Skip to main content
Log in

Role of MW-ECR hydrogen plasma on dopant deactivation and open-circuit voltage in crystalline silicon solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Plasma hydrogenation is an efficient method to passivate intergrain and intragrain defects of polycrystalline silicon (pc-Si) solar cells. The hydrogenation experiments were carried out in hydrogen plasma generated in an electron cyclotron resonance system controlling different operating parameters such as microwave power (P MW), process time (t H) and hydrogenation temperature (T H) for a fixed hydrogen flux of 30 sccm. The hydrogenation of n+pp+ pc-Si solar cells resulted in an improvement in the open-circuit voltage. The improvement was correlated with the dopant deactivation due to the formation of boron–hydrogen bonding. This was demonstrated from the changes in the doping level after hydrogenation of n+p diode structures made using single crystalline silicon as a reference material. It was found that deactivation of boron was more pronounced at high microwave plasma power, in good agreement with the high open-circuit voltage values obtained on pc-Si mesa cells. On the other hand, the effect of longer hydrogenation time and higher temperature resulted in a decrease of boron deactivation, while an increase in V oc with a tendency of saturation at high T H was observed. Reasons for such behavior were thoroughly explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Beaucarne, J. Poortmans, M. Caymax, J. Nins, R. Mertens, Tailored Si-layers on Si oxide obtained by thermal CVD. Proc. Mater. Res. Soc. 485, 89–94 (1997)

    Article  Google Scholar 

  2. G. Beaucarne, J. Poortmans, M. Caymax, J. Nijs, S. Bourdais, D. Angermeier, R. Monna, A. Slaoui, in Recrystallization-Free Thin-Film Crystalline Si Solar Cells on Foreign Substrates. Proceedings of the 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion, 1998, pp. 1814–1817

  3. G. Beaucarne, J. Poortmans, M. Caymax, J. Nins, R. Mertens, On the behavior of p–n junction solar cells made in fine-grained silicon layers. IEEE Trans. Electron. Dev. 47, 1118–1120 (2000)

    Article  ADS  Google Scholar 

  4. N.H. Nickel, N.M. Johnson, W.B. Jackson, Hydrogen passivation of grain boundary defects in polycrystalline silicon thin films. Appl. Phys. Lett. 62, 3285–3287 (1993)

    Article  ADS  Google Scholar 

  5. D. Madi, A. Focsa, S. Roques, S. Schmitt, A. Slaoui, B. Birouk, Effect of MW-ECR plasma hydrogenation on polysilicon films based solar cells. Energy Procedia 2, 151–157 (2009)

    Article  Google Scholar 

  6. D. Madi, P. Prathap, A. Focsa, A. Slaoui, B. Birouk, Effective hydrogenation and surface damage induced by MW-ECR plasma of fine-grained polycrystalline silicon. Appl. Phys. A 99, 729–734 (2010)

    Article  ADS  Google Scholar 

  7. P. Prathap, O. Tuzun, D. Madi, A. Slaoui, Thin film silicon solar cells by AIC on foreign substrates. Sol. Energy Mater. Sol. Cells 95, 44–52 (2011)

    Article  Google Scholar 

  8. A. Slaoui, E. Pihan, I. Ka, N.A. Mbow, S. Roques, J.M. Koebel, Passivation and etching of fine-grained polycrystalline silicon films by hydrogen treatment. Sol. Energy Mater. Sol. Cells 90, 2087–2098 (2006)

    Article  Google Scholar 

  9. S.J. Pearton, J.W. Corbett, T.S. Shi, Hydrogen in semiconductors. Appl. Phys. A 43, 153–163 (1987)

    Article  ADS  Google Scholar 

  10. S.J. Pearton, in Hydrogen in Semiconductors. Proceedings of 15th International Conference on Defects in Semi-conductors, 1988, pp. 25–30

  11. T. Zundel, A. Mesli, J.C. Muller, P. Siffert, Boron neutralization and hydrogen diffusion in silicon subjected to low-energy hydrogen implantation. Appl. Phys. A 48, 31–40 (1988)

    Article  ADS  Google Scholar 

  12. T. Zundel, J. Weber, Dissociation energies of shallow-acceptor-hydrogen pairs in silicon. Phys. Rev. B 39, 13549–13552 (1989)

    Article  ADS  Google Scholar 

  13. T. Zundel, J. Weber, Boron reactivation kinetics in hydrogenated silicon after annealing in the dark or under illumination. Phys. Rev. B 43, 4361–4372 (1991)

    Article  ADS  Google Scholar 

  14. N.M. Johnson, Electric field dependence of hydrogen neutralization of shallow-acceptor impurities in single-crystal silicon. Appl. Phys. Lett. 47, 874–876 (1985)

    Article  ADS  Google Scholar 

  15. R. Rizk, P. de Mierry, D. Ballutaud, M. Aucouturier, Hydrogen diffusion and passivation processes in p- and n-type crystalline silicon. Phys. Rev. B 44, 6141–6151 (1991)

    Article  ADS  Google Scholar 

  16. W.B. Jackson, N.M. Johnson, C.C. Tsai, I.W. Wu, A. Chiang, D. Smith, Hydrogen diffusion in polycrystalline silicon thin films. Appl. Phys. Lett. 61, 1670–1672 (1992)

    Article  ADS  Google Scholar 

  17. A. Slaoui, P. Siffert, Polycrystalline silicon films for electronic devices, in Silicon: Evolution and Future of a Technology, ed. by E.F. Krimmel, P. Siffert (Springer, Berlin, 2004), pp. 49–72

    Chapter  Google Scholar 

  18. G. Beaucarne, J. Poortmans, M. Caymax, J. Nijs, R. Mertens, Thin-film structure for photovoltaic. Proc. Mater. Res. Soc. 485, 89–94 (1998)

    Article  Google Scholar 

  19. T. Unagami, T. Takeshita, High-performance poly-Si TFT’S with ECR-plasma hydrogen passivation. IEEE Trans. Electron. Dev. 36, 529–533 (1989)

    Article  ADS  Google Scholar 

  20. R.A. Ditizio, G. Liu, S.J. Fonash, Short time electron cyclotron resonance hydrogenation of polycrystalline silicon thin-film transistor structures. Appl. Phys. Lett. 56, 1140–1142 (1990)

    Article  ADS  Google Scholar 

  21. E. Hyman, K. Tsang, A. Drobot, One-point numerical modeling of microwave plasma chemical vapor deposition diamond deposition reactors. J. Vac. Sci. Technol. A 12, 1474–1479 (1994)

    Article  ADS  Google Scholar 

  22. S.F. Yoon, K.H. Tan, Q. Zhang, M. Rusli, J. Ahn, L. Valeri, Effect of microwave power on the electron cyclotron resonance plasma. Vacuum 61, 29–35 (2000)

    Article  Google Scholar 

  23. C. Herring, N.M. Johnson, C.G. Van de Walle, Energy levels of isolated interstitial hydrogen in silicon. Phys. Rev. B 64, 125209-1–125209-27 (2001)

    Article  ADS  Google Scholar 

  24. T.P. Sokrates, Effect of hydrogen on shallow dopants in crystalline silicon. Appl. Phys. Lett. 50, 995–997 (1987)

    Article  Google Scholar 

  25. J.I. Pankove, P.J. Zanzucchi, C.W. Magee, G. Lucovsky, Hydrogen localization near boron in silicon. Appl. Phys. Lett. 46, 421–423 (1984)

    Article  ADS  Google Scholar 

  26. N. Fukata, S. Fukuda, S. Sato, K. Ishioka, M. Kitajima, T. Hishita, K. Murakami, Formation of hydrogen-boron complexes in boron-doped silicon treated with a high concentration of hydrogen atoms. Phys. Rev. B 72, 245209-1–245209-8 (2005)

    Article  ADS  Google Scholar 

  27. P.J.H. Denteneer, C.G. Van de Walle, S.T. Pantelides, Microscopic structure of the hydrogen-boron complex in crystalline silicon. Phys. Rev. B 39, 10809–10824 (1989)

    Article  ADS  Google Scholar 

  28. B. Von Roedern, G.H. Bauer, Material requirements for buffer layers used to obtain solar cells with high open circuit voltages. Mater. Res. Soc. Symp. Proc. 557, 761 (1999)

    Article  Google Scholar 

  29. A.J. Tavendale, D. Alexiev, A.A. Williams, Field drift of the hydrogen-related, acceptor-neutralizing defect in diodes from hydrogenated silicon. Appl. Phys. Lett. 47, 316–318 (1985)

    Article  ADS  Google Scholar 

  30. N.M. Johnson, C. Doland, F. Ponce, J. Walker, G. Anderson, Hydrogen in crystalline semiconductors: a review of experimental results. Phys. B 170, 3–20 (1991)

    Article  ADS  Google Scholar 

  31. N.M. Johnson, C. Herring, Hydrogen immobilization in silicon pn junctions. Phys. Rev. B 38, 1581–1584 (1988)

    Article  ADS  Google Scholar 

  32. T. Yamazaki, Y. Uraoka, T. Fuyuki, Large grain polycrystalline Si thin films by nucleation controlled chemical vapor deposition using intermittent source gas supply. Thin Solid Films 487, 26–30 (2005)

    Article  ADS  Google Scholar 

  33. K. Kitahara, S. Murakami, A. Hara, K. Nakajima, Correlation between electron mobility and silicon-hydrogen bonding configurations in plasma-hydrogenated polycrystalline silicon thin films. Appl. Phys. Lett. 72, 2436–2438 (1998)

    Article  ADS  Google Scholar 

  34. C.H. Seager, R.A. Anderson, J.K.G. Panitz, The diffusion of hydrogen in silicon and mechanisms for unintentional hydrogenation during ion beam processing. J. Mater. Res. 2, 96–106 (1986)

    Article  ADS  Google Scholar 

  35. S.J. Pearton, Hydrogen in silicon unanswered questions. Proc. Mater. Res. Soc. 59, 457–468 (1985)

    Article  Google Scholar 

Download references

Acknowledgments

The main author would like to express his thanks to the personnel of the ICUBE (formerly InESS) laboratory for their help and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Madi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madi, D., Prathap, P. & Slaoui, A. Role of MW-ECR hydrogen plasma on dopant deactivation and open-circuit voltage in crystalline silicon solar cells. Appl. Phys. A 118, 231–237 (2015). https://doi.org/10.1007/s00339-014-8665-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8665-z

Keywords

Navigation