, Zhu X, Liang S, Li Z, Yang W and Wang H 2010 Electrochim. Acta55 3909

    CAS  Google Scholar 

  93. Wang Z L, Xu D, Wang H G, Wu Z and Zhang X B 2013 ACS Nano7 2422

    CAS  Google Scholar 

  94. Wagemaker M and Mulder F M 2013 Acc. Chem. Res.46 1206

    CAS  Google Scholar 

  95. Chen Z, Belharouak I, Sun Y K and Amine K 2013 Adv. Funct. Mater.23 959

    CAS  Google Scholar 

  96. Hong Z and Wei M 2013 J. Mater. Chem. A1 4403

    CAS  Google Scholar 

  97. Moretti A, Kim G T, Bresser D, Renger K, Paillard E, Marassi R et al 2013 J. Power Sources221 419

    CAS  Google Scholar 

  98. Li X and Wang C 2013 J. Mater. Chem. A1 165

    CAS  Google Scholar 

  99. Meng X, Banis M N, Geng D, Li X, Zhang Y, Li R et al 2013 Appl. Surf. Sci.266 132

    CAS  Google Scholar 

  100. Bresser D, Paillard E, Binetti E, Krueger S, Striccoli M, Winter M et al 2012 J. Power Sources 206 301

  101. Reddy A L M, Gowda S R, Shaijumon M M and Ajayan P M 2012 Adv. Mater. 24 5045

    CAS  Google Scholar 

  102. Park C M, Kim J H, Kim H and Sohn H J 2010 Chem. Soc. Rev. 39 3115

    CAS  Google Scholar 

  103. Wu H and Cui Y 2012 Nano Today7 414

    CAS  Google Scholar 

  104. Szczech J R and Jin S 2011 Energy Environ. Sci.4 56

    CAS  Google Scholar 

  105. Poizot P, Laruelle S, Grugeon S and Tarascon J M 2002 J. Electrochem. Soc.149 A1212

    CAS  Google Scholar 

  106. Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern P C et al 2013 Energy Enviorn. Sci.6 1806

    CAS  Google Scholar 

  107. Sun X G, Liao C, Shao N, Bell J R, Guo B, Luo H et al 2013 J. Power Sources237 5

    CAS  Google Scholar 

  108. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M et al 2011 Nat. Mater.10 682

    CAS  Google Scholar 

  109. Fu K, Gong Y, Dai J, Gong A, Han X, Yao Y et al 2016 J Am. Chem. Soc.113 7094

    CAS  Google Scholar 

  110. Liang Y, Jing Y, Gheytani S, Lee K Y, Liu P, Facchetti A et al 2017 Nat. Mater.16 841

    CAS  Google Scholar 

  111. Olson K R, Wong D H C, Chintapalli M, Timachova K, Janusziewicz R, Daniel W F M et al 2016 Polymer 100 126

    CAS  Google Scholar 

  112. Chintapalli M, Timachova K, Olson K R, Mecham S J, Devaux D, DeSimone J M et al 2016 Macromolecules 49 3508

  113. Devaux D, Chang Y H, Villaluenga I, Chen X C, Chintapalli M, DeSimone J M et al 2016 J. Power Sources323 158

    CAS  Google Scholar 

  114. Villaluenga I, Wujcik K H, Tong W, Devaux D, Wong D H C, DeSimone J M et al 2015 Proc. Natl. Acad. Sci. 113 52

    Google Scholar 

  115. McGrogan F P, Swamy T, Bishop S R, Eggleton E, Porz L, Chen X et al 2017 Adv. Energy Mater.12 1602011

    Google Scholar 

  116. http://energy.mit.edu/news/iodine-may-protect-batteries/

  117. Duong T Q 2015 Progress report on advanced battery materials research (BMR) program, U.S. Department of Energy, Vehicle Technologies Office, Energy Efficiency and Renewable Energy

  118. Zhou H, Xiao K and Li J 2016 J. Power Sources302 274

    CAS  Google Scholar 

  119. Feng J, Gao X, Ci L and Xiong S 2016 RSC Adv. 6 7224

    CAS  Google Scholar 

  120. Lee T J, Lee J B, Yoon T, Kim D, Chae O B, Jung J et al 2016 J. Electrochem. Soc.163 A898

    CAS  Google Scholar 

  121. Hall D S, Nie M, Ellis L D, Glaxier S L, Hyatt S, Petibon R et al 2016 J. Electrochem. Soc.163 A773

    CAS  Google Scholar 

  122. Hu L B and Cui Y 2012 Energy Environ. Sci. 5 6423

    Google Scholar 

  123. Kwon Y H, Woo S W, Jung H R, Yu H K, Kim K, Oh B H et al 2012 Adv. Mater. 24 5192

    CAS  Google Scholar 

  124. Lee S Y, Choi K H, Choi W S, Kwon Y H, Jung H R, Shin H C et al 2013 Energy Environ. Sci. 6 2414

    CAS  Google Scholar 

  125. Ren J, Li L, Chen C, Chen X L, Cai Z B, Qiu L B et al 2013 Adv. Mater.25 1155

    CAS  Google Scholar 

  126. Li W, Yang L, Wang J, Xiang B and Yu Y 2015 ACS Appl. Mater. Interfaces7 5629

    CAS  Google Scholar 

  127. Luo Y, Balogun M S, Qiu W T, Zhao R R, Liu P and Tong Y X 2015 Chem. Commun.51 13016

    CAS  Google Scholar 

  128. Balogun M S, Yu M H, Huang Y C, Li C, Fang P P, Liu Y et al 2015 Nano Energy11 348

    CAS  Google Scholar 

  129. Balogun M S, Zeng Y X, Qiu W T, Luo Y, Onasanya A, Olaniyi T et al 2016 J. Mater. Chem. A4 9844

    CAS  Google Scholar 

  130. Qiu W D, Jiao J Q, Xia J, Zhong H M and Chen L P 2015 Chem. Eur. J.21 4359

    CAS  Google Scholar 

  131. Zhang C Z, Mahmood N, Yin H, Liu F and Hou Y L 2013 Adv. Mater.25 4932

    CAS  Google Scholar 

  132. Yang Y, Jeong S, Hu L B, Wu H, Lee S W and Cui Y 2011 Proc. Natl. Acad. Sci. USA108 13013

    CAS  Google Scholar 

  133. Koo M, Park K I, Lee S H, Suh M, Jeon D Y, Choi J W et al 2012 Nano Lett.12 4810

    CAS  Google Scholar 

  134. Xu S, Zhang Y H, Cho J, Lee J, Huang X, Jia L et al 2013 Nat. Commun.4 1543

    Google Scholar 

  135. Nirmale T C, Karbhal I, Kalubarme R S, Shelke M V, Varma A J and Kale B B 2017 ACS Appl. Mater. Interfaces9 34773

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to extend our gratitude to the Centre for Materials for Electronics Technology (C-MET) and Ministry of Electronics and Information Technology, New Delhi, India. We would like to thank Dr Pramanik, Dr Trupti Nirmale, Dr N D Khupse, Dr M V Kulkarni, Dr Panmand and all students of C-MET, Pune, working on battery research. The authors gratefully acknowledge to Mr. Ajay Sawhney, Secretary, Ministry of Electronics and IT (MeitY), Government of India, New Delhi for his encouragement and continued moral support for successful completion of the work. The author is also grateful to Mr. Arvind Kumar, Group Coordinator, Senior Director, MeitY, New Delhi for his continued support and valuable inputs on the subject. It is highlighted that the views presented in this paper are solely of the authors’ independent opinion and do not necessarily reflect the official views of the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Kale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, B., Chatterjee, S. Electrochemical energy storage systems: India perspective. Bull Mater Sci 43, 96 (2020). https://doi.org/10.1007/s12034-020-2042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2042-7

Keywords

Navigation