Skip to main content
Log in

Anti-Corrosion Coatings for Protecting Nb-Based Alloys Exposed to Oxidation Environments: A Review

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Nb-based alloys are regarded as a vital high temperature structural material. Unfortunately, the low oxidation resistance of the alloys limits their application under aerobic conditions at high temperature. Surface coating technology is considered to be an ideal method to solve this problem. This paper reviewed recent progress on silicide coatings on Nb and Nb-based alloy, and focused on different types of modification techniques. The microstructure, phase composition and oxidation properties of various silicified coatings are analyzed. The effects of modified elements and second phase on the oxidation mechanism of silicide coatings are also summarized. Finally, the existing problems and future development direction of various silicide coatings are pointed out.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

modified by single element on Nb and Nb-based alloys under different conditions; Mo-Si-Al coating a and e [64], Mo-Si-B coating b and f [70], Ge-modified silicide coating c and g [60], Ce-modified MoSi2-NbSi2 coating d and h [74]

Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. F. Shen, Y. Zhang, L. Yu, T. Fu, J. Wang, H. Wang, K. Cui, Microstructure and oxidation behavior of Nb-Si-based alloys for ultrahigh temperature applications: a comprehensive review. Coatings 11(11), 1373 (2021). https://doi.org/10.3390/coatings11111373

    Article  CAS  Google Scholar 

  2. X. Zhang, T. Fu, K.K. Cui, Y.Y. Zhang, F.Q. Shen, J. Wang, L.H. Yu, H.B. Mao, A. Tolstoguzov, The protection, challenge, and prospect of anti-oxidation coating on the surface of niobium alloy. Coatings 11(7), 742 (2021). https://doi.org/10.3390/coatings11070742

    Article  CAS  Google Scholar 

  3. J. Wang, Y. Zhang, L. Yu, K. Cui, T. Fu, H. Mao, Effective separation and recovery of valuable metals from waste Ni-based batteries: A comprehensive review. Chem. Eng. J. 439, 135767 (2022). https://doi.org/10.1016/j.cej.2022.135767

    Article  CAS  Google Scholar 

  4. J.H. He, X.P. Guo, Y.Q. Qiao, Effect of Zr content on the structure and oxidation resistance of silicide coatings prepared by pack cementation technique. Corros. Sci. 147, 152–162 (2019). https://doi.org/10.3390/coatings12020141

    Article  CAS  Google Scholar 

  5. D.Z. Yao, C.G. Zhou, J.Y. Yang, H.F. Chen, Experimental studies and modeling of the oxidation of multiphase niobium-base alloys. Corros. Sci. 51(11), 2617–2619 (2009). https://doi.org/10.1016/j.corsci.2009.06.053

    Article  CAS  Google Scholar 

  6. Y.X. Li, J.H. Nie, Y.X. Yang, P.K. Bai, H.J. Zhang, Z.Y. Zhao, S.Z. Wei, J. Cai, Q.F. Guan, High-temperature oxidation behavior of nicocraly coatings deposited by laser cladding on 304 stainless steel. Met. Mater. Int. 28, 412–420 (2022). https://doi.org/10.1007/s12540-020-00927-y

    Article  CAS  Google Scholar 

  7. L. Yu, F. Shen, T. Fu, Y. Zhang, K. Cui, J. Wang, X. Zhang, Microstructure and oxidation behavior of metal-modified Mo-Si-B alloys a review. Coatings 11(10), 1256 (2021). https://doi.org/10.3390/coatings11101256

    Article  CAS  Google Scholar 

  8. L. Yu, Y. Zhang, T. Fu, J. Wang, K. Cui, F. Shen, Rare earth elements enhanced the oxidation resistance of Mo-Si-based alloys for high temperature application: a review. Coatings 11(9), 1144 (2021). https://doi.org/10.3390/coatings11091144

    Article  CAS  Google Scholar 

  9. S. Zhang, X.P. Guo, Alloying effects on the microstructure and properties of Nb-Si based ultrahigh temperature alloys. Intermetallics 70, 33–44 (2016). https://doi.org/10.1016/j.intermet.2015.12.002

    Article  CAS  Google Scholar 

  10. G. Kim, H. Shin, J. Lee, W. Lee, A review on silicide-based materials: thermoelectric and mechanical properties. Met. Mater. Int. 27, 2205–2219 (2021). https://doi.org/10.1007/s12540-020-00609-9

    Article  CAS  Google Scholar 

  11. Y.C. Yan, H.S. Ding, Y.W. Kang, J.X. Song, Microstructure evolution and mechanical properties of Nb-Si based alloy processed by electromagnetic cold crucible directional solidification. Mater. Des. 55, 450–455 (2014). https://doi.org/10.1016/j.matdes.2013.10.017

    Article  CAS  Google Scholar 

  12. Z.P. Sun, J.M. Guo, C. Zhang, X.P. Guo, X.D. Tian, Effect of Ti and Al interaction on microstructures and mechanical properties of the Nb-Ti-Si-Al alloys. Rare Metal Mater. Eng. 45(7), 1678–1682 (2016). https://doi.org/10.1016/S1875-5372(16)30139-4

    Article  CAS  Google Scholar 

  13. I. Grammenos, P. Tsakiropoulos, Study of the role of Hf, Mo and W additions in the microstructure of Nb–20Si silicide based alloys. Intermetallics 19(10), 1612–1621 (2011). https://doi.org/10.1016/j.intermet.2011.06.008

    Article  CAS  Google Scholar 

  14. S.S. Zhang, Y.C. Liu, T.W. Xu, M.X. Sun, Q. Zhang, Y. Wan, Effect of texture and microstructure on tensile behaviors in the polycrystalline pure niobium. Met. Mater. Int. 27, 4023–4034 (2021). https://doi.org/10.1007/s12540-020-00925-0

    Article  CAS  Google Scholar 

  15. D.L. Pu, Y. Pan, Influence of high pressure on the structure, hardness and brittle-to-ductile transition of NbSi2 ceramics. Ceram. Int. 47(2), 2311–2318 (2021). https://doi.org/10.1016/j.ceramint.2020.09.073

    Article  CAS  Google Scholar 

  16. G.M. Karthik, H.S. Kim, Heterogeneous aspects of additive manufactured metallic parts: a review. Met. Mater. Int. 27, 1–39 (2021). https://doi.org/10.1007/s12540-020-00931-2

    Article  CAS  Google Scholar 

  17. Y. Pan, Structural Prediction and overall performances of CrSi2 disilicides: DFT investigations. ACS Sustain. Chem. Eng. 8, 11024–11030 (2020). https://doi.org/10.1021/acssuschemeng.0c04737

    Article  CAS  Google Scholar 

  18. X. Fang, X.P. Guo, Y.Q. Qiao, Effect of Ti addition on microstructure and crystalline orientations of directionally solidified Nb–Si based alloys. Intermetallics 122, 106798 (2020). https://doi.org/10.1016/j.intermet.2020.106798

    Article  CAS  Google Scholar 

  19. I. Grammenos, P. Tsakiropoulos, Study of the role of Al, Cr and Ti additions in the microstructure of Nb-18Si-5Hf base alloys. Intermetallics 18(2), 242–253 (2010). https://doi.org/10.1016/j.intermet.2009.07.020

    Article  CAS  Google Scholar 

  20. Y.Y. Zhang, J.M. Qie, K.K. Cui, T. Fu, X.L. Fan, J. Wang, X. Zhang, Effect of hot dip silicon-plating temperature on microstructure characteristics of silicide coating on tungsten substrate. Ceram. Int. 46(4), 5223–5228 (2020). https://doi.org/10.1016/j.ceramint.2019.10.270

    Article  CAS  Google Scholar 

  21. S. Zhang, X.P. Guo, Effects of Cr and Hf additions on the microstructure and properties of Nb silicide based ultrahigh temperature alloys. Mater. Sci. Eng. A 638, 121–131 (2015). https://doi.org/10.1016/j.msea.2015.04.003

    Article  CAS  Google Scholar 

  22. Y.Y. Zhang, T. Fu, L.H. Yu, F.Q. Shen, J. Wang, K.K. Cui, Improving oxidation resistance of TZM alloy by deposited Si–MoSi2 composite coating with high silicon concentration, Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.04.080

    Article  CAS  Google Scholar 

  23. Y.Y. Zhang, S. Hussain, K.K. Cui, T. Fu, J. Wang, M.S. Javed, Y. Lv, B. Aslam, Microstructure and mechanical properties of MoSi2 coating deposited on Mo substrate by hot dipping processes. J. Nanoelectron. Optoelectron. 14(12), 1680–1685 (2019). https://doi.org/10.1166/jno.2019.2676

    Article  CAS  Google Scholar 

  24. Y.Y. Zhang, Y.G. Li, C.G. Bai, Microstructure and oxidation behavior of Si-MoSi2 functionally graded coating on Mo substrate. Ceram. Int. 43(8), 6250–6256 (2017). https://doi.org/10.1016/j.ceramint.2017.02.024

    Article  CAS  Google Scholar 

  25. F. Shen, L. Yu, T. Fu, Y. Zhang, H. Wang, K. Cui, J. Wang, S. Hussain, N. Akhtar, Effect of the Al, Cr and B elements on the mechanical properties and oxidation resistance of Nb-Si based alloys: a review. Appl. Phys. A 127, 852 (2021). https://doi.org/10.1007/s00339-021-05013-7

    Article  CAS  Google Scholar 

  26. Y.Y. Zhang, T. Fu, K.K. Cui, F.Q. Shen, J. Wang, L.H. Yu, H.B. Mao, Evolution of surface morphology, roughness and texture of tungsten disilicide coatings on tungsten substrate. Vacuum 14, 110297 (2021). https://doi.org/10.1016/j.vacuum.2021.110297

    Article  CAS  Google Scholar 

  27. K. Cui, H. Mao, Y. Zhang, J. Wang, H. Wang, T. Tan, T. Fu, Microstructure, mechanical properties, and reinforcement mechanism of carbide toughened ZrC-based ultra-high temperature ceramics. Compos. Interfaces (2022). https://doi.org/10.1080/09276440.2021.2012409

    Article  Google Scholar 

  28. Y.Y. Zhang, K.K. Cui, Q.J. Gao, S. Hussain, Y. Lv, Investigation of morphology and texture properties of WSi2 coatings on W substrate based on contact-mode AFM and EBSD. Surf. Coat. Technol. 396(25), 125966 (2020). https://doi.org/10.1016/j.surfcoat.2020.125966

    Article  CAS  Google Scholar 

  29. K. Zelenitsas, P. Tsakiropoulos, Effect of Al, Cr and Ta additions on the oxidation behaviour of Nb-Ti-Si in situ composites at 800 °C. Mater. Sci. Eng. A 416, 269–280 (2006). https://doi.org/10.1016/j.msea.2005.10.017

    Article  CAS  Google Scholar 

  30. T. Fu, F.Q. Shen, Y.Y. Zhang, L.H. Yu, K.K. Cui, J. Wang, X. Zhang, Oxidation protection of high-temperature coatings on the surface of Mo-Based alloys-a review. Coatings 12(2), 141 (2022). https://doi.org/10.3390/coatings12020141

    Article  CAS  Google Scholar 

  31. Y.Y. Zhang, L.H. Yu, T. Fu, J. Wang, F.Q. Shen, K.K. Cui, Microstructure evolution and growth mechanism of Si-MoSi2 composite coatings on TZM (Mo-0.5Ti-0.1Zr-0.02 C) alloy. J. Alloys Compd. 894(15), 162403 (2022). https://doi.org/10.1016/j.jallcom.2021.162403

    Article  CAS  Google Scholar 

  32. Y.Y. Zhang, W.J. Ni, Y.G. Li, Effect of siliconizing temperature on microstructure and phase constitution of Mo–MoSi2 functionally graded materials. Ceram. Int. 44(10), 11166–11171 (2018). https://doi.org/10.1016/j.ceramint.2018.03.136

    Article  CAS  Google Scholar 

  33. X. Tian, X. Guo, Z. Sun, Z. Yin, L. Wang, Formation of B-modified MoSi2 coating on pure Mo prepared through HAPC process. Int. J. Refract. Metals Hard Mater. 45, 8–14 (2014). https://doi.org/10.1016/j.ijrmhm.2014.03.003

    Article  CAS  Google Scholar 

  34. B. Vishwanadh, R.H. Naina, S. Majumdar, R. Tewari, G.K.A. Dey, A study on the oxidation behavior of Nb alloy (Nb-1 pct Zr-0.1 pct C) and silicide-coated Nb alloys. Metall. Mater. Trans. A 44, 2258–2269 (2013). https://doi.org/10.1007/s11661-012-1554-1

    Article  CAS  Google Scholar 

  35. L. Liu, H. Lei, J. Gong, C. Sun, Deposition and oxidation behaviour of molybdenum disilicide coating on Nb based alloys substrate by combined AIP/HAPC processes. Ceram. Int. 45(8), 10525–10529 (2019). https://doi.org/10.1016/j.ceramint.2019.02.115

    Article  CAS  Google Scholar 

  36. J.C. Cheng, S. Yi, J.S. Park, Oxidation behavior of Nb-Si-B alloys with the NbSi2 coating layer formed by a pack cementation technique. Int. J. Refract Metal Hard Mater. 41, 103–109 (2013). https://doi.org/10.1016/j.ijrmhm.2013.02.010

    Article  CAS  Google Scholar 

  37. S. Majumdar, J. Kishor, B. Paul, R.C. Hubli, J.K. Chakravartty, Isothermal oxidation behavior and growth kinetics of silicide coatings formed on Nb-1Zr-0.1C alloy. Corros. Sci. 95, 100–109 (2015). https://doi.org/10.1016/j.corsci.2015.02.035

    Article  CAS  Google Scholar 

  38. E.H. Jordan, L. Xie, M. Gell, N.P. Padture, B. Cetegen, A. Ozturk, X. Ma, J. Roth, T.D. Xiao, P.E.C. Bryant, Superior thermal barrier coatings using solution precursor plasma spray. J. Therm. Spray Technol. 13, 57–65 (2004). https://doi.org/10.1007/s11666-004-0050-6

    Article  CAS  Google Scholar 

  39. L. Sun, Q.G. Fu, X.Q. Fang, J. Sun, A MoSi2-based composite coating by supersonic atmospheric plasma spraying to protect Nb alloy against oxidation at 1500 °C. Surf. Coat. Technol. 325, 182–190 (2018). https://doi.org/10.1016/j.surfcoat.2018.07.091

    Article  CAS  Google Scholar 

  40. D.L. Pu, Y. Pan, First-principles investigation of oxidation mechanism of Al-doped Mo5Si3 silicide. Ceram. Int. 48(8), 11518–11526 (2022). https://doi.org/10.1016/j.ceramint.2022.01.007

    Article  CAS  Google Scholar 

  41. J. Yan, L. Liu, Z. Mao, H. Xu, Y. Wang, Effect of spraying powders size on the microstructure, bonding strength, and microhardness of MoSi2 coating prepared by air plasma spraying. J. Therm. Spray Technol. 23, 934–939 (2014). https://doi.org/10.1007/s11666-014-0120-3

    Article  CAS  Google Scholar 

  42. Y.J. Choi, J.K. Yoon, G.H. Kim, W.Y. Yoon, J.M. Doh, K.T. Hong, High temperature isothermal oxidation behavior of NbSi2 coating at 1000–1450 °C. Corros. Sci. 129, 102–114 (2017). https://doi.org/10.1016/j.corsci.2017.10.002

    Article  CAS  Google Scholar 

  43. J. Sun, T. Li, G.P. Zhang, Q.G. Fu, Different oxidation protection mechanisms of HAPC silicide coating on niobium alloy over a large temperature range. J. Alloy. Compd. 790, 1014–1022 (2019). https://doi.org/10.1016/j.jallcom.2019.03.229

    Article  CAS  Google Scholar 

  44. Y.Y. Zhang, K.K. Cui, T. Fu, J. Wang, F.Q. Shen, X. Zhang, L.H. Yu, Formation of MoSi2 and Si/MoSi2 coatings on TZM (Mo-0.5Ti-0.1Zr-0.02C) alloy by hot dip silicon-plating method. Ceram. Int. 47(16), 23053–23065 (2021). https://doi.org/10.1016/j.ceramint.2021.05.020

    Article  CAS  Google Scholar 

  45. L. Liu, H.Q. Zhang, H. Lei, H.Q. Li, J. Gong, C. Sun, Influence of different coating structures on the oxidation resistance of MoSi2 coatings. Ceram. Int. 46(5), 5993–5997 (2020). https://doi.org/10.1016/j.ceramint.2019.11.055

    Article  CAS  Google Scholar 

  46. L. Sun, Q.G. Fu, J. Sun, G.P. Zhang, Comparison investigation of hot corrosion exposed to Na2SO4 salt and oxidation of MoSi2-based coating on Nb alloy at 1000 °C. Surf. Coat. Technol. 385, 125388 (2020). https://doi.org/10.1016/j.surfcoat.2020.125388

    Article  CAS  Google Scholar 

  47. Y.L. Guo, L.N. Jia, B. Kong, F.X. Zhang, J.H. Liu, H. Zhang, Improvement in the oxidation resistance of Nb-Si based alloy by selective laser melting. Corros. Sci. 127, 260–269 (2017). https://doi.org/10.1016/j.corsci.2017.08.022

    Article  CAS  Google Scholar 

  48. S. Majumdar, J. Kishor, B. Paul, R.C. Hubli, J.K. Chakravartty, Isothermal oxidation behavior and growth kinetics of silicide coatings formed on Nb-1Zr-0.1C alloy. Corros. Sci. 95, 100–109 (2015). https://doi.org/10.1016/j.corsci.2015.02.035

    Article  CAS  Google Scholar 

  49. Y. Pan, W.M. Guan, The hydrogenation mechanism of PtAl and IrAl thermal barrier coatings from first-principles investigations. Int. J. Hydrog. Energy 45(38), 20032–20041 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.290

    Article  CAS  Google Scholar 

  50. G. Yue, X.P. Guo, Y.Q. Qiao, Microstructure and oxidation behaviors at 800°C and 1250°C of MoSi2/ReSi2/NbSi2 compound coating prepared by electrodeposition and then pack cementation. Ceram. Int. 45(9), 11739–11748 (2019). https://doi.org/10.1016/j.ceramint.2019.03.050

    Article  CAS  Google Scholar 

  51. A. Allam, P. Boulet, M.C. Record, Linear thermal expansion coefficients of higher manganese silicide compounds. Phys. Proc. 55, 24–29 (2014). https://doi.org/10.1016/j.phpro.2014.07.004

    Article  CAS  Google Scholar 

  52. G.P. Zhang, J. Sun, Q.G. Fu, Effect of mullite on the microstructure and oxidation behavior of thermal sprayed MoSi2 coating at 1500 °C. Ceram. Int. 46(8), 10058–10066 (2020). https://doi.org/10.1016/j.ceramint.2019.12.273

    Article  CAS  Google Scholar 

  53. G.P. Zhang, J. Sun, Q.G. Fu, Microstructure and oxidation behavior of plasma sprayed WSi2-mullite MoSi2 coating on niobium alloy at 1500 °C. Surf. Coat. Technol. 400, 126210 (2020). https://doi.org/10.1016/j.surfcoat.2020.126210

    Article  CAS  Google Scholar 

  54. M.Z. Alam, A.S. Rao, D.K. Das, Microstructure and high temperature oxidation performance of silicide coating on Nb-based alloy C-103. Oxid. Met. 73, 513–530 (2010). https://doi.org/10.1007/s11085-010-9190-x

    Article  CAS  Google Scholar 

  55. G. Yue, X.P. Guo, Y.Q. Qiao, C.G. Zhou, Electrodeposition of Mo/Re duplex layer and preparation of MoSi2/ReSi2/NbSi2 compound coating on Nb-Ti-Si based alloy. Corros. Sci. 153, 283–291 (2019). https://doi.org/10.1016/j.corsci.2019.03.053

    Article  CAS  Google Scholar 

  56. Y.Y. Zhang, J. Zhao, J.H. Li, J. Lei, X.K. Cheng, Effect of hot-dip siliconizing time on phase composition and microstructure of Mo-MoSi2 high temperature structural materials. Ceram. Int. 45(5), 5588–5593 (2019). https://doi.org/10.1016/j.ceramint.2018.12.018

    Article  CAS  Google Scholar 

  57. M.T. Wang, Q.S. Zheng, A.Y. Chen, Y. Li, X.W. Zhang, D.L. Zhang, S. Jin, D.H. Xiong, W. Deng, Crystallization, thermal expansion and hardness of Y2O3–Al2O3–SiO2 glasses. Ceram. Int. 47(17), 25059–25066 (2021). https://doi.org/10.1016/j.ceramint.2021.05.236

    Article  CAS  Google Scholar 

  58. A. Anagnostopoulos, A. Alexiadis, Y.L. Ding, Simplified force field for molecular dynamics simulations of amorphous SiO2 for solar applications. Int. J. Therm. Sci. 160, 106647 (2021). https://doi.org/10.1016/j.ijthermalsci.2020.106647

    Article  CAS  Google Scholar 

  59. Y.Y. Zhang, K.K. Cui, T. Fu, J. Wang, J.M. Qie, X. Zhang, Synthesis WSi2 coating on W substrate by HDS method with various deposition times. Appl. Surf. Sci. 511, 145551 (2020). https://doi.org/10.1016/j.apsusc.2020.145551

    Article  CAS  Google Scholar 

  60. W. Wang, B.F. Yuan, C.G. Zhou, Formation and oxidation resistance of germanium modified silicide coating on Nb based in situ composites. Corros. Sci. 80, 164–168 (2014). https://doi.org/10.1016/j.corsci.2013.11.029

    Article  CAS  Google Scholar 

  61. B. Voglewede, V.R. Rangel, S.K. Varma, The effects of uncommon silicides on the oxidation behavior of alloys from the Nb–Cr–Si system. Corros. Sci. 61, 123–133 (2012). https://doi.org/10.1016/j.corsci.2012.04.029

    Article  CAS  Google Scholar 

  62. T. Fu, K.K. Cui, Y.Y. Zhang, J. Wang, X. Zhang, F.Q. Shen, L.H. Yu, H.B. Mao, Microstructure and oxidation behavior of anti-oxidation coatings on Mo-Based alloys through HAPC Process: a review. Coatings 11(8), 883 (2021). https://doi.org/10.3390/coatings11080883

    Article  CAS  Google Scholar 

  63. M. Fukumoto, Y. Matsumura, S. Hayashi, T. Narita, K. Sakamoto, A. Kasama, R. Tanaka, Coatings of Nb-based alloy by Cr and/or Al pack cementations and its oxidation behavior in Air at 1273–1473 K. Mater. Trans. 44(4), 731–735 (2003). https://doi.org/10.2320/matertrans.44.731

    Article  CAS  Google Scholar 

  64. Y.Q. Qiao, M.Y. Li, X.P. Guo, Development of silicide coatings over Nb–NbCr2 alloy and their oxidation behavior at 1250 °C. Surf. Coat. Technol. 285, 921–930 (2014). https://doi.org/10.1016/j.surfcoat.2014.07.058

    Article  CAS  Google Scholar 

  65. Y. Liu, W. Shao, C.L. Wang, C.G. Zhou, Microstructure and oxidation behavior of Mo-Si-Al coating on Nb-based alloy. J. Alloy. Compd. 735, 2247–2255 (2018). https://doi.org/10.1016/j.jallcom.2017.11.339

    Article  CAS  Google Scholar 

  66. L.F. Su, O.L. Steffes, H. Zhang, J.H. Perepezko, An ultra-high temperature Mo-Si-B based coating for oxidation protection of NbSS/Nb5Si3 composites. Appl. Surf. Sci. 337, 38–44 (2015). https://doi.org/10.1016/j.apsusc.2015.02.061

    Article  CAS  Google Scholar 

  67. R. Sakidja, J.S. Park, J. Hamann, J.H. Perepezko, Synthesis of oxidation resistant silicide coating on Mo-Si-B alloys. Scripta Mater. 53(6), 723–728 (2005). https://doi.org/10.1016/j.scriptamat.2005.05.015

    Article  CAS  Google Scholar 

  68. T. Tabaru, K. Shobu, H. Hirai, S. Hanada, Influences of Al content and secondary phase of Mo5(Si, Al)3 on the oxidation resistance of Al-rich Mo(Si, Al)2-base composites. Intermetallics 11(7), 721–733 (2003). https://doi.org/10.1016/S0966-9795(03)00072-4

    Article  CAS  Google Scholar 

  69. M.Z. Alam, B. Venkataraman, B. Sarma, D.K. Das, MoSi2 coating on Mo substrate for short-term oxidation protection in air. J. Alloy. Compd. 487(1), 335–340 (2009). https://doi.org/10.1016/j.jallcom.2009.07.141

    Article  CAS  Google Scholar 

  70. J.Y. Wu, W. Wang, C.G. Zhou, Microstructure and oxidation resistance of Mo–Si–B coating on Nb based in situ composites. Corros. Sci. 87, 421–426 (2014). https://doi.org/10.1016/j.corsci.2014.07.006

    Article  CAS  Google Scholar 

  71. P. Ritt, R. Sakidja, J.H. Perepezko, Mo–Si–B based coating for oxidation protection of SiC-C composites. Surf. Coat. Technol. 206(19–20), 4166–4172 (2012). https://doi.org/10.1016/j.surfcoat.2012.04.016

    Article  CAS  Google Scholar 

  72. T. Feng, H.J. Li, X.H. Shi, X. Yang, Y.X. Li, X.Y. Yao, Sealing role of B2O3 in MoSi2–CrSi2–Si/B-modified SiC coating for C/C composites. Corros. Sci. 60, 4–9 (2012). https://doi.org/10.1016/j.corsci.2012.04.018

    Article  CAS  Google Scholar 

  73. C. Wang, W. Shao, W. Wang, C. Zhou, Oxidation behaviour of a Ge-modified silicide coating on an Nb-Si based alloy in the moderate temperature range. Corros. Sci. 163, 108249 (2020). https://doi.org/10.1016/j.corsci.2019.108249

    Article  CAS  Google Scholar 

  74. L.R. Xiao, X.J. Zhou, Y.F. Wang, R. Pu, G. Zhao, Z.Q. Shen, Y.L. Huang, S.N. Liu, Z.Y. Cai, X.J. Zhao, Formation and oxidation behavior of Ce-modified MoSi2-NbSi2 coating on niobium alloy. Corros. Sci. 173, 108751 (2020). https://doi.org/10.1016/j.corsci.2020.108751

    Article  CAS  Google Scholar 

  75. Z. Cai, D. Zhang, X. Chen, Y. Huang, Y. Peng, C. Xu, S. Huang, R. Pu, S. Liu, X. Zhao, L. Xiao, A novel ultra-high-temperature oxidation protective MoSi2-TaSi2 ceramic coating for tantalum substrate. J. Eur. Ceram. Soc. 39(7), 2277–2286 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.02.037

    Article  CAS  Google Scholar 

  76. V. Sreedhar, J. Das, R. Mitra, S.K. Roy, Influence of superficial CeO2 coating on high temperature oxidation behavior of Ti–6Al–4V. J. Alloy. Compd. 519, 106–111 (2012). https://doi.org/10.1016/j.jallcom.2011.12.118

    Article  CAS  Google Scholar 

  77. W. Wang, C.G. Zhou, Characterization of microstructure and oxidation resistance of Y and Ge modified silicide coating on Nb-Si based alloy. Corros. Sci. 110, 114–122 (2016). https://doi.org/10.1016/j.corsci.2016.04.026

    Article  CAS  Google Scholar 

  78. S. Majumdar, P. Sengupta, G.B. Kale, I.G. Sharma, Development of multilayer oxidation resistant coatings on niobium and tantalum. Surf. Coat. Technol. 200(12–13), 3713–3718 (2006). https://doi.org/10.1016/j.surfcoat.2005.01.034

    Article  CAS  Google Scholar 

  79. B. Zhang, W. Song, L. Wei, Y. Xiu, H. Xu, D.B. Dingwell, H. Guo, Novel thermal barrier coatings repel and resist molten silicate deposits. Scripta Mater. 163, 71–76 (2019). https://doi.org/10.1016/j.scriptamat.2018.12.028

    Article  CAS  Google Scholar 

  80. Q.Y. Hou, W. Shao, M.F. Li, C.G. Zhou, Interdiffusion behavior of Mo-Si-B/Al2O3 composite coating on Nb-Si based alloy. Surf. Coat. Technol. 401, 126243 (2020). https://doi.org/10.1016/j.surfcoat.2020.126243

    Article  CAS  Google Scholar 

  81. C.L. Yeh, Y.H. Wang, Formation of zirconium silicide–Al2O3 composites from PTFE-assisted ZrO2/Si/Al combustion synthesis. Vacuum 184, 109877 (2021). https://doi.org/10.1016/j.vacuum.2020.109877

    Article  CAS  Google Scholar 

  82. K.K. Cui, T. Fu, Y.Y. Zhang, J. Wang, H.B. Mao, T.B. Tan, Microstructure and mechanical properties of CaAl12O19 reinforced Al2O3-Cr2O3 composites. J. Eur. Ceram. Soc. 41(15), 7935–7945 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.08.024

    Article  CAS  Google Scholar 

  83. Y.Q. Qiao, J.P. Kong, Q. Li, X.P. Guo, Comparison of two kinds of Si–B–Y co-deposition coatings on an Nb-Ti-Si based alloy by pack cementation method. Surf. Coat. Technol. 327, 93–100 (2017). https://doi.org/10.1016/j.surfcoat.2017.07.013

    Article  CAS  Google Scholar 

  84. T. Fu, K.K. Cui, Y.Y. Zhang, J. Wang, F.Q. Shen, L.H. Yu, J.M. Qie, X. Zhang, Oxidation protection of tungsten alloys for nuclear fusion applications: a comprehensive review. J. Alloy. Compd. 884, 161057 (2021). https://doi.org/10.1016/j.jallcom.2021.161057

    Article  CAS  Google Scholar 

  85. Y. Zhang, L. Yu, T. Fu, J. Wang, F. Shen, K. Cui, H, Wang, Microstructure and oxidation resistance of Si-MoSi2 ceramic coating on TZM (Mo-0.5 Ti-0.1 Zr-0.02 C) alloy at 1500° C. Surf. Coat. Technol. 431, 128037 (2022). https://doi.org/10.1016/j.surfcoat.2021.128037

    Article  CAS  Google Scholar 

  86. K. Cui, Y. Zhang, T. Fu, J. Wang, X. Zhang, Toughening mechanism of mullite matrix composites: a review. Coatings 10(7), 672 (2020). https://doi.org/10.3390/coatings10070672

    Article  CAS  Google Scholar 

  87. M. Sankar, V.S. Prasad, R.G. Baligidad, M.Z. Alam, D.K. Das, A.A. Gokhale, Microstructure, oxidation resistance and tensile properties of silicide coated Nb-alloy C-103. Mater. Sci. Eng. A 645, 339–346 (2015). https://doi.org/10.1016/j.msea.2015.07.063

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Anhui Province Science Foundation for Excellent Young Scholars (2108085Y19) and the National Natural Science Foundation of China (No. 51604049).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. YYZ: Conceptualization, Investigation, and Supervision. YYZ and TF: Writing original draft and image processing. TF, KKC, and JW: Validation, Resources, Investigation, Writing—review and editing. XZ, KCZ, LHY and FQS: Visualization, Writing—review and editing. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Yingyi Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Fu, T., Yu, L. et al. Anti-Corrosion Coatings for Protecting Nb-Based Alloys Exposed to Oxidation Environments: A Review. Met. Mater. Int. 29, 1–17 (2023). https://doi.org/10.1007/s12540-022-01222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01222-8

Keywords

Navigation