Skip to main content
Log in

High-frequency pulse electrodeposition and characterization of Ni–Co/ZrO2 nanocomposite coatings

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ni–Co/ZrO2 nanocomposite coatings were produced by high-frequency pulse electrodeposition in a modified Watt’s bath containing ZrO2 particles. The surface morphology, microstructure, and high temperature oxidation resistance of the coatings were characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy, X-ray diffraction, and isothermal oxidation tests. It was found that the presence of ZrO2 particles resulted in changes in the morphology and structure of the coatings. The results also confirmed the nanostructure and uniform distribution of ZrO2 particles of Ni–Co/ZrO2 nanocomposite coatings. The addition of ZrO2 did not change the preferred orientation (200), but remarkably affected the relative intensity of planes of Ni–Co alloy. The influence of duty cycle, average current density, and frequency on the amount of incorporated ZrO2 particles in the Ni–Co/ZrO2 nanocomposite has been also investigated. The Ni–Co/ZrO2 nanocomposite coatings with highest ZrO2 content (11.6 wt%) were prepared under the condition of duty cycle of 40 %, average current density of 5 A dm−2, and frequency of 100 kHz. Moreover, the embedded ZrO2 particles significantly improved the high temperature oxidation resistance of Ni–Co alloy coatings. The oxidation rate of Ni–Co/ZrO2 nanocomposite coatings decreased with increasing the ZrO2 content of the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Daemi, F. Mahboubi, H. Alimadadi, Mater. Des. 32, 971 (2011)

    Article  Google Scholar 

  2. A. Dasgupta, P. Kuppusami, F. Lawrence, V.S. Raghunathan, P.A. Premkumar, K.S. Nagaraja, Mater. Sci. Eng., A 374, 362 (2004)

    Article  Google Scholar 

  3. A.D. Pogrebnjak, S.M. Ruzimov, D.L. Alontseva, P. Zukowski, C. Karwat, C. Kozak, M. Kolasik, Vacuum 81, 1243 (2007)

    Article  Google Scholar 

  4. F.F. Xia, C. Liu, F. Wang, M.H. Wu, J.D. Wang, H.L. Fu, J.X. Wang, J. Alloys Comp. 490, 431 (2010)

    Article  Google Scholar 

  5. N.K. Prasad, V. Kumar, J. Mater. Sci. Mater. Electron. 26, 10109 (2015)

    Article  Google Scholar 

  6. R. Gopalakrishnan, S. Muthukumaran, J. Mater. Sci. Mater. Electron. 24, 1069 (2013)

    Article  Google Scholar 

  7. U. Sarac, M.C. Baykul, J. Mater. Sci. Mater. Electron. 25, 2554 (2014)

    Article  Google Scholar 

  8. Y.F. Gu, C. Cui, H. Harada, T. Fukuda, D. Ping, A. Mitsuhashi, K. Kato, T. Kobayashi, J. Fujioka, Superalloys (TMS, Warrendale, 2008), p. 53

    Google Scholar 

  9. X. Liu, Y. Xu, Y. Qu, L. Sun, Integr. Ferroelectr. 152, 144 (2014)

    Article  Google Scholar 

  10. Y.H. Xu, C. Li, Integr. Ferroelectr. 127, 71 (2011)

    Article  Google Scholar 

  11. B. Bahadormanesh, A. Dolati, M.R. Ahmadi, J. Alloys Comp. 509, 9406 (2011)

    Article  Google Scholar 

  12. L.M. Chang, H.F. Guo, M.Z. An, Mater. Lett. 62, 3313 (2008)

    Article  Google Scholar 

  13. B. Ranjith, G.P. Kalaignan, Appl. Surf. Sci. 257, 42 (2010)

    Article  Google Scholar 

  14. L. Shi, C. Sun, W. Liu, Appl. Surf. Sci. 254, 6880 (2008)

    Article  Google Scholar 

  15. L. Shi, C.F. Sun, F. Zhou, W.M. Liu, Mater. Sci. Eng., A 397, 190 (2005)

    Article  Google Scholar 

  16. B. Bakhit, A. Akbari, Surf. Coat. Technol. 206, 4964 (2012)

    Article  Google Scholar 

  17. C. Ma, G. Liang, Y. Zhu, H. Mu, F. Xia, Ceram. Int. 40, 3341 (2014)

    Article  Google Scholar 

  18. P. Gyftou, E.A. Pavlatou, N. Spyrellis, Appl. Surf. Sci. 254, 5910 (2008)

    Article  Google Scholar 

  19. Z.F. Lodhi, J.M.C. Mol, A. Hovestad, H. Terryn, J.H.W. de Wit, Surf. Coat. Technol. 202, 84 (2007)

    Article  Google Scholar 

  20. N.S. Qu, D. Zhu, K.C. Chan, Scr. Mater. 54, 1421 (2006)

    Article  Google Scholar 

  21. G. Heidari, S.M. Mousavi Khoie, M.E. Abrishami, M. Javanbakht, J. Mater. Sci. Mater. Electron. 26, 1969 (2015)

    Article  Google Scholar 

  22. Y. Messaoudi, N. Fenineche, A. Guittoum, A. Azizi, G. Schmerber, A. Dinia, J. Mater. Sci. Mater. Electron. 24, 2962 (2013)

    Article  Google Scholar 

  23. M.S. Chandrasekar, M. Pushpavanam, Electrochim. Acta 53, 3313 (2008)

    Article  Google Scholar 

  24. M.E. Bahrololoom, R. Sani, Surf. Coat. Technol. 192, 154 (2005)

    Article  Google Scholar 

  25. S.A. Lajevardi, T. Shahrabi, Appl. Surf. Sci. 256, 6775 (2010)

    Article  Google Scholar 

  26. G. Gyawali, K. Hamal, B. Joshi, A. Rajbhandari, S. Wohn Lee, Mater. Lett. 126, 228 (2014)

    Article  Google Scholar 

  27. N. Guglielmi, J. Electrochem. Soc. 119, 1009 (1972)

    Article  Google Scholar 

  28. S. Yoshimura, S. Chida, E. Sato, Met. Finish. 84, 39 (1986)

    Google Scholar 

  29. L. Shi, C. Sun, P. Gao, F. Zhou, W. Liu, Appl. Surf. Sci. 252, 3591 (2006)

    Article  Google Scholar 

  30. R.W. Wonbaek Kim, Surf. Coat. Technol. 38, 289 (1989)

    Article  Google Scholar 

  31. Y. Xuetao, W. Yu, S. Dongbai, Y. Hongying, Surf. Coat. Technol. 202, 1895 (2008)

    Article  Google Scholar 

  32. J.R.R.J.P. Celis, C. Buelens, J. Electrochem. Soc. 134, 1402 (1987)

    Article  Google Scholar 

  33. U.B.T.W.E. Campbell, Trans. Electrochem. Soc. 40, 623 (1947)

    Article  Google Scholar 

  34. Z.Q.Z. Liqun, L. Jianhua, Met. Finish. 99, 28 (2001)

    Article  Google Scholar 

  35. G.N.K.R. Bapu, S. Jayakrishnan, Mater. Chem. Phys. 96, 321 (2006)

    Article  Google Scholar 

  36. A.U. Seybolt, Adv. Phys. 12, 1 (1963)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National High Technology Research and Development Program 863 (2012AA112001, 2012AA112002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhua Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Xu, Y., Feng, G. et al. High-frequency pulse electrodeposition and characterization of Ni–Co/ZrO2 nanocomposite coatings. J Mater Sci: Mater Electron 27, 8169–8176 (2016). https://doi.org/10.1007/s10854-016-4820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4820-y

Keywords

Navigation