Skip to main content
Log in

Review on Electrodeposited Ni–W Based Composite Coatings in High-Temperature Applications Concerning Oxidation Behavior

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Contemporarily, Ni–W alloy-based coatings are being developed as an alternative to Cr-based coatings in high-temperature applications, rendering higher thermal stability, corrosion, and oxidation properties. Although a few research works have agreed that the Ni–W alloy coatings exhibit superior oxidation performance, the attempts to investigate the oxidation behavior and corresponding mechanisms at high temperatures are still limited. Also, the missing gaps in literature were left undone for the last two decades. Therefore, the current review intends to spotlight the significance of investigating oxidation behavior and elucidating oxidation mechanisms in Ni–W alloy-based coatings synthesized via the electrodeposition process. Also, a special discussion is highlighted in enlightening Ni–W alloy-based coatings' oxidation behavior in the perspective of elemental composition and the addition of metal oxide-nanoparticles. The oxidation behavior of Ni–W-based composite coatings was compared with other Ni-alloy coatings, and the respective oxidation mechanisms were systematically elaborated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from D.B. Lee et al. Surf. Coat. Tech. 193(3), 292 (2005) Copyright 2005 Elsevier. c Cross-sectional view of electrodeposited Ni-16 wt% W after oxidation at 1073 K for 5 h, d EPMA analysis corresponding to line A-B in c, e oxidation mechanism of Ni–W alloy coating [15]. Reproduced with permission from D.B. Lee et al., Mater. Sci. Eng. A 380(2), 73 (2004) Copyright 2004 Elsevier

Fig. 2

Reproduced with permission from S. Eraslan et al. Surf. Coat. Tech. 265, 46 (2015) Copyright 2015 Elsevier. SEM images of Ni–W-based coatings before and after oxidation test at 923 K for 15 h: b Ni–W alloy coating (before oxidation test), c Ni–W-nanoCeF3 composite coating (before oxidation test), d Ni–W alloy coating (after oxidation test), e Ni–W-nanoCeF3 composite coating (after oxidation test), and f mass gain vs CeF3 content at 923 K for 15 h oxidation test [29]. Reproduced with permission from B. Han et al. Surf. Coat. Tech. 203 (23), 3656 (2009) Copyright 2009 Elsevier. SEM images of Ni–W-based coatings before and after oxidation test at 923 K for 15 h: g Ni–W alloy coating (before oxidation test), h Ni–W-nano-La2O3 composite coating (before oxidation test), i Ni–W alloy coating (after oxidation test), j Ni–W-nano-La2O3 composite coating (after oxidation test), and k mass gain vs CeF3 content at 923 K for 15 h oxidation test [62]. Reproduced with permission from B. Han et al. Chinese Science Bulletin. 54 (24), 4566 (2009)

Fig. 3

Reproduced with permission from M.K. Kolle et al. Metall. Mater. Trans. A 51(7), 3721 (2020) Copyright 2020 Springer. Reproduced with permission from S. Shajahan et al. Surf. Coat. Tech. 393, 125729 (2020) Copyright 2020 Elsevier

Fig. 4
Fig. 5

Reproduced with permission from S. Shajahan et al. Surf. Coat. Tech. 393, 125729 (2020) Copyright 2020 Elsevier. d Arrhenius plots of Ni–W-alloy composite coatings in comparison with Ni–W-alloy coating [22]. Reproduced with permission from S. Shajahan et al. Surf. Coat. Tech. 393, 125729 (2020) Copyright 2020 Elsevier

Fig. 6

Similar content being viewed by others

Data Availability

Data sharing is not applicable as no new data was obtained in this study.

References

  1. L.I. Stepanova, O.G. Purovskaya, Met. Finish. 96, 50 (1998). https://doi.org/10.1016/S0026-0576(98)80871-4

    Article  CAS  Google Scholar 

  2. T. Yamasaki, P. Schloβmacher, K. Ehrlich, Y. Ogino, Nanostruct. Mater. 10, 375 (1998). https://doi.org/10.1016/S0965-9773(98)00078-6

    Article  CAS  Google Scholar 

  3. T. Yamasaki, P. Schloßmacher, K. Ehrlich, Y. Ogino, Mater. Sci. Forum 269–272, 975 (1998). https://doi.org/10.4028/www.scientific.net/MSF.269-272.975

    Article  Google Scholar 

  4. T. Omi, M. Nakamura, H. Yamamoto, J. Met. Finish. Soc. Japan 39, 809 (1988). https://doi.org/10.4139/sfj1950.39.809

    Article  CAS  Google Scholar 

  5. M. Donten, H. Cesiulis, Z. Stojek, Electrochim. Acta 45, 3389 (2000). https://doi.org/10.1016/S0013-4686(00)00437-0

    Article  CAS  Google Scholar 

  6. F. He, M. Wang, X. Lu, Trans. Nonferrous Met. Soc. China 16, 1289 (2006). https://doi.org/10.1016/S1003-6326(07)60008-9

    Article  CAS  Google Scholar 

  7. L. Anicai, Corros. Rev. 25, 607 (2007). https://doi.org/10.1515/CORRREV.2007.25.5-6.607

    Article  CAS  Google Scholar 

  8. M.K. Kolle, S. Shajahan, A. Basu, Metall. Mater. Trans. A 51, 3721 (2020). https://doi.org/10.1007/s11661-020-05787-0

    Article  CAS  Google Scholar 

  9. A.R. Jones, J. Hamann, A.C. Lund, C.A. Schuh, Plat. Surf. Finish. 97, 52 (2010)

    CAS  Google Scholar 

  10. R. Karmakar, P. Maji, S.K. Ghosh, Met. Mater. Int. 27, 2134 (2021). https://doi.org/10.1007/s12540-020-00872-w

    Article  CAS  Google Scholar 

  11. M. Badihehaghdam, S.M. Mousavi Khoie, F. Khast, M.S. Khosrowshahi, Met. Mater. Int. 28, 1372 (2022). https://doi.org/10.1007/s12540-021-00994-9

    Article  CAS  Google Scholar 

  12. N.P. Wasekar, G. Sundararajan, Wear 342–343, 340 (2015). https://doi.org/10.1016/j.wear.2015.10.003

    Article  CAS  Google Scholar 

  13. E.W. Brooman, Met. Finish. 98, 39 (2000). https://doi.org/10.1016/S0026-0576(00)82740-3

    Article  CAS  Google Scholar 

  14. S. Kirihara, Y. Umeda, K. Tashiro, H. Honma, O. Takai, Trans. Mater. Res. Soc. Japan 41, 35 (2016). https://doi.org/10.14723/tmrsj.41.35

    Article  CAS  Google Scholar 

  15. D.B. Lee, J.H. Ko, S.C. Kwon, Mater. Sci. Eng. A 380, 73 (2004). https://doi.org/10.1016/j.msea.2004.03.036

    Article  CAS  Google Scholar 

  16. L. Zhu, O. Younes, N. Ashkenasy, Y. Shacham-Diamand, E. Gileadi, Appl. Surf. Sci. 200, 1 (2002). https://doi.org/10.1016/S0169-4332(02)00894-2

    Article  CAS  Google Scholar 

  17. O. Younes, E. Gileadi, J. Electrochem. Soc. 149, C100 (2002). https://doi.org/10.1149/1.1433750

    Article  CAS  Google Scholar 

  18. M. Zemanová, R. Kurinec, V. Jorík, M. Kadlečíová, Chem. Pap. 66(5), 492 (2012). https://doi.org/10.2478/s11696-011-0116-0

    Article  CAS  Google Scholar 

  19. M.D. Obradović, G.Ž Bošnjakov, R.M. Stevanović, M.D. Maksimović, A.R. Despić, Surf. Coat. Technol. 200, 4201 (2006). https://doi.org/10.1016/j.surfcoat.2004.12.013

    Article  CAS  Google Scholar 

  20. S. Oue, H. Nakano, S. Kobayashi, H. Fukushima, J. Electrochem. Soc. 156, D17 (2009). https://doi.org/10.1149/1.3006389

    Article  CAS  Google Scholar 

  21. Y. Wang, Q. Zhou, K. Li, Q. Zhong, Q.B. Bui, Ceram. Int. 41, 79 (2015). https://doi.org/10.1016/j.ceramint.2014.08.034

    Article  CAS  Google Scholar 

  22. S. Shajahan, A. Basu, Surf. Coat. Technol. 393, 125729 (2020). https://doi.org/10.1016/j.surfcoat.2020.125729

    Article  CAS  Google Scholar 

  23. S. Shajahan, A. Basu, Mater. Chem. Phys. 278, 125585 (2022). https://doi.org/10.1016/j.matchemphys.2021.125585

    Article  CAS  Google Scholar 

  24. M.H. Allahyarzadeh, M. Aliofkhazraei, A.R. Rezvanian, V. Torabinejad, A.R. Sabour Rouhaghdam, Surf. Coat. Technol. 307, 978 (2016). https://doi.org/10.1016/j.surfcoat.2016.09.052

    Article  CAS  Google Scholar 

  25. X. Sun, S. Tang, Y. Zhou, Y. Mao, J. Hu, W. Wang, J. Han, Met. Mater. Int. 29, 2571 (2023). https://doi.org/10.1007/s12540-023-01392-z

    Article  CAS  Google Scholar 

  26. M. Sathish, N. Radhika, B. Saleh, Met. Mater. Int. 29, 1229 (2023). https://doi.org/10.1007/s12540-022-01302-9

    Article  CAS  Google Scholar 

  27. Y. Zhang, T. Fu, L. Yu, K. Cui, J. Wang, F. Shen, X. Zhang, K. Zhou, Met. Mater. Int. 29, 1 (2023). https://doi.org/10.1007/s12540-022-01222-8

    Article  CAS  Google Scholar 

  28. S. Shajahan, A. Basu, Int. J. Mater. Res. (formerly Z. Metallkd.), 110, 12 (2019) https://doi.org/10.3139/146.111844.

  29. B. Han, X. Lu, Surf. Coat. Technol. 203, 3656 (2009). https://doi.org/10.1016/j.surfcoat.2009.05.046

    Article  CAS  Google Scholar 

  30. M. Bratoeva, N. Atanasov, Russ. J. Electrochem. 36, 60 (2000). https://doi.org/10.1007/BF02757797

    Article  CAS  Google Scholar 

  31. I. Matsui, Y. Takigawa, T. Uesugi, K. Higashi, Microelectron. Eng. 91, 98 (2012). https://doi.org/10.1016/j.mee.2011.10.018

    Article  CAS  Google Scholar 

  32. I. Matsui, Y. Takigawa, T. Uesugi, K. Higashi, Mater. Lett. 99, 65 (2013). https://doi.org/10.1016/j.matlet.2013.02.067

    Article  CAS  Google Scholar 

  33. D.B. Lee, J.H. Ko, S.C. Kwon, Surf. Coat. Technol. 193, 292 (2005). https://doi.org/10.1016/j.surfcoat.2004.08.151

    Article  CAS  Google Scholar 

  34. L.H. Matthew, and M.L. Neilsen, Electrodeposition of nickeltungsten alloys, US Patent US2432893A (1947)

  35. A. Amadeh, M. Harsij Sani, H. Moradi, Int. J. IRON STEEL Soc. IRAN 6, 14 (2009) https://journal.issiran.com/article_6253.html.

  36. I. Mizushima, P.T. Tang, H.N. Hansen, M.A.J. Somers, Electrochim. Acta 51, 888 (2005). https://doi.org/10.1016/j.electacta.2005.04.050

    Article  CAS  Google Scholar 

  37. I. Mizushima, P.T. Tang, M.A.J. Somers, Surf. Coat. Technol. 202, 3341 (2008). https://doi.org/10.1016/j.surfcoat.2007.12.016

    Article  CAS  Google Scholar 

  38. I. Mizushima, Electrodeposition of Ni–W Alloy and Characterization of Microstructure and Properties of the Deposits, Ph.D.Thesis, Technical University of Denmark (2007)

  39. T. Nagai, K. Hodouchi, H. Matsubara, Surf. Coat. Technol. 253, 109 (2014). https://doi.org/10.1016/j.surfcoat.2014.05.022

    Article  CAS  Google Scholar 

  40. L.M. Chang, Z.T. Wang, S.Y. Shi, W. Liu, J. Alloys Compd. 509, 1501 (2011). https://doi.org/10.1016/j.jallcom.2010.10.136

    Article  CAS  Google Scholar 

  41. M. Masoudi, M. Hashim, H.M. Kamari, Appl. Nanosci. 4, 649 (2014). https://doi.org/10.1007/s13204-013-0250-9

    Article  CAS  Google Scholar 

  42. Y. Zhou, Y. Ding, Trans. Nonferrous Met. Soc. China 17, 925 (2007). https://doi.org/10.1016/S1003-6326(07)60201-5

    Article  CAS  Google Scholar 

  43. Y. Zhou, X. Peng, F. Wang, Scr. Mater. 50, 1429 (2004). https://doi.org/10.1016/j.scriptamat.2004.03.014

    Article  CAS  Google Scholar 

  44. H. Somekawa, Scr. Mater. 50, 1361 (2004). https://doi.org/10.1016/j.scriptamat.2004.02.042

    Article  CAS  Google Scholar 

  45. O. Younes-Metzler, L. Zhu, E. Gileadi, Electrochim. Acta 48, 2551 (2003). https://doi.org/10.1016/S0013-4686(03)00297-4

    Article  CAS  Google Scholar 

  46. Y. Wu, D. Chang, D. Kim, S.-C. Kwon, Surf. Coat. Technol. 173, 259 (2003). https://doi.org/10.1016/S0257-8972(03)00449-3

    Article  CAS  Google Scholar 

  47. M. Hashemi, S. Mirdamadi, H.R. Rezaie, Electrochim. Acta 138, 224 (2014). https://doi.org/10.1016/j.electacta.2014.06.084

    Article  CAS  Google Scholar 

  48. M.H. Allahyarzadeh, A. Ashrafi, A. Golgoon, B. Roozbehani, Mater. Chem. Phys. 175, 215 (2016). https://doi.org/10.1016/j.matchemphys.2016.03.023

    Article  CAS  Google Scholar 

  49. M.H. Allahyarzadeh, M. Aliofkhazraei, A.R.S. Rouhaghdam, V. Torabinejad, J. Alloys Compd. 666, 217 (2016). https://doi.org/10.1016/j.jallcom.2016.01.031

    Article  CAS  Google Scholar 

  50. S. Yari, C. Dehghanian, Ceram. Int. 39(7), 7759 (2013). https://doi.org/10.1016/j.ceramint.2013.03.033

    Article  CAS  Google Scholar 

  51. W. Sassi, L. Dhouibi, P. Berçot, M. Rezrazi, E. Triki, Appl. Surf. Sci. 263, 373 (2012). https://doi.org/10.1016/j.apsusc.2012.09.065

    Article  CAS  Google Scholar 

  52. Y. Wu, D. Chang, D. Kim, S. Kwon, Surf. Coat. Technol. 162, 269 (2003). https://doi.org/10.1016/S0257-8972(02)00699-0

    Article  CAS  Google Scholar 

  53. U. Pramod Kumar, C.J. Kennady, Q. Zhou, Surf. Coat. Technol. 283, 148 (2015). https://doi.org/10.1016/j.surfcoat.2015.10.056

    Article  CAS  Google Scholar 

  54. H. Cesiulis, A. Baltutiene, M. Donten, M. Donten, Z. Stojek, J. Solid State Electrochem. 6, 237 (2002). https://doi.org/10.1007/s100080100225

    Article  CAS  Google Scholar 

  55. R. Zhang, Z. Li, X. Yu, G. Cui, Surf. Eng. 35, 578 (2019). https://doi.org/10.1080/02670844.2018.1547246

    Article  CAS  Google Scholar 

  56. M.K. Tripathi, V.B. Singh, J. Electrochem. Soc. 163, D453 (2016). https://doi.org/10.1149/2.1171608jes

    Article  CAS  Google Scholar 

  57. N. Birks, H. Meier, F. Pettit, Introduction to the High-Temperature Oxidation of Metals (Cambridge University Press, Cambridge, 2016)

    Google Scholar 

  58. B.R. Anne, S. Shaik, M. Tanaka, A. Basu, S.N. Appl, Sci. 3, 366 (2021). https://doi.org/10.1007/s42452-021-04374-1

    Article  CAS  Google Scholar 

  59. S. Shajahan, A. Kumar, M. Chopkar, A. Basu, Mater. Res. Express 7, 016532 (2020). https://doi.org/10.1088/2053-1591/ab640a

    Article  CAS  Google Scholar 

  60. A. Góral, T. Czeppe, K. Berent, Surf. Coat. Technol. 369, 95 (2019). https://doi.org/10.1016/j.surfcoat.2019.04.054

    Article  CAS  Google Scholar 

  61. R. Xu, J. Wang, Z. Guo, H. Wang, Trans. Nonferrous Met. Soc. China 19, 1190 (2009). https://doi.org/10.1016/S1003-6326(08)60427-6

    Article  CAS  Google Scholar 

  62. B. Han, X. Lu, Sci. Bull. 54, 4566 (2009). https://doi.org/10.1007/s11434-009-0603-7

    Article  CAS  Google Scholar 

  63. E. Contreras, D. Grisales, W. Tillmann, A. Hurtado-Macias, M.A. Gómez-Botero, Met. Mater. Int. 28, 1822 (2022). https://doi.org/10.1007/s12540-021-01104-5

    Article  CAS  Google Scholar 

  64. B. Wang, X. Sun, E. Liu, L. Liu, W. Ma, Y. Shi, P. Huang, Y. Luo, Met. Mater. Int. 30, 77 (2024). https://doi.org/10.1007/s12540-023-01483-x

    Article  Google Scholar 

  65. J.L. Stojak, J. Fransaer, J.B. Talbot, in Advances in Electrochemical Science and Engineering, ed. by R.C. Alkire, D.M. Kolb, Vol. 7 (Wiley-VCH, Weinheim, 2001), pp. 193–223

  66. R.K. Saha, T.I. Khan, Surf. Coat. Technol. 205, 890 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.035

    Article  CAS  Google Scholar 

  67. T.G. Woodcock, Y.L. Cheung, J.R.A. Grenfell, J.S. Abell, Supercond. Sci. Technol. 18, 721 (2005). https://doi.org/10.1088/0953-2048/18/5/024

    Article  CAS  Google Scholar 

  68. P. Ganster, B. Pujilaksono, K. Wolski, Defect Diffus. Forum 323–325, 321 (2012). https://doi.org/10.4028/www.scientific.net/DDF.323-325.321

    Article  CAS  Google Scholar 

  69. C. Kim, T. You, Y. Shapovalov, J. Ko, D. Lee, K. Lee, D. Chang, D. Kim, S. Kwon, J. Korean Inst. Surf. Eng. 38(1), 1–6 (2005)

    Google Scholar 

  70. S. Eraslan, M. Ürgen, Surf. Coat. Technol. 265, 46 (2015). https://doi.org/10.1016/j.surfcoat.2015.01.064

    Article  CAS  Google Scholar 

  71. G. Croopnick, D. Scrugg, Met. Finish. 4, 13 (1994)

    Google Scholar 

  72. X.Y. Cheng, X.B. Xie, S. Jiang, J. Rare Earths 22, 687 (2004)

    Google Scholar 

  73. G. Kleer, E. Kaiser, W. Döll, Surf. Coat. Technol. 79, 95 (1996). https://doi.org/10.1016/0257-8972(95)02435-2

    Article  CAS  Google Scholar 

  74. B. Han, X. Lu, Surf. Coat. Technol. 202, 3251 (2008). https://doi.org/10.1016/j.surfcoat.2007.11.031

    Article  CAS  Google Scholar 

  75. P. Manns, W. Döll, G. Kleer, Glas. Sci. Technol. 68, 389 (1995)

    CAS  Google Scholar 

  76. N.P. Wasekar, S.M. Latha, M. Ramakrishna, D.S. Rao, G. Sundararajan, Mater. Des. 112, 140 (2016). https://doi.org/10.1016/j.matdes.2016.09.070

    Article  CAS  Google Scholar 

  77. G.C. Wood, D.P. Whittle, Corros. Sci. 7, 763 (1967). https://doi.org/10.1016/S0010-938X(67)80003-9

    Article  CAS  Google Scholar 

  78. O.T. Goncel, J. Stringer, D.P. Whittle, Corros. Sci. 18(8), 701–719 (1978). https://doi.org/10.1016/S0010-938X(78)80091-2

    Article  CAS  Google Scholar 

  79. F.H. Stott, in The Role of Active Elements in the Oxidation Behaviour of High Temperature Metals and Alloys, ed. by E. Lang (Springer, Dordrecht, 1989), pp. 3–22.

  80. J. Liu, Y. Chen, J. Zhang, Surf. Coat. Technol. 375, 903 (2019). https://doi.org/10.1016/j.surfcoat.2019.08.001

    Article  CAS  Google Scholar 

  81. J.-H. Ko, D.-B. Lee, Met. Mater. Int. 11, 85 (2005). https://doi.org/10.1007/BF03027489

    Article  CAS  Google Scholar 

  82. R. Peraldi, D. Monceau, B. Pieraggi, Oxid. Met. 58, 249 (2002). https://doi.org/10.1023/A:1020170320020

    Article  CAS  Google Scholar 

  83. N. Birks, G.H. Meier, F.S. Pettit, Introduction to the High-Temperature Oxidation of Metals (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  84. M. Pushpavanam, S.R. Natarajan, K. Balakrishnan, Plat. Surf. Finish. 84, 88 (1997)

    CAS  Google Scholar 

  85. T.Y. Kosolapova, Carbides (Springer US, Boston, 1995)

    Book  Google Scholar 

  86. X. Peng, D. Ping, T. Li, W. Wu, J. Electrochem. Soc. 145, 389 (1998). https://doi.org/10.1149/1.1838274

    Article  CAS  Google Scholar 

  87. X. Peng, T. Li, W. Wu, Oxid. Met. 51, 291 (1999). https://doi.org/10.1023/A:1018874707526

    Article  CAS  Google Scholar 

  88. F.H. Stott, D.J. Ashby, Corros. Sci. 18(3), 183 (1978). https://doi.org/10.1016/S0010-938X(78)80017-1

    Article  CAS  Google Scholar 

  89. Y. Zhou, X. Peng, F. Wang, Oxid. Met. 64, 169 (2005). https://doi.org/10.1007/s11085-005-6557-5

    Article  CAS  Google Scholar 

  90. Y.-J. Xue, H.-B. Liu, M.-M. Lan, J.-S. Li, H. Li, Surf. Coat. Technol. 204, 3539 (2010). https://doi.org/10.1016/j.surfcoat.2010.04.009

    Article  CAS  Google Scholar 

  91. M.A. Farrokhzad, T.I. Khan, High Temp. Mater. Process. 33, 407 (2014). https://doi.org/10.1007/s11085-013-9453-4

    Article  CAS  Google Scholar 

  92. M.A. Farrokhzad, T.I. Khan, Oxid. Met. 86, 431 (2016). https://doi.org/10.1007/s11085-016-9645-9

    Article  CAS  Google Scholar 

  93. Y.B. Zhou, H. Chen, H. Zhang, Y. Wang, Vacuum 82, 748 (2008). https://doi.org/10.1016/j.vacuum.2007.10.010

    Article  CAS  Google Scholar 

  94. H. Zhang, X. Peng, J. Zhao, F. Wang, Electrochem. Solid-State Lett. 10, C12 (2007). https://doi.org/10.1149/1.2424265

    Article  CAS  Google Scholar 

  95. P. Kofstad, High Temperature Corrosion (Elsevier Applied Science, New York, 1988)

    Google Scholar 

  96. K. Zhou, L. Ma, Z. Li, Trans. Nonferrous Met. Soc. China 21, 1052 (2011). https://doi.org/10.1016/S1003-6326(11)60821-2

    Article  CAS  Google Scholar 

  97. M. Abaei, M. Zandrahimi, H. Ebrahimifar, Int. J. Mater. Res. 110, 253 (2019). https://doi.org/10.3139/146.111740

    Article  CAS  Google Scholar 

  98. Y.J. Xue, C. Shen, J.S. Li, Y. Liu, Key Eng. Mater. 455, 427 (2010). https://doi.org/10.4028/www.scientific.net/KEM.455.427

    Article  CAS  Google Scholar 

  99. M. Sribalaji, O.S. Asiq Rahman, P. Arun Kumar, K. Suresh Babu, N.P. Wasekar, G. Sundararajan, A.K. Keshri, Metall. Mater. Trans. A 48, 501 (2017). https://doi.org/10.1007/s11661-016-3847-2

    Article  CAS  Google Scholar 

  100. N. Karimi, F. Riffard, F. Rabaste, S. Perrier, R. Cueff, C. Issartel, H. Buscail, Appl. Surf. Sci. 254, 2292 (2008). https://doi.org/10.1016/j.apsusc.2007.09.018

    Article  CAS  Google Scholar 

  101. M. Srivastava, J.N. Balaraju, B. Ravisankar, C. Anandan, V.K. William Grips, Appl. Surf. Sci. 263, 597 (2012). https://doi.org/10.1016/j.apsusc.2012.09.115

    Article  CAS  Google Scholar 

  102. Y. Wang, W.C. Sun, J.M. Xu, F. Guo, Z.W. Jia, I.O.P. Conf, Ser. Mater. Sci. Eng. 281, 012013 (2017). https://doi.org/10.1088/1757-899X/281/1/012013

    Article  Google Scholar 

  103. A.A. Gorouh, M. Zandrahimi, H. Ebrahimifar, Bull. Mater. Sci. 43, 221 (2020). https://doi.org/10.1007/s12034-020-02197-1

    Article  CAS  Google Scholar 

  104. W.C. Sun, Mater. Sci. Forum 694, 799–803 (2011). https://doi.org/10.4028/www.scientific.net/MSF.694.799

    Article  CAS  Google Scholar 

  105. W. Sun, J. Gu, P. Zhang, M. Tian, Y. Wang, H. Cai, S. Hu, Mater. Res. 19, 562 (2016). https://doi.org/10.1590/1980-5373-MR-2015-0103

    Article  CAS  Google Scholar 

  106. L. Ma, K.C. Zhou, Z.Y. Li, L. Zhang, Mater. Sci. Forum 686, 661 (2011). https://doi.org/10.4028/www.scientific.net/MSF.686.661

    Article  CAS  Google Scholar 

  107. Y. Dou, Y. Liang, R. Yang, G. Qian, X. Wei, H. Xu, Fabrication of Nickel/Nano-Lu2O3 Co-Electrodeposited Coating with Good Corrosion and High Temperature Oxidation Resistance (Springer International Publishing, Cham, 2021)

    Book  Google Scholar 

  108. G.N.K.R. Bapu, S. Jayakrishnan, Mater. Chem. Phys. 96, 321 (2006). https://doi.org/10.1016/j.matchemphys.2005.07.021

    Article  CAS  Google Scholar 

  109. H. Ebrahimifar, J. Mater. Sci. Mater. Electron. 31, 17183 (2020). https://doi.org/10.1007/s10854-020-04267-w

    Article  CAS  Google Scholar 

  110. F. Saeidpour, M. Zandrahimi, H. Ebrahimifar, Corros. Sci. 153, 200 (2019). https://doi.org/10.1016/j.corsci.2019.03.034

    Article  CAS  Google Scholar 

  111. H. Ebrahimifar, M. Zandrahimi, Surf. Coat. Technol. 206, 75 (2011). https://doi.org/10.1016/j.surfcoat.2011.06.046

    Article  CAS  Google Scholar 

  112. G.C. Wood, Oxid. Met. 2, 11 (1970). https://doi.org/10.1007/BF00603581

    Article  CAS  Google Scholar 

  113. G.R. Wallwork, Rep. Prog. Phys. 39, 401 (1976). https://doi.org/10.1088/0034-4885/39/5/001

    Article  CAS  Google Scholar 

  114. R.A. Rapp, Corrosion 21, 382 (1965). https://doi.org/10.5006/0010-9312-21.12.382

    Article  CAS  Google Scholar 

  115. G.C. Wood, F.H. Stott, High Temperature Corrosion, NACE-6 (Texas, 1983).

  116. R. Starosta, A. Zielinski, J. Mater. Process. Technol. 157–158, 434 (2004). https://doi.org/10.1016/j.jmatprotec.2004.09.068

    Article  CAS  Google Scholar 

  117. F.H. Stott, P.K.N. Bartlett, G.C. Wood, Mater. Sci. Eng. 88, 163 (1987). https://doi.org/10.1016/0025-5416(87)90081-4

    Article  CAS  Google Scholar 

  118. F.H. Stott, P.K.N. Bartlett, G.C. Wood, Oxid. Met. 27, 37 (1987). https://doi.org/10.1007/BF00656728

    Article  CAS  Google Scholar 

  119. V.C. Wagner, Zeit. Fur Elektrochem. 63, 772 (1959). https://doi.org/10.1002/bbpc.19590630713

    Article  CAS  Google Scholar 

  120. D. Caplan, G.I. Sproule, Oxid. Met. 9, 459 (1975). https://doi.org/10.1007/BF00611694

    Article  CAS  Google Scholar 

  121. K.P. Lillerud, P. Kofstad, J. Electrochem. Soc. 127, 2397 (1980). https://doi.org/10.1149/1.2129478

    Article  CAS  Google Scholar 

  122. C. Quan, Y. He, J. Zhang, Surf. Coat. Technol. 292, 11 (2016). https://doi.org/10.1016/j.surfcoat.2016.03.012

    Article  CAS  Google Scholar 

  123. K. Hoshino, N.L. Peterson, J. Am. Ceram. Soc. 66(11), c202 (1983). https://doi.org/10.1111/j.1151-2916.1983.tb10572.x

    Article  CAS  Google Scholar 

  124. C. Quan, S. Deng, Y. Jiang, C. Jiang, M. Shuai, J. Alloys Compd. 793, 170 (2019). https://doi.org/10.1016/j.jallcom.2019.04.063

    Article  CAS  Google Scholar 

  125. Y. Zhang, X. Peng, F. Wang, Mater. Lett. 58, 1134 (2004). https://doi.org/10.1016/j.matlet.2003.09.006

    Article  CAS  Google Scholar 

  126. D.F. Susan, A.R. Marder, Oxid. Met. 57, 159 (2002). https://doi.org/10.1023/A:1013350914363

    Article  CAS  Google Scholar 

  127. D.F. Susan, A.R. Marder, Oxid. Met. 57, 131 (2002). https://doi.org/10.1023/A:1013398830293

    Article  CAS  Google Scholar 

  128. W.E. Boggs, J. Electrochem. Soc. 118, 906 (1971). https://doi.org/10.1149/1.2408222

    Article  CAS  Google Scholar 

  129. G.C. Wood, F.H. Stott, Br. Corros. J. 6, 247 (1971). https://doi.org/10.1179/000705971798323603

    Article  CAS  Google Scholar 

  130. G.N. Irving, J. Stringer, D.P. Whittle, Oxid. Met. 9, 427 (1975). https://doi.org/10.1007/BF00611691

    Article  CAS  Google Scholar 

  131. F.H. Stott, G.C. Wood, M.G. Hobby, Oxid. Met. 3, 103 (1971). https://doi.org/10.1007/BF00603481

    Article  CAS  Google Scholar 

  132. Y. Jia, S. Zhu, Z. Liu, L. Yang, M. Shen, F. Wang, Corros. Sci. 167, 108550 (2020). https://doi.org/10.1016/j.corsci.2020.108550

    Article  CAS  Google Scholar 

  133. G.D. Oxx, Prod. Eng. 29, 61 (1958)

    Google Scholar 

  134. F.A. Golightly, G.C. Wood, F.H. Stott, Oxid. Met. 14, 217 (1980). https://doi.org/10.1007/BF00604565

    Article  CAS  Google Scholar 

  135. C.S. Giggins, F.S. Pettit, J. Electrochem. Soc. 118, 1782 (1971). https://doi.org/10.1149/1.2407837

    Article  CAS  Google Scholar 

  136. E.W.A. Young, J.H.W. de Wit, Oxid. Met. 26, 351 (1986). https://doi.org/10.1007/BF00659341

    Article  CAS  Google Scholar 

  137. J.L. Smialek, Metall. Trans. A 9, 309 (1978). https://doi.org/10.1007/BF02646380

    Article  Google Scholar 

  138. H.M. Hindam, W.W. Smeltzer, J. Electrochem. Soc. 127, 1630 (1980). https://doi.org/10.1149/1.2129965

    Article  CAS  Google Scholar 

  139. H.M. Hindam, W.W. Smeltzer, Oxid. Met. 14, 337 (1980). https://doi.org/10.1007/BF00603789

    Article  CAS  Google Scholar 

  140. E.J. Felten, F.S. Pettit, Oxid. Met. 10, 189 (1976). https://doi.org/10.1007/BF00612159

    Article  CAS  Google Scholar 

  141. J. Stringer, Mater. Corros. Und Korrosion 23, 747 (1972). https://doi.org/10.1002/maco.19720230903

    Article  CAS  Google Scholar 

  142. D.J. Young, M. Cohen, J. Electrochem. Soc. 124, 769 (1977). https://doi.org/10.1149/1.2133404

    Article  CAS  Google Scholar 

  143. F.H. Stott, Rep. Prog. Phys. 50, 861 (1987). https://doi.org/10.1088/0034-4885/50/7/002

    Article  CAS  Google Scholar 

  144. S. Dehgahi, R. Amini, M. Alizadeh, Surf. Coat. Technol. 304, 502 (2016). https://doi.org/10.1016/j.surfcoat.2016.07.007

    Article  CAS  Google Scholar 

  145. F.H. Stott, Mater. Sci. Technol. 4, 431 (1988). https://doi.org/10.1179/mst.1988.4.5.431

    Article  CAS  Google Scholar 

  146. F.A. Golightly, F.H. Stott, G.C. Wood, J. Electrochem. Soc. 126, 1035 (1979). https://doi.org/10.1149/1.2129170

    Article  CAS  Google Scholar 

  147. F.A. Golightly, F.H. Stott, G.C. Wood, Oxid. Met. 10, 163 (1976). https://doi.org/10.1007/BF00612158

    Article  CAS  Google Scholar 

  148. A.G. Evans, G.B. Crumley, R.E. Demaray, Oxid. Met. 20, 193 (1983). https://doi.org/10.1007/BF00656841

    Article  Google Scholar 

  149. D. Delaunay, A.M. Huntz, J. Mater. Sci. 17, 2027 (1982). https://doi.org/10.1007/BF00540420

    Article  CAS  Google Scholar 

  150. R.M. Spriggs, T. Vasilos, J. Am. Ceram. Soc. 46, 224 (1963). https://doi.org/10.1111/j.1151-2916.1963.tb19777.x

    Article  CAS  Google Scholar 

  151. E. Khoran, M. Zandrahimi, H. Ebrahimifar, Oxid. Met. 91, 177 (2019). https://doi.org/10.1007/s11085-018-9872-3

    Article  CAS  Google Scholar 

  152. S. Shaik, A. Kushwaha, A. Basu, J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-09002-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BRA: Writing-original draft, conceptualization, formal analysis; SS: Writing-original draft, conceptualization, formal analysis; AB: Writing-review and editing, supervision; VSMR: Writing-original draft.

Corresponding authors

Correspondence to Bhargavi Rani Anne or Shajahan Shaik.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial or non-financial interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anne, B.R., Shaik, S., Basu, A. et al. Review on Electrodeposited Ni–W Based Composite Coatings in High-Temperature Applications Concerning Oxidation Behavior. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-023-01609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-023-01609-1

Keywords

Navigation