Skip to main content
Log in

High Temperature Oxidation of Nickel-Based Cermet Coatings Composed of Al2O3 and TiO2 Nanosized Particles

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The use of co-electrodeposited nickel-based cermet coatings has been recently considered as a low cost method for protecting the surface of mechanical equipment and machinery against corrosion and high temperature oxidation that are being used in a new oil extraction techniques known as the in situ combustion (ISC) process. In the ISC process, the presence of high temperature atmospheric air can degrade the surface of commercially alloyed components rapidly. This paper investigates the high-temperature oxidation behaviour of novel nanostructured cermet coatings composed of two types of dispersed nanosized ceramic particles (Al2O3 and TiO2) in a nickel matrix and produced by co-electrodeposition technique. For this purpose, high temperature oxidation tests were conducted in dry air for 96 h at 500, 600 and 700 °C to obtain the mass changed per unit of area at specific time intervals. Statistical techniques as described in ASTM G16 were used to formulate the oxidation mass change as a function of time. The cross-section and surface of the oxidized coatings were examined for both visual and chemical analyses using wavelength dispersive X-ray spectroscopy element mapping, X-ray diffraction and energy-dispersive X-ray spectroscopy. The results showed sub-parabolic oxidation behavior up to 600 °C and quasi-liner at temperatures between 600 and 700 °C for the coatings. The spectroscopy results showed formation of two Ni–Ti–O compounds (Ni3TiO5 and NiTiO3) between the dispersed TiO2 and nickel that can ultimately reduce the oxidation rate for the coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. M. Castanier and W. E. Brigham, Journal of Petroleum Science and Engineering 39, 125–136 (2003).

    Article  Google Scholar 

  2. Q. Feng, T. Li, H. Teng, X. Zhang, Y. Zhang, Ch Liu and J. Jin, Surface & Coating Technology 202, 4137–4144 (2008).

    Article  Google Scholar 

  3. L. M. Chang, J. H. Liu and R. J. Zhang, Materials and Corrosion, No.999, (Wiley, Weinheim, 2010).

    Google Scholar 

  4. C. Ernest Birchenall, High Temperature Corrosion—NACE-6, (National Association of Corrosion Engineers, Houston, 1982), pp. 3–7.

    Google Scholar 

  5. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidization, 2nd ed, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  6. J. M. West, Basic Corrosion and Oxidation, 1st ed, (Ellis Horwood Ltd., Chichester, 1980).

    Google Scholar 

  7. S. A. Bradford, Fundamental of Corrosion in Gases, Corrosion, vol. 13, (ASM, Materials Park, 2001), pp. 62–76.

    Google Scholar 

  8. J. R. Davis, Heat-Resistant Materials, (ASM International Handbook, Materials Park, 1999), p. 36.

    Google Scholar 

  9. M. A. Wahab, Solid State Physics—Structure and Properties of Materials, Chapter 6, 2nd edn. (Alpha Science International Ltd., Middlesex, 2005).

  10. D. F. Susan and A. R. Marder, Oxidation of Metals 57, 131–158 (2002).

    Article  Google Scholar 

  11. D. F. Susan and A. R. Marder, Oxidation of Metals 57, 159–180 (2002).

    Article  Google Scholar 

  12. R. K. Saha, I. U. Haq, T. I. Khan and L. B. Glenesk, Key Engineering Material 442, 187–194 (2010).

    Article  Google Scholar 

  13. P. Baghery, M. Farzam, A. B. Mousavi and M. Hosseini, Surface & Coatings Technology 204, 3804–3810 (2010).

    Article  Google Scholar 

  14. L. Chen, L. Wang, Zh Zeng and J. Zhang, Material Science and Engineering A 434, 319–325 (2006).

    Article  Google Scholar 

  15. H. Gül, F. Kilic, S. Aslan, A. Alp and H. Akbulut, Wear 267, 976–990 (2009).

    Article  Google Scholar 

  16. C. L. Zeng, M. C. Li, G. Q. Liu and W. T. Wu, Oxidation of Metals 58, 171–184 (2002).

    Article  Google Scholar 

  17. M. A. Farrokhzad and T. I. Khan, Key Engineering Materials 510–511, 32–42 (2012).

    Article  Google Scholar 

  18. M. A. Farrokhzad, G. C. Saha, and T. I. Khan, Surface and Coating Technology. doi:10.1016/j.surfcoat.2013.07.015.

  19. ASTM International, ASTM G16-95, Standard Guide for Applying Statistics to Analysis of Corrosion Data (ASTM International Ltd., West Conshohocken, PA, 2010). doi:10.1520/G0016-95R10.

  20. J. S. Milton and J. C. Arnold, Introduction to Probability and Statistics, 3rd ed, (McGraw-Hill, New York, 1995), pp. 391–398.

    Google Scholar 

  21. D. R. Gabe, Principle of Metal Surface Treatment and Protection, 2nd ed, (Pergamon, Oxford, 1978).

    Google Scholar 

  22. G. Parida, D. Chaira, M. Chopkar and A. Basu, Surface and Coating Technology 205, 4871–4879 (2011).

    Article  Google Scholar 

  23. B. Phillips, et al., Journal of the American Ceramic Society 46, 579–583 (1963).

    Article  Google Scholar 

  24. M. A. Rhamdhani, et al., Metallurgical and Materials Transactions B 40B, 25–37 (2009).

    Article  Google Scholar 

  25. K. P. Trumble and M. Rühle, Acta Metallica Materialia 39, 1915–1924 (1991).

    Article  Google Scholar 

  26. K. P. Lopes, et al., Journal of Alloys and Compounds 468, 327–332 (2009).

    Article  Google Scholar 

  27. A. Qiu et al., Transactions of Nonferrous Metals Society of China, vol. 21. (Nonferrous Metall Society of China Editorial Office, Changsha, 2011), pp. 1808–1816. http://www.elsevier.com/journals/transactions-of-nonferrous-metals-society-of-china/1003-6326.

  28. D. Ortiz de Zarate, et al., New Journal of Chemistry 29, 141–144 (2005).

    Article  Google Scholar 

  29. G. M. Kale, Metallurgical and Materials Transactions B 29B, 31–38 (1998).

    Article  Google Scholar 

  30. W. Laqua and H. Schmalzried, High Temperature Corrosion—NACE-6, (National Association of Corrosion Engineers, Houston, 1982), pp. 110–114.

    Google Scholar 

  31. D. J. Taylor, P. F. Fleig, S. T. Schwab and R. A. Page, Surface and Coating Technology 120–121, 465–469 (1999).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the department of Mechanical and Manufacturing Engineering University of Calgary, Alberta, Canada and NSERC Canada, and Statoil Canada Ltd. for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Farrokhzad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrokhzad, M.A., Khan, T.I. High Temperature Oxidation of Nickel-Based Cermet Coatings Composed of Al2O3 and TiO2 Nanosized Particles. Oxid Met 81, 267–285 (2014). https://doi.org/10.1007/s11085-013-9453-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-013-9453-4

Keywords

Navigation